URL: http://www.elsevier.nl/locate/entcs/volume81.html 14 pages

The Geometry of Timed PV Programs

Ulrich Fahrenberg

Dept. of Mathematical Sciences, Aalborg University
9220 Aalborg East, Denmark. Email: uli@math.auc.dk

Abstract

We introduce a real-time extension of the PV language: A timed PV program
consists of a number of timed automata which synchronize by locking and releasing
common resources. We give a geometric semantics to such programs in terms of
local po-spaces, and we work towards making the established geometric techniques
available for detecting deadlocks and unsafe configurations in timed PV programs.

1 Introduction

The PV formal language was introduced by E. Dijkstra in [3] and has since
been applied in various areas of Computer Science. In [2], a geometric un-
derstanding of PV programs is developed, in terms of progress graphs. In [6],
these ideas are pursued further to develop an algorithm which is geometric in
spirit, to detect deadlocks and unsafe states in simple PV programs without
loops and branching. The case of PV programs with loops is treated in [5]
and [8], and in [5] it is noted that treating branching is easier than treating
looping, hence the geometric techniques are applicable to the full calculus of
untimed PV programs.

A PV process is commonly defined to be a regular expression on an al-
phabet {P,,V, | a € O}, subject to certain restrictions. Here O is a finite set
of resources which can be locked (P) or released (V) by the processes, and a
PV program then consists of a number of PV processes which synchronize by
locking and releasing the common resources. In this article we consider finite
PV automata rather than PV processes, i.e. finite automata on the alphabet
{7,Ps,V, | @ € O}. This makes the transition to geometric objects much
more simple than in [8], and it also enables us to introduce time into the PV
formalism, by passing from finite automata to timed automata.

After a review of the geometric realization technique for untimed PV pro-
grams from [5] and [8], rewritten to treat PV automata instead of PV pro-
cesses, in section [2] we introduce our timed PV formalism in sections [3] and
In section [5l we define a geometric realization mapping from timed PV pro-
grams to local po-spaces, and in section [6/ we elaborate on how this geometric

(©)2003 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume81.html

A4 LALLLVHIN DAV

realization technique could be applied to yield results similar to the ones of
[5,6.8].

This article is based on the author’s Master’s thesis [4]; note however that
notation and terminology have been changed slightly.

2 Untimed PV Programs

Throughout this article, we fix a finite set O of resources, which can be locked
(P) and released (V) by the PV automata in question, and a semaphoricity
mapping s : O — N,. We also let ¥ = {7,P,,V, | a € O}.

2.1 PV Automata

A PV automaton (on O) is a finite automaton P = (Qp, ¢%, Ep, fp, Lp) on the
alphabet Y. Here Qp is a finite set of locations, ¢% € @Qp is the initial location,
Ep is a finite set of edges, fp : Ep — Qp X Qp is the edge attaching mapping,
and Lp : Ep — ¥ is the edge labeling. For the mapping fp, if fp(e) = (¢1, ¢2),
we will write ¢; = fp(e), g2 = f5(€). If no confusion is possible, we will omit
the indices P. Note that we allow multiple edges between any pair of locations.
We declare all locations to be accepting.

To justify our approach, we show that the formalism of [8] embeds nicely
into it: [8] is concerned with (non-branching) PV processes, which are +-
free regular expressions on the set {P,,V, | a € O}. These are given the
semantics that the set of (possible) executions of a PV process is the set
of prefizes of the regular language generated by the expression. Hence the
transition from PV processes to PV automata is achieved by first translating
the regular expression to a finite automaton generating the same language,
and then declaring all locations of the automaton to be accepting.

We introduce a successor relation < C @) x @) by letting ¢; < ¢ if and
only if ¢; = go or there exists e € F such that f(e) = (q1, ¢2). Without loss of
generality we can assume our PV automata to be connected in the sense that
there exists a path ¢° < --- < ¢ for any ¢ € Q.

