Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

A Category of Higher-Dimensional Automata

Uli Fahrenberg

Department of Mathematical Sciences Aalborg University

Foundations of Software Science and Computation Structures Edinburgh, 6 April 2005

Introduction
000000

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

Introduction

- Parallelism vs. Concurrency
- Higher-Dimensional Automata
- The "van Glabbeek Hierarchy"
- The Link to Geometry
- Why is This Interesting
- 2 Simulation and Bisimulation
- The Geometry of HDA

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

Parallelism vs. Concurrency

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

Parallelism vs. Concurrency

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

Parallelism vs. Concurrency

Action refinement

a||b

a.b+b.a

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

Parallelism vs. Concurrency

$$egin{array}{ll} D(a.b+b.a)=\ D(a)+D(b) \end{array}$$

Real-time systems

a||b

a.b+b.a

Simulation and Bisimulation

The Geometry of HDA

Solution:

Bisimulation up to Equivalence

Parallelism vs. Concurrency

a||b

a.b+b.a

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

Parallelism vs. Concurrency

One dimension up:

• Three actions, any two of them in parallel:

(Think of three users sharing two printers.)

• Three actions in parallel:

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

Higher-Dimensional Automata

So a higher-dimensional automaton is a pointed precubical set

(The point $* \in A_0$ is the initial state.)

Serre 1951; Pratt, van Glabbeek 1991

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

Higher-Dimensional Automata

So a higher-dimensional automaton is a pointed precubical set

(The point $* \in A_0$ is the initial state.) [Serre 1951; Pratt, van Glabbeek 1991]

 $\operatorname{arrows} = \operatorname{embeddings}$ up to history preserving bisimulation

Uli Fahrenberg Aalborg University

A Category of HDA

[van Glabbeek 2004]

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

The Link to Geometry

Geometric realisation:

```
precubical set A \longrightarrow topological space |A|
```

The geometry of |A| gives information about the behaviour of the HDA *A*:

HDA A	Space <i>A</i>
Mutual exclusion	Hole
Deadlock	Upper corner
Unreachable state	Lower corner
etc.	

Papers by Goubault, Fajstrup, Raussen, ...

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

The Link to Geometry

Geometric realisation is a functor:

My contribution:

HDA-map f	continuous function $ f $
Property x	Property x'

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

The Link to Geometry

Geometric realisation is a functor:

My contribution:

HDA-map <i>f</i>	continuous function $ f $	
bisimulation	path-lifting	
bisimulation up to equivalence	path-lifting up to homotopy	

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

The Link to Geometry

Geometric realisation is a functor:

My contribution:

HDA-map <i>f</i>	continuous function $ f $
bisimulation	path-lifting
bisimulation up to equivalence	path-lifting up to homotopy

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

Why is This Interesting

HDA-map <i>f</i>	continuous function $ f $
bisimulation	path-lifting
bisimulation up to equivalence	path-lifting up to homotopy

- Topology is good at showing negative properties
- So the above should be useful for deciding that two given HDA are not bisimilar

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

Simulation and Bisimulation

Introduction

2

Simulation and Bisimulation • Morphisms of HDA

- Bisimulation
- 3 The Geometry of HDA
- Bisimulation up to Equivalence

Bisimulation up to Equivalence

Morphisms of HDA

Morphisms of HDA should be simulations:

 $A \rightarrow B$ iff whatever A can compute, B can compute, too.

 $f: A \to B$ is $f = \{f_n : A_n \to B_n\}$ s.t. $\delta_i^{\nu} \circ f_n = f_{n-1} \circ \delta_i^{\nu}$

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

Morphisms of HDA

Morphisms of HDA should be simulations:

 $A \rightarrow B$ iff whatever A can compute, B can compute, too.

Bisimulation up to Equivalence

Morphisms of HDA

Morphisms of HDA should be simulations:

 $A \rightarrow B$ iff whatever A can compute, B can compute, too.

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

Other People, Other Computations ...

Cattani/Sassone 1996, Worytkiewicz 2004:

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

Labels, Compositions, etc.

- Labeled HDA
- Idle transitions
- Compositions

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

Labels, Compositions, etc.

- Labeled HDA
- Idle transitions
- Compositions

Introduction	Simulation and Bisimulation	The Geometry of HDA	Bisimulation up to Equivalence
Bisimulati	on		

So a morphism $f : A \rightarrow B$ is an open map if for any $a \in A$ and for any computation starting in f(a), there is a computation starting in *a* which maps to the computation in *B*.

