A Category of Higher-Dimensional Automata

Uli Fahrenberg

Department of Mathematical Sciences
Aalborg University

Foundations of Software Science and Computation Structures Edinburgh, 6 April 2005

Introduction

(1) Introduction

- Parallelism vs. Concurrency
- Higher-Dimensional Automata
- The "van Glabbeek Hierarchy"
- The Link to Geometry
- Why is This Interesting
(2) Simulation and Bisimulation
(3) The Geometry of HDA

4 Bisimulation up to Equivalence

Parallelism vs. Concurrency

Parallelism vs. Concurrency

$a . b+b . a$

Parallelism vs. Concurrency

Action refinement
$a|\mid b$
$a . b+b . a$

Parallelism vs. Concurrency

$$
\begin{gathered}
D(a . b+b . a)= \\
D(a)+D(b)
\end{gathered}
$$

Real-time systems

$$
a \| b
$$

$a . b+b . a$

Parallelism vs. Concurrency

Solution:

$a|\mid b$

$a . b+b . a$

Parallelism vs. Concurrency

One dimension up:

- Three actions, any two of them in parallel:

(Think of three users sharing two printers.)
- Three actions in parallel:

Higher-Dimensional Automata

So a higher-dimensional automaton is a pointed precubical set

$$
\begin{gathered}
A=\left\{A_{n}\right\} \\
\delta_{i}^{0}, \delta_{i}^{1}: A_{n} \rightarrow A_{n-1} \quad(i=1, \ldots, n)
\end{gathered}
$$

(The point $* \in A_{0}$ is the initial state.)

Higher-Dimensional Automata

So a higher-dimensional automaton is a pointed precubical set

$$
\begin{gathered}
A=\left\{A_{n}\right\} \\
\delta_{i}^{0}, \delta_{i}^{1}: A_{n} \rightarrow A_{n-1} \quad(i=1, \ldots, n)
\end{gathered}
$$

(The point $* \in A_{0}$ is the initial state.)
[Serre 1951; Pratt, van Glabbeek 1991]

The "van Glabbeek Hierarchy"

Configuration structures

Synchronization trees
arrows $=$ embeddings up to history preserving bisimulation [van Glabbeek 2004]

The Link to Geometry

Geometric realisation:
precubical set $A \longrightarrow$ topological space $|A|$
The geometry of $|A|$ gives information about the behaviour of the HDA A:

HDA A	Space $\|A\|$
Mutual exclusion	Hole
Deadlock	Upper corner
Unreachable state	Lower corner
etc.	

Papers by Goubault, Fajstrup, Raussen, ...

The Link to Geometry

Geometric realisation is a functor:

HDA-map f	continuous function $\|f\|$
Property x	Property x^{\prime}

The Link to Geometry

Geometric realisation is a functor:

My contribution:

HDA-map f continuous function $|f|$
 bisimulation path-lifting

The Link to Geometry

Geometric realisation is a functor:

My contribution:

HDA-map f	continuous function $\|f\|$
bisimulation	path-lifting bisimulation up to equivalence
path-lifting up to homotopy	

Why is This Interesting

HDA-map f	continuous function $\|f\|$
bisimulation	path-lifting
bisimulation up to equivalence	path-lifting up to homotopy

- Topology is good at showing negative properties
- So the above should be useful for deciding that two given HDA are not bisimilar

Simulation and Bisimulation

(1) Introduction
(2) Simulation and Bisimulation

- Morphisms of HDA
- Bisimulation
(3) The Geometry of HDA
(4) Bisimulation up to Equivalence

Morphisms of HDA

Morphisms of HDA should be simulations:
$A \rightarrow B$ iff whatever A can compute, B can compute, too.
So what is a computation?

So simulations are just morphisms of pointed precubical sets:

Morphisms of HDA

Morphisms of HDA should be simulations:
$A \rightarrow B$ iff whatever A can compute, B can compute, too.
So what is a computation?