PV automata are subject to a well-behavedness condition: During any of
their executions, resources are only to be released if they have been previously
locked, and once they have been locked, they cannot be locked again without
being released first. Hence execution sequences like, e.g., V,.P, and P,.P, are
to be disallowed.

Imposing the well-behavedness condition on a given PV automaton P =
(Q,q°, E, f, L) is achieved by associating with it a resource-use characteristics
mapping r : O x) — 7Z as follows:

(i) Let 7,(¢°) =0 for all a € O.
(ii) Foralle € E, f(e) = (q1, q2), such that r,(q;) has been defined and r,(¢>)

2

A4 LALLLVHIN DAV

Fig. 1. Examples of resource-use conflicts. On the left, the shaded location has
a conflict in r,: Coming from the left, r, = 0, coming from above, r, = 1. The
conflict is resolved by splitting up the offending location in the second automaton.
The automaton on the right has an unresolvable resource-use conflict.

has not for some a € O, let
’I“a(ql) =+]. lf L(€)
ro(q2) = § ra(q) — 1 if L(e)

ra(q1) else

I
< '

for all a € O.

Step is to be repeated until no more such e exist. As P is connected,
the algorithm terminates with resource-use characteristics assigned to every
location in (). We assume that P has no resource-use conflicts, that is, the
resource-use characteristics of a location is independent of which path one
takes to it from ¢°. This condition can easily be verified within the above al-
gorithm, and some of the conflicts can be resolved by splitting up the offending
locations, cf. figure

With resource-use characteristics assigned to every location, the automa-
ton is said to be well-behaved if and only if r,(q) € {0,1} for all a € O,

q € Q.

2.2 PV Programs

A PV program is a finite set P = {Py,..., P,} of well-behaved PV automata.
The semantics of a PV program is, as in [8], given by associating a transition
system with it:

A configuration of P is a function x : P — |J;_, @p, mapping each au-
tomaton in P to one of its locations, i.e. such that kP; € Qp, for all P, € P.
The initial configuration is x° given by kP, = q%i for all P, € P. We transfer
the successor relation < to configurations of PV programs by letting x1 < ko
it and only if k1 P; <p, koF; for all P, € P, and we let <* denote the transitive
closure of <.

A4 LALLLVHIN DAV

The resource-use characteristics of a configuration k is 7, (k) = Y. Ta(KF;),
i.e. r4(k) is the number of locks the processes together hold on resource a in
the configuration k.

A configuration « is allowed iff r,(k) < s(a). If k1 < kg and both k;
and kg are allowed, then k1 < Ky is an allowed computation step. An allowed
computation step is denoted kq — ko; the transitive closure of — we indicate
by —*.

If Con, P denotes the set of allowed configurations of the PV program P,
then the transition system (Con, P, k%, —) gives the semantics of P.

2.8 Geometric Realization

The underlying digraph (Q, E, f) of a PV automaton P = (Q,q°, E, f, L) can
be understood as a geometric object: The nodes in () are discrete points, and
the edges in E are directed unit intervals I. This assigns a local po-space to
the digraph (Q, E, f) called its geometric realization and denoted BP.L

We carry over the resource-use characteristics r, to the geometric realiza-
tion as follows: Given x € BP, let

ro(z) if x € Q,
To(x) = S ra(fT(e)) ifz€e€ F and L(e) =P,
ro(f~(e)) else.

If x is a point on an edge, the above means that r,(x) is 1 as soon as r,
equals 1 in one of the endpoints of the edge, that is, any locations in which
the automaton holds a lock on some resource are “fattened up” such that it
also holds the lock on the edges incident with these locations.

The geometric realization of a PV program P = { Py, ..., P,} is the product
space BP = [[;_, BP,;, which as a product of local po-spaces again is a local
po-space. Resource-use characteristics is carried over to BP by letting 7, (z) =
oo To(mx), where m; & = z; is projection on the ith coordinate space. Con-
figurations of P are mapped into BP by defining & = (kPy,...,kP,) € BP.

