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Parallelism vs. Mutual Exclusion

a||b

D(a||b) =
max(D(a), D(b))
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Real-time systems
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Higher-Dimensional Automata

So a higher-dimensional automaton is a pointed precubical set

A = {An}
δ0

i , δ1
i : An → An−1 (i = 1, . . . , n)

(The point ∗ ∈ A0 is the initial state.)

Note: For labeled HDA, the easiest is to work in
a comma category of pointed precubical sets
over a category of certain special alphabet
precubical sets (which are∞-tori), but we shall
not need this here.

a b
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(Pratt, Van Glabbeek 1991)
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The “van Glabbeek Hierarchy”

HDA

Automata

44jjjjjjjjjjjjjjjjj
Petri nets

jjTTTTTTTTTTTTTTTTT

Configuration structures

iiTTTTTTTTTTTTTTT

55jjjjjjjjjjjjjjj

Event structures

OO

Synchronization trees

OO
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The Link to Geometry

Geometric realisation:

precubical sets −→ topological spaces

Holes in the space⇐⇒ Mutual exclusion in the HDA

Has been employed by various people, Goubault, Fajstrup,
Raussen, . . .

My contribution: Bisimilarity of HDA is related to a path-lifting
property of their geometric realisations
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Morphisms of HDA

Morphisms of HDA should be simulations:
A→ B iff whatever A can compute, B can compute, too.

So what is a computation?

*

So simulations are just morphisms of pointed precubical sets.
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Morphisms of HDA

Fine, so the category of HDA (over a fixed alphabet L) is just
the category of pointed precubical sets.

Note: For the category of HDA over varying
alphabets, things are more complicated.
One needs to introduce “idle transitions” and
to work with cubical sets instead
(i.e. precubical sets with degeneracies).

To be precise: The full category of HDA
consists of diagrams like this one, with A, A′,
L, L′ precubical sets, black arrows
precubical morphisms, and red arrows
cubical morphisms.

We will not need this here.
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Bisimulation

Two HDA A, B are bisimilar if whatever A can compute, B can
also compute, and vice versa.

So a morphism f : A→ B is a bisimulation if for
any a ∈ A and for any computation starting in
f (a), there is a computation starting in a which
maps to the computation in B.

Or equivalently, if

∀ a ∈ A,∀ c′ ∈ B : f (a) = δ0
i c′,

∃ c ∈ A : c′ = f (c), a = δ0
i c

And two HDA B, C are bisimilar if there are bisimulations
B ← A→ C. (“Bisimulation through open maps,” Winskel,
Nielsen 1995)
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Local po-spaces

The geometric realisation of a precubical set is a local
po-space; a topological space with a relation ≤ which is

reflexive,

antisymmetric,

locally transitive, and locally closed.
(i.e. we have a cover U = {Uα} of X such that ≤ is
transitive and closed in each Uα.)

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

~I



Introduction Simulation and Bisimulation The Geometry of HDA

Local po-spaces

The geometric realisation of a precubical set is a local
po-space; a topological space with a relation ≤ which is

reflexive,

antisymmetric,

locally transitive, and locally closed.
(i.e. we have a cover U = {Uα} of X such that ≤ is
transitive and closed in each Uα.)

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

~I



Introduction Simulation and Bisimulation The Geometry of HDA

The Main Result

A dimap f : X → Y is a continuous mapping which is locally
increasing:

∀ x ∈ X ,∃ U 3 x : ∀ x1 ≤ x2 ∈ U, f (x1) ≤ f (x2) ∈ Y

A dipath in X is a dimap~I → X .
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The Main Result

Theorem: f : A→ B is a bisimulation if and only if |f | : |A| → |B|
has the dipath-lifting property

0 //
� _

��

|A|

|f |
��

~I q
//

p

??

|B|
q = |f | ◦ p

– connection to (directed) fibrations, obstruction theory
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The Main Result

Theorem: f : A→ B is a bisimulation if and only if |f | : |A| → |B|
has the dipath-lifting property

Key of proof: For any dipath, there is a unique computation
through (the geometric realisation of) which it “runs.”
[Fajstrup 2003]

Only holds for geometric and locally finite HDA.
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Equivalence of Computations

Adjacency of computations:
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Equivalence of computations := equivalence generated by
adjacency. [van Glabbeek 1991]
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Bisimulation up to Equivalence

A morphism f : A→ B is called a bisimulation up to
equivalence if for any a ∈ A and for any computation starting in
f (a), there is a computation starting in a which maps to a
computation in B that is equivalent to the given one.

Conjecture: f : A→ B is a bisimulation up to equivalence if and
only |f | : |A| → |B| lifts dipaths up to dihomotopy:

0 //
� _

��

|A|

|f |
��

~I q
//

p

??

|B|
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An Application to Topology

Conjecture: For any geometric, locally finite precubical set A,
there exists a precubical set B such that |B| is the universal
(directed) covering space of |A|.

Key idea: The cubes of B are the equivalence classes of
computations of A.
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Thank You!
Uli Fahrenberg
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