So simulations are just morphisms of pointed precubical sets:

Morphisms of HDA

Morphisms of HDA should be simulations:
$A \rightarrow B \quad$ iff \quad whatever A can compute, B can compute, too.
So what is a computation?

So simulations are just morphisms of pointed precubical sets:

$$
f: A \rightarrow B \quad \text { is } \quad f=\left\{f_{n}: A_{n} \rightarrow B_{n}\right\} \quad \text { s.t. } \quad \delta_{i}^{\nu} \circ f_{n}=f_{n-1} \circ \delta_{i}^{\nu}
$$

Other People, Other Computations ...

Me:

Cattani/Sassone 1996, Worytkiewicz 2004:

*

Labels, Compositions, etc.

- Labeled HDA
- Idle transitions
- Compositions

Labels, Compositions, etc.

- Labeled HDA
- Idle transitions
- Compositions

Bisimulation

Two HDA A, B are bisimilar if whatever A can compute, B can also compute, and vice versa.

So a morphism $f: A \rightarrow B$ is an open map if for any $a \in A$ and for any computation starting in $f(a)$, there is a computation starting in a which maps to the computation in B.
(For simplicity, we ignore reachability issues:
For this talk, all cubes are assumed to be
reachable by a computation.)

And two HDA B, C are bisimilar if there are open maps [Joyal, Nielsen, Winskel 1996]

Bisimulation

Two HDA A, B are bisimilar if whatever A can compute, B can also compute, and vice versa.

So a morphism $f: A \rightarrow B$ is an open map if for any $a \in A$ and for any computation starting in $f(a)$, there is a computation starting in a which maps to the computation in B.
(For simplicity, we ignore reachability issues:
For this talk, all cubes are assumed to be
reachable by a computation.)

And two HDA B, C are bisimilar if there are open maps [Joyal, Nielsen, Winskel 1996]

Bisimulation

Two HDA A, B are bisimilar if whatever A can compute, B can also compute, and vice versa.

So a morphism $f: A \rightarrow B$ is an open map if for any $a \in A$ and for any computation starting in $f(a)$, there is a computation starting in a which maps to the computation in B.

Or equivalently, if

$$
\begin{aligned}
& \forall a \in A, \forall c^{\prime} \in B: f(a)=\delta_{i}^{0} c^{\prime} \\
& \exists c \in A: c^{\prime}=f(c), a=\delta_{i}^{0} c
\end{aligned}
$$

And two HDA B, C are bisimilar if there are open maps [Joyal, Nielsen, Winskel 1996]

Bisimulation

Two HDA A, B are bisimilar if whatever A can compute, B can also compute, and vice versa.

So a morphism $f: A \rightarrow B$ is an open map if for any $a \in A$ and for any computation starting in $f(a)$, there is a computation starting in a which maps to the computation in B.

Or equivalently, if

$$
\begin{aligned}
& \forall a \in A, \forall c^{\prime} \in B: f(a)=\delta_{i}^{0} c^{\prime}, \\
& \exists c \in A: c^{\prime}=f(c), a=\delta_{i}^{0} c
\end{aligned}
$$

And two HDA B, C are bisimilar if there are open maps [Joyal, Nielsen, Winskel 1996]

Bisimulation

Two HDA A, B are bisimilar if whatever A can compute, B can also compute, and vice versa.

So a morphism $f: A \rightarrow B$ is an open map if for any $a \in A$ and for any computation starting in $f(a)$, there is a computation starting in a which maps to the computation in B.