A point z € BP is said to be allowed if 7,(z) < s(a) for all @ € O. It
is straightforward to see that 7,(K) = r,(x) for all configurations , hence x
is allowed if and only if & is allowed. The set of all allowed points in BP is
denoted B,P. It can be shown that BP is a compact local po-space, and that
B.P is a closed subspace of BP.

If < C BP x BP denotes the local order2 on the local po-space BP, it is
easy to see that k; <* ks if and only if k1 < Ky. The following proposition,
where x <* y denotes the property that there exists a dipath from z to

1 More precisely, the digraph (Q, E, f) is a semi-cubical set in the sense of [7], with Q being
the set of 0-cubes, E the set of 1-cubes, and f~, fT the first boundary mappings; and the
local po-space we have in mind is the geometric realization | (Q, F, f) | as defined in [7].

2 Compare [10, def. 26] for a definition of local order.

4

A4 LALLLVHIN DAV

y in B,P, is much more difficult to prove and constitutes the core of the
applicability of the geometric realization technique for untimed PV programs.

Proposition 2.1 Given two configurations k1, ks, then k1 —* Ko if and only
if K1 <X* Ro, and as a consequence, k1 is a deadlock or unsafe if and only if kq
18 a deadlock or unsafe.

2.4 Linear PV Programs

A PV automaton P = (Q,q°, E, f, L) is said to be linear if there exist labelings
Q= (90, qm), E = (e1,...,en), with go = ¢°, such that f(e;) = (¢;-1,¢))
for all j =1,...,m. Linear PV automata correspond to the loopless processes
of [8].

A PV program is called linear if all the automata that constitute it are
linear. The geometric realization of a linear PV program is a (global) po-
space, and in [6], an efficient algorithm is developed for finding deadlocks and
unsafe points in the geometric realization of linear PV programs.

In [5], a technique called delooping is introduced, which makes the algo-
rithm of [6] applicable to PV programs with loops. This is done by associating
with a looping PV program a number of linear PV programs such that the
unsafe region of the original program can be found as the intersection of the
unsafe regions of the linear programs.

3 Timed PV Automata

As hinted in the introduction, we define a timed PV automaton to be a timed
automaton P = (Q,q°, E, f,L,C,p,p) on the alphabet ¥ = {7,P,,V, | a €
O}. In this expression, @, ¢°, E, f, and L are as in the untimed case, C'is a
finite set of clocks, ¢ : QUE — ®(C) is a mapping assigning a clock constraint
to each location and every edge, and p : E — 2 assigns to every edge a set
of clocks to be reset.

As before, all locations are accepting. For clock constraints, clock valua-
tions, and valuation resets we use the terminology of [1], except that we also
allow constraints on differences of clocks.

The following is standard in the timed automata formalism, see e.g. [1];
we state it here only to fix notation: A state of a timed PV automaton P is
an element (q,v) of the set S = Q x RY,. A state (q,v) is allowed if v F p(q).
If (q1,v1), (g2, v2) are allowed states, then (qp,v;) — (ga,v2) if either

* g2 = q1, and there exists t € R such that v = v; +¢ and for all 0 < ¢’ <,
v+t Fo(q), or

e there is e € E such that f(e) = (q1,¢2), v1 E ¢(e), and vy = v1[p(e) < 0].

To maintain analogy with the untimed case, we need to define a “successor”
relation < on S such that the allowed-successor relation — is a subset of <.
This is done by declaring that (q1,v1) < (ge, v2) if there is ¢t € Rsq such that

5

A4 LALLLVHIN DAV

g2 = 1 and ve = vy + ¢, or there is e € E such that f(e) = (¢1,¢2) and vy =
v1[p(e) « 0]. Note that < coincides with — if and only if p(QU E) = {true},
i.e. if the automaton has no timing constraints at all.

The initial state of the timed PV automaton P is (¢°,v°) € S, where v°
is the clock valuation given by v°(c) = 0 for all ¢ € C'. We demand the initial
state to be allowed; denoting the set of allowed states by S,, the semantics of
P is given by the transition system (S,, —, (¢",v°)).