(For simplicity, we ignore reachability issues: For this talk, all cubes are assumed to be reachable by a computation.)

And two HDA *B*, *C* are bisimilar if there are open maps [Joyal, Nielsen, Winskel 1996]

Introduction	Simulation and Bisimulation	The Geometry of HDA	Bisimulation up to Equivalence
Bisimulati	on		

So a morphism $f : A \rightarrow B$ is an open map if for any $a \in A$ and for any computation starting in f(a), there is a computation starting in *a* which maps to the computation in *B*.

(For simplicity, we ignore reachability issues: For this talk, all cubes are assumed to be reachable by a computation.)

And two HDA *B*, *C* are bisimilar if there are open maps [Joyal, Nielsen, Winskel 1996]

Introduction	Simulation and Bisimulation ○○○●	The Geometry of HDA	Bisimulation up to Equivalence
Bisimula	ation		

So a morphism $f : A \rightarrow B$ is an open map if for any $a \in A$ and for any computation starting in f(a), there is a computation starting in *a* which maps to the computation in *B*.

Or equivalently, if

$$orall \mathbf{a} \in \mathbf{A}, orall \mathbf{c}' \in \mathbf{B} : f(\mathbf{a}) = \delta_i^0 \mathbf{c}',$$

 $\exists \mathbf{c} \in \mathbf{A} : \mathbf{c}' = f(\mathbf{c}), \mathbf{a} = \delta_i^0 \mathbf{c}$

And two HDA *B*, *C* are bisimilar if there are open maps [Joyal, Nielsen, Winskel 1996]

A

Introduction	Simulation and Bisimulation ○○○●	The Geometry of HDA	Bisimulation up to Equivalence
Bisimula	ation		

So a morphism $f : A \rightarrow B$ is an open map if for any $a \in A$ and for any computation starting in f(a), there is a computation starting in *a* which maps to the computation in *B*.

Or equivalently, if

$$\forall \mathbf{a} \in \mathbf{A}, \forall \mathbf{c}' \in \mathbf{B} : f(\mathbf{a}) = \delta_i^0 \mathbf{c}', \\ \exists \mathbf{c} \in \mathbf{A} : \mathbf{c}' = f(\mathbf{c}), \mathbf{a} = \delta_i^0 \mathbf{c}$$

And two HDA *B*, *C* are bisimilar if there are open maps [Joyal, Nielsen, Winskel 1996]

A

Introduction	Simulation and Bisimulation	The Geometry of HDA	Bisimulation up to Equivalence
Bisimul	ation		
Two L		if whatavar A aan a	omputo Roop

So a morphism $f : A \rightarrow B$ is an open map if for any $a \in A$ and for any computation starting in f(a), there is a computation starting in *a* which maps to the computation in *B*.

Or equivalently, if

$$\forall \mathbf{a} \in \mathbf{A}, \forall \mathbf{c}' \in \mathbf{B} : f(\mathbf{a}) = \delta_i^0 \mathbf{c}', \\ \exists \mathbf{c} \in \mathbf{A} : \mathbf{c}' = f(\mathbf{c}), \mathbf{a} = \delta_i^0 \mathbf{c}$$

And two HDA *B*, *C* are bisimilar if there are open maps [Joyal, Nielsen, Winskel 1996]

A

R

3

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

The Geometry of HDA

Simulation and Bisimulation

The Geometry of HDA

- Local po-spaces
- Directed Maps
- The Main Result

Bisimulation up to Equivalence

Local po-spaces

The geometric realisation of a precubical set is a local po-space; a topological space *X* with a relation \leq which is

- reflexive,
- antisymmetric,
- *locally* transitive, and *locally* closed.

Bisimulation up to Equivalence

Local po-spaces

The geometric realisation of a precubical set is a local po-space; a topological space X with a relation \leq which is reflexive, antisymmetric, and locally transitive and closed.

Geometric realisation of precubical set A:

$$|A| = \bigsqcup_{n \in \mathbb{N}} A_n \times [0, 1]^n / \equiv$$

where \equiv is the equivalence induced by

$$(\delta_i^{\nu} a; t_1, \ldots, t_{n-1}) \equiv (a; t_1, \ldots, t_{i-1}, \nu, t_i, \ldots, t_{n-1})$$

and \leq is induced by the natural order on the cubes $[0, 1]^n$.

