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allb ab+b.a
a b
D(al|b) = D(a.b+b.a) =
max(D(a), D(b)) D(a) + D(b)
b a

Real-time systems
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So a higher-dimensional automaton is a pointed precubical set

A:{An}
60,6t Ay — A1 (i=1,...,n)

(The point x € Ag is the initial state.)
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Higher-Dimensional Automata

So a higher-dimensional automaton is a pointed precubical set

A:{An}
60,6t Ay — A1 (i=1,...,n)

(The point x € Ag is the initial state.)

Note: For labeled HDA, the easiest is to work in
a comma category of pointed precubical sets
over a category of certain special alphabet
precubical sets (which are co-tori), but we shall
not need this here.
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The “van Glabbeek Hierarchy”

/ HDA\

Automata Petri nets
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Configuration structures

T

Event structures

T

Synchronization trees
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The Link to Geometry

Geometric realisation:

precubical sets — topological spaces
Holes in the space <= Mutual exclusion in the HDA
Has been employed by various people,

My contribution: Bisimilarity of HDA is related to a path-lifting
property of their geometric realisations
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Morphisms of HDA should be simulations:
A — B iff whatever A can compute, B can compute, too.
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Morphisms of HDA

Morphisms of HDA should be simulations:
A — B iff whatever A can compute, B can compute, too.

So what is a computation?

&

So simulations are just morphisms of pointed precubical sets.



Simulation and Bisimulation
oe

Morphisms of HDA
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the category of pointed precubical sets.
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Morphisms of HDA

Fine, so the category of HDA (over a fixed alphabet L) is just
the category of pointed precubical sets.

Note: For the category of HDA over varying
alphabets, things are more complicated.

One needs to introduce “idle transitions” and ”

to work with cubical sets instead

(i.e. precubical sets with degeneracies). / \
To be precise: The full category of HDA A—=4
consists of diagrams like this one, with A, A/, ¢ ¢
L, L’ precubical sets, black arrows

precubical morphisms, and red arrows L —=1L

cubical morphisms.

We will not need this here.
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Bisimulation

Two HDA A, B are bisimilar if whatever A can compute, B can
also compute, and vice versa.

So a morphism f : A — B is a bisimulation if for
any a € A and for any computation starting in
f(a), there is a computation starting in a which
maps to the computation in B.

And two HDA B, C are bisimilar if there are bisimulations
B+~ A—C.
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The geometric realisation of a precubical set is a local
po-space; a topological space with a relation < which is

@ reflexive,
@ antisymmetric,
@ locally transitive, and locally closed.
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Local po-spaces

The geometric realisation of a precubical set is a local
po-space; a topological space with a relation < which is

@ reflexive,
@ antisymmetric,

@ locally transitive, and locally closed.
(i.e. we have a cover U = {U, } of X such that < is
transitive and closed in each U,.)
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The Main Result

Adimap f : X — Y is a continuous mapping which is locally
increasing:

VxeX,3Usx:Vx3 <xeU,f(xy) <f(xx) eY
A dipath in X is a dimap I — X.
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The Main Result

Theorem: f : A — B is a bisimulation if and only if |f| : |A| — |B|
has the dipath-lifting property

0——IAl
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— connection to (directed) fibrations, obstruction theory
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The Main Result

Theorem: f : A — B is a bisimulation if and only if [f| : |A] — |B]
has the dipath-lifting property

Key of proof: For any dipath, there is a unique computation
through (the geometric realisation of) which it “runs.”
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The Main Result

Theorem: f : A — B is a bisimulation if and only if [f| : |A] — |B]
has the dipath-lifting property

Key of proof: For any dipath, there is a unique computation
through (the geometric realisation of) which it “runs.”

Only holds for geometric and locally finite HDA.
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Equivalence of Computations

Adjacency of computations:

Equivalence of computations := equivalence generated by
adjacency.
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Bisimulation up to Equivalence

A morphism f : A — B is called a bisimulation up to
equivalence if for any a € A and for any computation starting in
f(a), there is a computation starting in a which maps to a
computation in B that is equivalent to the given one.

Conjecture: f : A — B is a bisimulation up to equivalence if and
only [f| : |A| — |B] lifts dipaths up to dihomotopy:

0 ——IAl

ool q=ifep
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An Application to Topology

Conjecture: For any geometric, locally finite precubical set A,
there exists a precubical set B such that |B| is the universal
(directed) covering space of |A|.

Key idea: The cubes of B are the equivalence classes of
computations of A.
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