The resource-use characteristics mapping r : O x () — Z we define as in the
untimed case; this also gives us a notion of well-behaved timed PV automata.
The mapping is extended to the states of P by decreeing that r,(g,v) = r4(q).

4 Timed PV Programs

A timed PV program is a finite set P = { Py, ..., P,} of well-behaved timed PV
automata. The semantics of a timed PV program is again given by introducing
a set of configurations and defining a transition system on it:

A configuration of P is a mapping x : P — |Ji_, Sp, such that kP, € Sp,
for all P; € P. The initial configuration x° is given by k°P; = (q‘};i, vY) for all
P; € P. Again we define a successor relation < on configurations by declaring
that k1 < Ky if and only if k1 P, <p, koP; for all P; € P.

Also as before, the resource-use characteristics of a configuration « is de-
fined to be r,(k) = > ro(kP;). K is allowed if KP; is allowed in Sp, for
all P, € P and r,(k) < s(a) for all a € O. As initial states of timed PV
automata are defined to be allowed, and 7,(x°) = 0 for all a € O, the initial
configuration x° is itself allowed.

A successor relation k1 < kg is an allowed computation step, again denoted
K1+ Ko, if K1, Ky are allowed and k1 P; —p, ko P, for all P; € P. Again letting
Con, P denote the set of allowed configurations of P, the semantics of P is
given by the transition system (Con, P, k",).

Note that, compared to the untimed case, the definition of allowed con-
figurations and allowed computations now has an extra component stemming
from the individual automata the program is composed of.

5 Geometric Realization

To obtain an analogy of the geometric realization notion for timed PV pro-
grams, we have to apply the technique of section twice. The geometric
realization of a single (untimed) PV automaton was simply a digraph, i.e. a
one-dimensional local po-space, whereas the geometric realization of a timed
PV automaton with d clocks will be a (d + 1)-dimensional local po-space.
Also, we will have the notion of allowed and forbidden points already for the
geometric realization of timed PV automata, not only for the programs.
Given a set C' = {cy, ..., cq} of clocks, there is a bijective correspondence
between clock valuations in Rgo and points of the space R‘éo given by v =

6

(v(c1),...,v(cq)). Also, given a clock constraint ¢ € ®(C'), we can define an
associated subset ¢ € R —called a clock zone by some authors—by ¢ = {7 |
v E ¢}. Dividing out logical equivalence in ®(C), the mapping ¢ — ¢ also
becomes bijective. With a valuation reset v[D « 0] we associate a projection
mapping 7p : RY, — RZ, setting all coordinates x; with ¢; € D to 0 and
leaving the others untouched. For later use we record the following basic facts
about the interplay between these three mappings:

Lemma 5.1 Given v € Rgo, D CC, and ¢ € ®(C), then

e vFE @ if and only if v € P,

* (v[D < 0))” =7p(0), and

o v[D « 0] F ¢ if and only if v € 75" ().

Proof. The first two assertions are clear from the definitions. As for the last,

v[D « 0] E ¢ if and only if (v[D « 0])~ € ¢, which in turn is the case if and
only if 7p(0) € p, and the latter is equivalent to ¥ € 7, (). O

5.1 Timed PV Automata

The geometric realization of a timed PV automaton P = (Q,¢", E, f, L, C, ¢, p),
with C' = {c1,...,¢q}, is the space BP = (Q, E, f) X]1_%5%0, where (Q, E, f)

again is to be understood as a local po-space, and @%0 is the space R‘éo with

the (standard) order

(1, xg) < (y1,...,yq) iff x; <y forali=1,...,d.

The space BP is a local po-space, however unless d = 0, it is not compact.
We call (Q, E, f) the location space, ﬂi‘io the clock space.