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

Local po-spaces

The geometric realisation of a precubical set is a local po-space; a topological space X with a relation \leq which is reflexive, antisymmetric, and locally transitive and closed.

Geometric realisation of precubical set A:

$$|A| = \bigsqcup_{n \in \mathbb{N}} A_n \times [0, 1]^n / \equiv$$

where \equiv is the equivalence induced by

$$(\delta_i^{\nu} a; t_1, \ldots, t_{n-1}) \equiv (a; t_1, \ldots, t_{i-1}, \nu, t_i, \ldots, t_{n-1})$$

and \leq is induced by the natural order on the cubes $[0, 1]^n$.

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

Local po-spaces

The geometric realisation of a precubical set is a local po-space; a topological space X with a relation \leq which is reflexive, antisymmetric, and locally transitive and closed.

Geometric realisation of precubical set A:

$$|A| = \bigsqcup_{n \in \mathbb{N}} A_n \times [0, 1]^n / \equiv$$

where \equiv is the equivalence induced by

$$(\delta_i^{\nu} a; t_1, \ldots, t_{n-1}) \equiv (a; t_1, \ldots, t_{i-1}, \nu, t_i, \ldots, t_{n-1})$$

and \leq is induced by the natural order on the cubes $[0, 1]^n$.

Introduction 000000	Simulation and Bisimulation	The Geometry of HDA ○●○○	Bisimulation up to Equivale

Directed Maps

A dimap $f : X \rightarrow Y$ is a mapping which is continuous and locally increasing:

 $\forall x \in X, \exists U \ni x : \forall x_1 \leq x_2 \in U, f(x_1) \leq f(x_2) \in Y$

Introduction 000000	Simulation and Bisimulation	The Geometry of HDA ○●○○	Bisimulation up to Equivalence
Directed N	<i>l</i> laps		

A dimap $f : X \rightarrow Y$ is a mapping which is continuous and locally increasing:

 $\forall x \in X, \exists U \ni x : \forall x_1 \leq x_2 \in U, f(x_1) \leq f(x_2) \in Y$

A dipath in X is a dimap $\vec{l} \rightarrow X$.

Introduction 000000	Simulation and Bisimulation	The Geometry of HDA ○●○○	Bisimulation up to Equivalence
D'and a la la			

Directed Maps

A dimap $f : X \rightarrow Y$ is a mapping which is continuous and locally increasing:

$$\forall x \in X, \exists U \ni x : \forall x_1 \leq x_2 \in U, f(x_1) \leq f(x_2) \in Y$$

Geometric realisation of precubical set A:

local po-space
$$|A| = \bigsqcup_{n \in \mathbb{N}} A_n \times [0, 1]^n / \equiv$$

Geometric realisation of precubical map $f : A \rightarrow B$:

dimap $|f|(a; t_1, ..., t_n) = (f(a); t_1, ..., t_n)$

Introduction 000000	Simulation and Bisimulation	The Geometry of HDA ○●○○	Bisimulation up to Equivalence
Directed N	Maps		

A dimap $f: X \rightarrow Y$ is a mapping which is continuous and locally increasing:

$$\forall x \in X, \exists U \ni x : \forall x_1 \leq x_2 \in U, f(x_1) \leq f(x_2) \in Y$$

Geometric realisation of precubical set A:

local po-space
$$|A| = \bigsqcup_{n \in \mathbb{N}} A_n \times [0, 1]^n / \equiv$$

Geometric realisation of precubical map $f : A \rightarrow B$:

dimap $|f|(a; t_1, ..., t_n) = (f(a); t_1, ..., t_n)$

Introduction 000000	Simulation and Bisimulation	The Geometry of HDA ○○●○	Bisimulation up to Equivalence
The Main	Result		

Theorem: $f : A \rightarrow B$ is an open map if and only if $|f| : |A| \rightarrow |B|$ has the dipath-lifting property

Introduction 000000	Simulation and Bisimulation	The Geometry of HDA ○○●○	Bisimulation up to Equivalence
The Main	Result		

Theorem: $f : A \rightarrow B$ is an open map if and only if $|f| : |A| \rightarrow |B|$ has the dipath-lifting property

Introduction 000000	Simulation and Bisimulation	The Geometry of HDA ○○●○	Bisimulation up to Equivalence
TI NA	Dec. II		

The Main Result

Theorem: $f : A \rightarrow B$ is an open map if and only if $|f| : |A| \rightarrow |B|$ has the dipath-lifting property

Introduction 000000	Simulation and Bisimulation	The Geometry of HDA ○○●○	Bisimulation up to Equivalence
The Main	Recult		

Theorem: $f : A \rightarrow B$ is an open map if and only if $|f| : |A| \rightarrow |B|$ has the dipath-lifting property

- connection to (directed) fibrations, obstruction theory, etc.

