Bisimulation for Higher-Dimensional Automata A Geometric Interpretation

Uli Fahrenberg

Department of Mathematical Sciences
Aalborg University
Fields-Ottawa Workshop on the Geometry of Very Large Data Sets

Outline

(9) Introduction

- Parallelism vs. Mutual Exclusion
- Higher-Dimensional Automata
- The "van Glabbeek Hierarchy"
- The Link to Geometry
(2) Simulation and Bisimulation
- Morphisms of HDA
- Bisimulation
(3) The Geometry of HDA
- Local po-spaces
- Directed Maps

Parallelism vs. Mutual Exclusion

Parallelism vs. Mutual Exclusion

Parallelism vs. Mutual Exclusion

$a|\mid b$

Parallelism vs. Mutual Exclusion

$a|\mid b$ $a . b+b . a$

Action refinement

Parallelism vs. Mutual Exclusion

$a|\mid b$
$D(a|\mid b)=$ $\max (D(a), D(b))$

$$
\begin{gathered}
D(a \cdot b+b \cdot a)= \\
D(a)+D(b)
\end{gathered}
$$

Real-time systems

Parallelism vs. Mutual Exclusion

$$
a|\mid b
$$

$$
a \cdot b+b \cdot a
$$

Higher-Dimensional Automata

So a higher-dimensional automaton is a pointed precubical set

$$
\begin{gathered}
A=\left\{A_{n}\right\} \\
\delta_{i}^{0}, \delta_{i}^{1}: A_{n} \rightarrow A_{n-1} \quad(i=1, \ldots, n)
\end{gathered}
$$

(The point $* \in A_{0}$ is the initial state.)
Note: For labeled HDA, the easiest is to work in
a comma category of pointed precubical sets
over a category of certain special alphabet
precubical sets (which are ∞-tori), but we shall
not need this here.

(Pratt, Van Glabbeek 1991)

Higher-Dimensional Automata

So a higher-dimensional automaton is a pointed precubical set

$$
\begin{gathered}
A=\left\{A_{n}\right\} \\
\delta_{i}^{0}, \delta_{i}^{1}: A_{n} \rightarrow A_{n-1} \quad(i=1, \ldots, n)
\end{gathered}
$$

(The point $* \in A_{0}$ is the initial state.)
Note: For labeled HDA, the easiest is to work in a comma category of pointed precubical sets over a category of certain special alphabet precubical sets (which are ∞-tori), but we shall not need this here.

(Pratt, Van Glabbeek 1991)

The "van Glabbeek Hierarchy"

Configuration structures

Event structures
\square
Synchronization trees

The Link to Geometry

Geometric realisation:

$$
\text { precubical sets } \longrightarrow \text { topological spaces }
$$

Holes in the space \Longleftrightarrow Mutual exclusion in the HDA
Has been employed by various people, Goubault, Fajstrup,
Raussen, ...
My contribution: Bisimilarity of HDA is related to a path-lifting property of their geometric realisations

Morphisms of HDA

Morphisms of HDA should be simulations:
$A \rightarrow B \quad$ iff \quad whatever A can compute, B can compute, too.
So what is a computation?

So simulations are just morphisms of pointed precubical sets.

Morphisms of HDA

Morphisms of HDA should be simulations:
$A \rightarrow B \quad$ iff \quad whatever A can compute, B can compute, too.
So what is a computation?

*

So simulations are just morphisms of pointed precubical sets.

Morphisms of HDA

Morphisms of HDA should be simulations:
$A \rightarrow B \quad$ iff \quad whatever A can compute, B can compute, too.
So what is a computation?

*
So simulations are just morphisms of pointed precubical sets.

Morphisms of HDA

Fine, so the category of HDA (over a fixed alphabet L) is just the category of pointed precubical sets.

```
Note: For the category of HDA over varying
alphabets, things are more complicated.
One needs to introduce "idle transitions" and
to work with cubical sets instead
(i.e. precubical sets with degeneracies).
To be precise: The full category of HDA
consists of diagrams like this one, with }A,\mp@subsup{A}{}{\prime}\mathrm{ ,
L, L' precubical sets, black arrows
precubical morphisms, and red arrows
cubical morphisms.
```

We will not need this here.

Morphisms of HDA

Fine, so the category of HDA (over a fixed alphabet L) is just the category of pointed precubical sets.

Note: For the category of HDA over varying alphabets, things are more complicated.
One needs to introduce "idle transitions" and to work with cubical sets instead
(i.e. precubical sets with degeneracies).

To be precise: The full category of HDA consists of diagrams like this one, with A, A^{\prime}, L, L' precubical sets, black arrows precubical morphisms, and red arrows
 cubical morphisms.
We will not need this here.

Bisimulation

Two HDA A, B are bisimilar if whatever A can compute, B can also compute, and vice versa.

So a morphism $f: A \rightarrow B$ is a bisimulation if for any $a \in A$ and for any computation starting in $f(a)$, there is a computation starting in a which maps to the computation in B.

Or equivalently, if

And two HDA B, C are bisimilar if there are bisimulations $B \leftarrow A \rightarrow C$. ("Bisimulation through open maps," Winskel, Nielsen 1995)

Bisimulation

Two HDA A, B are bisimilar if whatever A can compute, B can also compute, and vice versa.

So a morphism $f: A \rightarrow B$ is a bisimulation if for any $a \in A$ and for any computation starting in $f(a)$, there is a computation starting in a which maps to the computation in B.
Or equivalently, if

$$
\begin{aligned}
& \forall a \in A, \forall c^{\prime} \in B: f(a)=\delta_{i}^{0} c^{\prime}, \\
& \exists c \in A: c^{\prime}=f(c), a=\delta_{i}^{0} c
\end{aligned}
$$

And two HDA B, C are bisimilar if there are bisimulations $B \leftarrow A \rightarrow C$. ("Bisimulation through open maps," Winskel, Nielsen 1995)

Bisimulation

Two HDA A, B are bisimilar if whatever A can compute, B can also compute, and vice versa.