Given a state (g, v) € 9, its geometric realization is defined to be the point
(q,0) € BP. A point (z,0) € BP is said to be allowed if either z €) and
v € ¢(x), or x € e for some e € F and

D€ G(f(e) Ngle) N iy (B(fF(e))). (1)

The following proposition, where B,P C BP again denotes the set of al-
lowed points in BP, shows that our definition of B, P is the “right” one:

Proposition 5.2 Given (z,0) € BP, then (x,v) € B,P if and only if, either
r€Q and v F ¢(x), or x € e for some e € E and

c vEp(f(e)),

e vE p(e), and

* v[p(e) « 0] F o(f*(e)).

Proof. The case x € @ is trivial. If € e for some e € FE, the first two items

correspond to ¥ € @(f~(e)) N @(e) in equation above. Hence we are left
7

A4 LALLLVHIN DAV

with showing that v € w;(le)(gﬁ(ﬁ(e))) if and only if v[p(e) «— 0] E o(fT(e)),
which however is clear by the last item of lemma, O

Resource-use characteristics is defined on BP by first introducing it on the
space (Q, E, f) as in section and then “fattening it up” by declaring that

ro(z,0) = ro(x).

5.2 Timed PV Programs

The definitions for timed PV programs resemble the ones from the untimed
case: The geometric realization of a timed PV program P = {Py,...,P,}

is the local po-space BP = [[;_, BP;, which in general is not compact; the
resource-use characteristics at a point € BP is defined to be 7(z) = Y. | 7o(m; z);
and configurations are mapped into BP by defining & = (k Py, ..., kF,), where

the correspondence between states (¢, v) and points (g, 0) is implicit.

As for allowed points in BP, we again have the duality between points
being forbidden due to over-use of resources and points being forbidden in the
respective timed PV automata: We say that a point x € BP is allowed if 7; x is
allowed in all BP; and 7, (z) < s(a) for all a € O. As the equality 7,(%) = r4(rK)
also holds in the timed case, and by proposition 5.2 a configuration « is
allowed if and only if & is allowed.

6 Applying the Geometric Realization

So far we have introduced a timed PV formalism and defined a geometric
realization function in close analogy to what has been done previously for
untimed PV programs. To actually make our proposed geometric realization
technique work, we should provide an analog of proposition of section 2.3:
Given configurations k1, kg, there should be an (allowed) execution path from
K1 to Ky if and only if there is a dipath (in B,) from &1 to &2. In the present
section we shall see that this is not the case, and we shall propose different
ways to handle the problems encountered.

For sake of simplicity, we confine ourselves to treat only timed PV automata
in this section; let P be a given timed PV automaton with d clocks.

6.1 The Reset Problem: Not All Execution Paths Correspond to Dipaths

An essential feature of timed automata is their ability to reset clocks. Indeed,
if the timed automaton in question never resets its clocks, then all clocks have
the same value in any reachable state, hence we might as well have only one
clock—and the results of [9] imply that a timed automaton with one clock is
strictly less expressive than one with two or more clocks.

However if clocks can be reset, there exist execution paths which are neither
continuous nor directed, cf. figure

A4 LALLLVHIN DAV

¢

reset

move

Fig. 2. A typical execution path in a timed automaton with one clock. As the clock
is reset during the transition from ¢; to go, the execution path is not continuous.

This problem can be solved in several different ways. A first attempt is to
simply change the order relation on BP, such that now

(pwrla'”axd) S (Q7y17"'7yd> iff pgqa‘ndVZ('r’LSyz or yzzo)

This makes execution paths directed, but still not continuous; however it
also means that BP is not a local po-space anymore: Given any point x =
(q,0,...,0), there exists no neighbourhood of = in which < is a partial order.
This last problem might be avoided by defining the new order relation in some
other way, but execution paths are still not continuous.

Our second proposal is to identify certain points in BP: If ¢, for any e € E,
denotes the midpoint of e (where e is seen as a directed unit interval), define
an equivalence relation ~ on BP by

(€,0) ~ (&) (0))

for any e € £, o € R%,,, and pass to the quotient BP/~. Certainly execution
paths in BP/~ are continuous (if the convention is applied that clocks are
reset at the midpoints of edges); we believe that BP/~ is a local po-space,
and that execution paths in BP/~ are dipaths.