Introduction 000000	Simulation and Bisimulation	The Geometry of HDA ○○○●	Bisimulation up to Equivalence
So What?	?		

where |f| and |g| are dipath-lifting dimaps.

Enter Topology: Provide an algebraic invariant β such that if *B* and *C* are connected by a diagram like above, then $\beta(B) = \beta(C)$. This is future work.

Introduction 000000	Simulation and Bisimulation	The Geometry of HDA ○○○●	Bisimulation up to Equivalence
So What?)		

where |f| and |g| are dipath-lifting dimaps.

Enter Topology: Provide an algebraic invariant β such that if *B* and *C* are connected by a diagram like above, then $\beta(B) = \beta(C)$. This is future work.

Introduction 000000	Simulation and Bisimulation	The Geometry of HDA ○○○●	Bisimulation up to Equivalence
So What?)		

where |f| and |g| are dipath-lifting dimaps.

Enter Topology: Provide an algebraic invariant β such that if *B* and *C* are connected by a diagram like above, then $\beta(B) = \beta(C)$. This is future work.

Introduction	Simulation and Bisimulation	The Geometry of HDA ○○○●	Bisimulation up to Equivalence
So What?)		

where |f| and |g| are dipath-lifting dimaps.

Enter Topology: Provide an algebraic invariant β such that if *B* and *C* are connected by a diagram like above, then $\beta(B) = \beta(C)$. This is future work.

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

Bisimulation up to Equivalence

- Simulation and Bisimulation
- The Geometry of HDA
- Bisimulation up to Equivalence
 Equivalence of Computations
 - Bisimulation up to Equivalence

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence $\bullet \circ$

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence $\bullet \circ$

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence $_{\odot}$

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence $\bullet \circ$

Simulation and Bisimulation

The Geometry of HDA

Bisimulation up to Equivalence

Equivalence of Computations

Two computations (x_1, \ldots, x_n) , (y_1, \ldots, y_n) are adjacent if $x_i = y_i$ for all but one *i*.

Equivalence of computations is the equivalence relation generated by adjacency. [van Glabbeek 1991]

Bisimulation up to Equivalence $\circ \bullet$

Bisimulation up to Equivalence

A morphism $f : A \to B$ is called an open map up to equivalence if for any $a \in A$ and for any computation starting in f(a), there is a computation starting in *a* which maps to a computation in *B* that is equivalent to the given one.

Bisimulation up to Equivalence $\circ \bullet$

Bisimulation up to Equivalence

A morphism $f : A \rightarrow B$ is called an open map up to equivalence if for any $a \in A$ and for any computation starting in f(a), there is a computation starting in a which maps to a computation in Bthat is equivalent to the given one.

Conjecture: $f : A \rightarrow B$ is an open map up to equivalence if and only $|f| : |A| \rightarrow |B|$ lifts dipaths up to dihomotopy

$$\begin{array}{ccc} 0 \longrightarrow |\mathbf{A}| & \times \\ & & \downarrow^{|f|} & & \downarrow \\ & & |\mathbf{B}| & & \times \end{array}$$

Bisimulation up to Equivalence $\circ \bullet$

Bisimulation up to Equivalence

A morphism $f : A \rightarrow B$ is called an open map up to equivalence if for any $a \in A$ and for any computation starting in f(a), there is a computation starting in *a* which maps to a computation in *B* that is equivalent to the given one.

Conjecture: $f : A \rightarrow B$ is an open map up to equivalence if and only $|f| : |A| \rightarrow |B|$ lifts dipaths up to dihomotopy

Bisimulation up to Equivalence $\circ \bullet$

Bisimulation up to Equivalence

A morphism $f : A \to B$ is called an open map up to equivalence if for any $a \in A$ and for any computation starting in f(a), there is a computation starting in a which maps to a computation in Bthat is equivalent to the given one.