So a morphism $f: A \rightarrow B$ is a bisimulation if for any $a \in A$ and for any computation starting in $f(a)$, there is a computation starting in a which maps to the computation in B.
Or equivalently, if

$$
\begin{aligned}
& \forall a \in A, \forall c^{\prime} \in B: f(a)=\delta_{i}^{0} c^{\prime} \\
& \exists c \in A: c^{\prime}=f(c), a=\delta_{i}^{0} c
\end{aligned}
$$

And two HDA B, C are bisimilar if there are bisimulations $B \leftarrow A \rightarrow C$. ("Bisimulation through open maps," Winskel, Nielsen 1995)

Bisimulation

Two HDA A, B are bisimilar if whatever A can compute, B can also compute, and vice versa.

So a morphism $f: A \rightarrow B$ is a bisimulation if for any $a \in A$ and for any computation starting in $f(a)$, there is a computation starting in a which maps to the computation in B.
Or equivalently, if

$$
\begin{aligned}
& \forall a \in A, \forall c^{\prime} \in B: f(a)=\delta_{i}^{0} c^{\prime}, \\
& \exists c \in A: c^{\prime}=f(c), a=\delta_{i}^{0} c
\end{aligned}
$$

And two HDA B, C are bisimilar if there are bisimulations $B \leftarrow A \rightarrow C$. ("Bisimulation through open maps," Winskel, Nielsen 1995)

Local po-spaces

The geometric realisation of a precubical set is a local po-space; a topological space with a relation \leq which is

- reflexive,
- antisymmetric,
- locally transitive, and locally closed.
(i.e. we have a cover $\mathcal{U}=\left\{U_{\alpha}\right\}$ of X such that \leq is transitive and closed in each U_{α}.)

Local po-spaces

The geometric realisation of a precubical set is a local po-space; a topological space with a relation \leq which is

- reflexive,
- antisymmetric,
- locally transitive, and locally closed. (i.e. we have a cover $\mathcal{U}=\left\{U_{\alpha}\right\}$ of X such that \leq is transitive and closed in each \cup_{α}.)

The Main Result

A dimap $f: X \rightarrow Y$ is a continuous mapping which is locally increasing:

$$
\forall x \in X, \exists U \ni x: \forall x_{1} \leq x_{2} \in U, f\left(x_{1}\right) \leq f\left(x_{2}\right) \in Y
$$

A dipath in X is a dimap $\vec{l} \rightarrow X$.

The Main Result

Theorem: $f: A \rightarrow B$ is a bisimulation if and only if $|f|:|A| \rightarrow|B|$ has the dipath-lifting property

$$
\begin{aligned}
& q=|f| \circ p
\end{aligned}
$$

- connection to (directed) fibrations, obstruction theory

The Main Result

Theorem: $f: A \rightarrow B$ is a bisimulation if and only if $|f|:|A| \rightarrow|B|$ has the dipath-lifting property

Key of proof: For any dipath, there is a unique computation through (the geometric realisation of) which it "runs."
[Fajstrup 2003]

Only holds for geometric and locally finite HDA.

The Main Result

Theorem: $f: A \rightarrow B$ is a bisimulation if and only if $|f|:|A| \rightarrow|B|$ has the dipath-lifting property

Key of proof: For any dipath, there is a unique computation through (the geometric realisation of) which it "runs."
[Fajstrup 2003]

Only holds for geometric and locally finite HDA.

Equivalence of Computations

Adjacency of computations:

Equivalence of computations := equivalence generated by adjacency. [van Glabbeek 1991]

Bisimulation up to Equivalence

A morphism $f: A \rightarrow B$ is called a bisimulation up to equivalence if for any $a \in A$ and for any computation starting in $f(a)$, there is a computation starting in a which maps to a computation in B that is equivalent to the given one.

Conjecture: $f: A \rightarrow B$ is a bisimulation up to equivalence if and only $|f|:|A| \rightarrow|B|$ lifts dipaths up to dihomotopy:

$$
q \simeq|f| \circ p
$$

An Application to Topology

Conjecture: For any geometric, locally finite precubical set A, there exists a precubical set B such that $|B|$ is the universal (directed) covering space of $|A|$.

Key idea: The cubes of B are the equivalence classes of computations of A.

Thank You!

Uli Fahrenberg
Ph.D. student, Aalborg University, Denmark (currently looking for job opportunities ...)
uli@math.aau.dk http://www.math.aau.dk/~uli

Selected Bibliography

- V. Pratt, Modeling Concurrency with Geometry. Proc. 18th ACM Symposium on Principles of Programming Languages, 1991.
- R. van Glabbeek, Bisimulations for Higher Dimensional Automata. Email message, 1991.
- R. van Glabbeek, On the Expressiveness of Higher Dimensional Automata. Proc. EXPRESS 2004, to be published.
- E. Goubault, The Geometry of Concurrency. Ph.D. thesis, 1995.
- L. Fajstrup, E. Goubault, M. Raussen, Algebraic Topology and Concurrency, 1999. Accepted for publication in Theor.Comp.Sci.

Selected Bibliography II

- L. Fajstrup, Dipaths and Dihomotopies in a Cubical Complex. Adv.Appl.Math., to appear.
- U. Fahrenberg, A Category of Higher-Dimensional Automata. Proc. FOSSACS 2005, to appear.

Advertisement

Geometry and Topology in Concurrency 2005 San Francisco 21 August 2005

Workshop on Algebraic Topology in Concurrency
Aalborg, Denmark August 2005 (planned)