This approach however has the caveat that BP/~, even though it might
be a local po-space, is a rather involved space which is likely to be difficult to
handle in applications. A third way to attack this problem is to enhance the
timed automata formalism such that the values of certain clocks can remain
zero while the others are already started, an approach which only applies to
linear timed automata as defined in section

6.2 The Global-Time Problem: Not All Dipaths Correspond to Execution
Paths

In the timed automata formalism, time is global, i.e. all clocks proceed at the
same speed. This implies that execution paths run diagonally through the
clock space, hence not all dipaths correspond to execution paths, cf. figure

9

A4 LALLLVHIN DAV

C2
forbidden

Fig. 3. An example of an execution path through a clock space constituted of two
clocks. Both x and y are allowed, and there is a dipath from x to y, yet there is no
execution path from x to y. In fact, x is a deadlock, as is y.

This situation can again be remedied by changing the order relation on
BP, the new one being

(pvxlvaxd)§<Qay177yd) iff p§q7
Vi:x; <y;, and

With this order relation, all dipaths are execution paths. However this ap-
proach fits badly with our solution to the Reset Problem proposed in the next
section.

If we want to stay with the standard order on R%,, there is no other
solution to this problem than abandoning the global-time approach altogether
and consider local-time formalisms instead: As long as at least some of the
clocks are synchronized with each other, there will be dipaths which do not
correspond to execution paths.

6.3 Linear Timed PV Automata

In analogy to the approach in the untimed case, we should develop techniques
to find deadlocks and unsafe configurations in linear timed PV programs, and
we should attempt to transfer the delooping techniques of [5] to the timed
case. In this paper we concentrate on the former; the latter is left open for
future research.

As in the untimed case, a timed PV automaton P = (Q,¢°, E, f, L, C, p, p)
is said to be linear if there exist labelings @ = (qo, ..., qm), £ = (€1, .., €m),
with gy = ¢°, such that f(e;) = (¢j_1,q;) for all j = 1,...,m. The geometric
realization of a linear timed PV automaton is a po-space.

For linear timed PV automata, the Reset Problem of section has a third
and much more elegant solution: to avoid resets altogether by introducing new
clocks. Let P be the automaton from above, e; one of its edges, and ¢ one of
its clocks, and assume that ¢, € p(e;). Introduce a new clock ¢ ;, and in all
invariants ¢(q;), ¢(eit1), @ > j, replace any occurrence of ¢ by ¢ ;. The clock

10

A4 LALLLVHIN DAV

Ck,; 1s to be started only when location g; is reached, i.e. its value remains 0
before ¢;; it is clear that this replacement does not alter the semantics of P.

After all resets have been resolved by the procedure above, we have an
automaton without resets, but instead with a new start function o : C' — Q,
assigning to every clock the location in which it is started. In the geometric
realization of this new automaton, execution paths are dipaths.

6.4 Deadlocks and Unsafe Configurations

In the untimed case, the notions of deadlock and unsafe configuration are very
intuitive: A non-final configuration « is a deadlock if and only if there does
not exist any &’ such that x — &/, and k is unsafe if and only if no final
configuration can be reached from k, i.e. if Tk N F = (). Here F is the set of
final configurations, and Tk = {x' | K —* K'}.

For linear untimed PV programs, these notions are connected in that a
configuration is unsafe if and only if any execution from it reaches a deadlock.®|
The algorithm of [6] finds all unsafe configurations in a given linear untimed
PV program by recursively finding all deadlocks and “tracing them back” to
find their associated unsafe configurations.