Conjecture: $f : A \rightarrow B$ is an open map up to equivalence if and only $|f| : |A| \rightarrow |B|$ lifts dipaths up to dihomotopy

Bisimulation up to Equivalence $\circ \bullet$

Bisimulation up to Equivalence

A morphism $f : A \to B$ is called an open map up to equivalence if for any $a \in A$ and for any computation starting in f(a), there is a computation starting in a which maps to a computation in Bthat is equivalent to the given one.

Conjecture: $f : A \rightarrow B$ is an open map up to equivalence if and only $|f| : |A| \rightarrow |B|$ lifts dipaths up to dihomotopy

Hypothesis (J. Srba): Bisimulation up to equivalence generalizes hereditary history-preserving bisimulation of asynchronous transition systems (and other formalisms).

Thank You!

Uli Fahrenberg Ph.D. student, Aalborg University, Denmark

uli@math.aau.dk http://www.math.aau.dk/~uli

Selected Bibliography

- V. Pratt, Modeling Concurrency with Geometry. Proc. 18th ACM Symposium on Principles of Programming Languages, 1991.
- R. van Glabbeek, Bisimulations for Higher Dimensional Automata. Email message, 1991.
- R. van Glabbeek, On the Expressiveness of Higher Dimensional Automata. Proc. EXPRESS 2004, to be published.
- E. Goubault, The Geometry of Concurrency. Ph.D. thesis, 1995.
- L. Fajstrup, E. Goubault, M. Raussen, Algebraic Topology and Concurrency. Theor.Comp.Sci., to be published.
- L. Fajstrup, Dipaths and Dihomotopies in a Cubical Complex. Adv.Appl.Math., to be published.

Labeled HDA

For labeling HDA, we work in a comma category of pointed precubical sets over a category of certain special alphabet precubical sets (which are ∞ -tori). [Goubault 1995]

For idle transitions, we need to introduce *degeneracies*, i.e. to work with cubical sets instead of precubical. So the category of labeled HDA has diagrams like these:

Black arrows: *precubical* morphisms Red arrows: *cubical* morphisms

L

Labeled HDA

For labeling HDA, we work in a comma category of pointed precubical sets over a category of certain special alphabet precubical sets (which are ∞ -tori). [Goubault 1995]

For idle transitions, we need to introduce *degeneracies*, i.e. to work with cubical sets instead of precubical. So the category of labeled HDA has diagrams like these:

Black arrows: *precubical* morphisms Red arrows: *cubical* morphisms

Labeled HDA

For labeling HDA, we work in a comma category of pointed precubical sets over a category of certain special alphabet precubical sets (which are ∞ -tori). [Goubault 1995]

For idle transitions, we need to introduce *degeneracies*, i.e. to work with cubical sets instead of precubical. So the category of labeled HDA has diagrams like these:

Black arrows: *precubical* morphisms Red arrows: *cubical* morphisms

Compositions

Aalborg University

Open Maps

Open maps are open in the sense of Joyal, Nielsen & Winskel with respect to the category CPath of acyclic rooted computation paths:

 $f : A \rightarrow B$ is an open map iff, for any $m : P \rightarrow Q \in CPath$, any diagram as below has a lift *r*:

The Main Result

Theorem: $f : A \rightarrow B$ is an open map if and only if $|f| : |A| \rightarrow |B|$ has the dipath-lifting property

Key of proof: For any dipath, there is a unique computation through (the geometric realisation of) which it "runs."

[Fajstrup 2003]

Only holds for locally finite HDA

Uli Fahrenberg Aalborg University

The Main Result

Theorem: $f : A \rightarrow B$ is an open map if and only if $|f| : |A| \rightarrow |B|$ has the dipath-lifting property

Key of proof: For any dipath, there is a unique computation through (the geometric realisation of) which it "runs."

[Fajstrup 2003]

Only holds for locally finite HDA.

Uli Fahrenberg Aalborg University

Bisimulation up to Equivalence

In this framework, simulations (and bisimulations) do not respect labels:

So we need to allow precubical morphisms that permute labels, to a certain extent.

Bisimulation up to Equivalence

In this framework, simulations (and bisimulations) do not respect labels:

So we need to allow precubical morphisms that permute labels, to a certain extent.