For timed PV automata the situation is somewhat more complicated.
First, there are two kinds of deadlocks: Applying the definition from above
gives a notion of state deadlock; a state is a state deadlock if no location switch
can occur and time cannot increase. However there is also a second notion
which is of interest, where the automaton is locked in the present location,
but time might increase indefinitely:

Definition 6.1 A state (q,v) € @ X Rgo is called a location deadlock if, for
all t € R>g such that (g, v) — (q,v+1t) and for all e € E such that f~(e) = ¢,

* (q,v+t) is non-final, and
s v+ tEp(e)or (v+1)[p(e) « 0] ¥ o(f*(e)).

It is clear that every state deadlock is also a location deadlock.

Second, turning our attention to linear timed PV automata and assuming
that the final states are exactly those whose location is ¢,,, i.e. the “last”
location, we see that a state is unsafe if and only if any execution from it
reaches a location deadlock. Hence we should find all location deadlocks and
trace them back to find their associated unsafe states.

6.5 What We End Up With

In this last section we spell out the geometric realization technique for linear
timed PV automata. We avoid the Reset Problem by the changes proposed in

3 Here it is to be assumed that the only final configuration is the one consisting of the final
locations of the individual automata.

11

A4 LALLLVHIN DAV

section[6.3) and we work around the Global-Time Problem by stating explicitly
when a dipath corresponds to an execution path.

Let P = (Q,¢°,E, f,L,C,p,0) be a linear timed PV automaton, where
we instead of the reset mapping p now have a start function o : C' — @, and
let C'={c1,...,ca}, @ =1qo,---,qm}, E ={e1,...,en}, where o = ¢° and
f(ej) = (gj-1,¢q;) for all j =1,...,m. The geometric realization of P is

— -
BP = [0,m] x RZ,,

which is a po-space.

In the present setting, execution paths correspond to dipaths, however as
not all clocks of the automaton are running in all locations, it is not the case
anymore that execution paths run diagonally through the clock space. We
keep track of which way execution paths are allowed to run by translating the
start function ¢ to a mapping 7 : Q@ x R%, — R?, thereby defining a vector
field on each instance of the m + 1 clock spaces. Execution paths are then
(piecewise linear) curves through BP which are integral curves to the vector
fields in the clock spaces and run horizontally in [0, m].

First, define an accumulated start function R : Q — 2¢, where R(q)
contains all clocks which are running, i.e. have been started already, in ¢:

R(g)) ={ceClao(c) =g i<j}

This mapping translates to a function ¢ : Q — {0, 1}%, by Sz(q) = 1 if and only

if ¢; € R(q), and we “fatten it up” to @ x R%o by declaring that o(q,0) = 7(q).
With this in place, we are now able to give an exact characterization of the

execution paths in BP: A dipath v: I — BP = [0, m] x ﬂi‘éo is an execution

path if and only if there exists a partition 0 = ¢y, ¢;,...,t, = 1 of I such that

o y(t;) €Q x I foralli=0,...,n,

® Y|jtitisq] 18 smooth for all ¢ = 0,...,n — 1, and

e forallt=0,...,n— 1, either

Aty i) "y(t) = ((ti+l - ti)fl, 0,... ,O)

for all t € [t;,t;44], or

Vtia) ey = (0,51(7(8)), - - -, Fa(Y(t:)))

for all ¢ € [tz, ti-l—l]'
Here dvi, +,,,] |yt) denotes the differential of « restricted to the interval [t tiv1],
taken in the point ~(¢). Note that 1) any dipath satisfying the above con-

straints is actually piecewise linear, not just smooth, and 2) any path fulfilling
these constraints is automatically a dipath.

12

A4 LALLLVHIN DAV

7 Future Work

We believe that in the setting laid out in section we are not far from being
able to apply the algorithm of [6] to find deadlocks and unsafe configurations
in timed PV programs, and we plan to do this in a future paper. There are
two issues still to consider; however to us they are mainly of a computational,
rather than conceptual, nature:

First, in the algorithm of [6], deadlocks are critical intersection points of
1sothetic hyperrectangles, whereas in our setting they are critical intersection
points of “skew” regions in space, i.e. polyhedra where some of the edges are
parallel to the coordinate axes, some are “partially diagonal”. Computing in-
tersections of hyperrectangles is easy, computing intersections of skew regions
is more difficult. Also, in [6] deadlocks are critical intersection points of n hy-
perrectangles, where n is the dimension of the po-space in question, whereas
in our setting, all clocks are stopped from running by a restriction on just one
clock (since time is global), hence for us, deadlocks are critical intersection
points of just two forbidden regions.

Second, in the original algorithm the set of unsafe points associated to a
certain deadlock is a hyperrectangle “below” the critical intersection point. In
our setting, the unsafe set would again be (the interior of) a “skew” region
in space. Computing this set might be computationally expensive, but it is
certainly possible.

As for the further future, we think that our approach of adding time to the
“geometry of concurrency” world is sort of complementary to S. Sokotowski’s
concept of “continuous resources” as in [10], and we believe that a combination
of these two approaches should be attempted.

We should however mention that in our approach to the geometry of timed
PV automata, we were not able to use a lot of the machinery available from
algebraic ditopology. We believe that this is inherent to the timed automata
formalism we were using, and that another attempt to incorporate time into
the “geometry of concurrency” world should be tried using some other timed
formalism.

Acknowledgement

I am indebted to Lisbeth Fajstrup, Martin Raussen, Kim G. Larsen, and Eric
Goubault for sharing many valuable thoughts with me, and to John Leth for
correcting an early version of this article.

References

[1] R. Alur. Timed automata. In Proc. CAV’99, volume 1633 of Lecture Notes in
Computer Science, pages 8-22. Springer-Verlag, 1999.

13

A4 LALLLVHIN DAV

[2] E. G. Coffman, M. J. Elphick, and A. Shoshani. System deadlocks. ACM
Comput. Surv., 3(2):67-78, June 1971.

[3] E. Dijkstra. Co-operating sequential processes. In F. Genuys, editor,
Programming Languages, pages 43—112. Academic Press, New York, 1968.

[4] U. Fahrenberg. Towards an efficient algorithm for detecting unsafe states
in timed concurrent systems. Master’s thesis, Aalborg University, Dept. of
Mathematical Sciences, 9220 Aalborg East, Denmark, May 2002.

[5] L. Fajstrup. Loops, ditopology and deadlocks. Mathematical Structures in
Computer Science, 10:459-480, 2000.

[6] L. Fajstrup, E. Goubault, and M. Raussen. Detecting deadlocks in concurrent
systems. In Proc. CONCUR’98, volume 1466 of Lecture Notes in Computer
Science, pages 332—-347. Springer-Verlag, 1998.

[7] L. Fajstrup, E. Goubault, and M. Raussen. Algebraic topology and concurrency.
Report R-99-2008, Department of Mathematical Sciences, Aalborg University,
November 1999.

[8] L. Fajstrup and S. Sokolowski. Infinitely running concurrent processes with
loops from a geometrical viewpoint. Electronic Notes in Theoretical Computer
Science, 39(2), 2000.

[9] T. A. Henzinger, P. W. Kopke, and H. Wong-Toi. The expressive power of
clocks. In Proc. ICALP’95, volume 944 of Lecture Notes in Computer Science,
pages 417-428. Springer-Verlag, 1995.

[10] S. Sokolowski. A case for po-manifolds. In Preliminary Proceedings GETCO’02,
volume NS-02-5 of BRICS Notes Series. BRICS, Aarhus, October 2002.

14

	Introduction
	Untimed PV Programs
	PV Automata
	PV Programs
	Geometric Realization
	Linear PV Programs

	Timed PV Automata
	Timed PV Programs
	Geometric Realization
	Timed PV Automata
	Timed PV Programs

	Applying the Geometric Realization
	The Reset Problem: Not All Execution Paths Correspond to Dipaths
	The Global-Time Problem: Not All Dipaths Correspond to Execution Paths
	Linear Timed PV Automata
	Deadlocks and Unsafe Configurations
	What We End Up With

	Future Work
	Acknowledgement
	References