Or equivalently, if

$$
\begin{aligned}
& \forall a \in A, \forall c^{\prime} \in B: f(a)=\delta_{i}^{0} c^{\prime}, \\
& \exists c \in A: c^{\prime}=f(c), a=\delta_{i}^{0} c
\end{aligned}
$$

And two HDA B, C are bisimilar if there are open maps [Joyal, Nielsen, Winskel 1996]

The Geometry of HDA

(1) Introduction
(2) Simulation and Bisimulation
(3) The Geometry of HDA

- Local po-spaces
- Directed Maps
- The Main Result

4 Bisimulation up to Equivalence

Local po-spaces

The geometric realisation of a precubical set is a local po-space; a topological space X with a relation \leq which is

- reflexive,
- antisymmetric,
- locally transitive, and locally closed.

Local po-spaces

The geometric realisation of a precubical set is a local po-space; a topological space X with a relation \leq which is reflexive, antisymmetric, and locally transitive and closed.

Geometric realisation of precubical set A :

$$
|A|=\bigsqcup_{n \in \mathbb{N}} A_{n} \times[0,1]^{n} / \equiv
$$

where \equiv is the equivalence induced by

$$
\left(\delta_{i}^{\nu} a ; t_{1}, \ldots, t_{n-1}\right) \equiv\left(a ; t_{1}, \ldots, t_{i-1}, \nu, t_{i}, \ldots, t_{n-1}\right)
$$

and \leq is induced by the natural order on the cubes $[0,1]^{n}$.

Local po-spaces

The geometric realisation of a precubical set is a local po-space; a topological space X with a relation \leq which is reflexive, antisymmetric, and locally transitive and closed.

Geometric realisation of precubical set A :

$$
|A|=\bigsqcup_{n \in \mathbb{N}} A_{n} \times[0,1]^{n} / \equiv
$$

where \equiv is the equivalence induced by

$$
\left(\delta_{i}^{\nu} a ; t_{1}, \ldots, t_{n-1}\right) \equiv\left(a ; t_{1}, \ldots, t_{i-1}, \nu, t_{i}, \ldots, t_{n-1}\right)
$$

and \leq is induced by the natural order on the cubes $[0,1]^{n}$.

Local po-spaces

The geometric realisation of a precubical set is a local po-space; a topological space X with a relation \leq which is reflexive, antisymmetric, and locally transitive and closed.

Geometric realisation of precubical set A :

$$
|A|=\bigsqcup_{n \in \mathbb{N}} A_{n} \times[0,1]^{n} / \equiv
$$

where \equiv is the equivalence induced by

$$
\left(\delta_{i}^{\nu} a ; t_{1}, \ldots, t_{n-1}\right) \equiv\left(a ; t_{1}, \ldots, t_{i-1}, \nu, t_{i}, \ldots, t_{n-1}\right)
$$

and \leq is induced by the natural order on the cubes $[0,1]^{n}$.

Directed Maps

A dimap $f: X \rightarrow Y$ is a mapping which is continuous and locally increasing:

$$
\forall x \in X, \exists U \ni x: \forall x_{1} \leq x_{2} \in U, f\left(x_{1}\right) \leq f\left(x_{2}\right) \in Y
$$

Directed Maps

A dimap $f: X \rightarrow Y$ is a mapping which is continuous and locally increasing:

$$
\forall x \in X, \exists U \ni x: \forall x_{1} \leq x_{2} \in U, f\left(x_{1}\right) \leq f\left(x_{2}\right) \in Y
$$

A dipath in X is a dimap $\vec{I} \rightarrow X$.

Directed Maps

A dimap $f: X \rightarrow Y$ is a mapping which is continuous and locally increasing:

$$
\forall x \in X, \exists U \ni x: \forall x_{1} \leq x_{2} \in U, f\left(x_{1}\right) \leq f\left(x_{2}\right) \in Y
$$

Geometric realisation of precubical set A :

$$
\text { local po-space }|A|=\bigsqcup_{n \in \mathbb{N}} A_{n} \times[0,1]^{n} / \equiv
$$

Geometric realisation of precubical map $f: A \rightarrow B$:

$$
\operatorname{dimap}|f|\left(a ; t_{1}, \ldots, t_{n}\right)=\left(f(a) ; t_{1}, \ldots, t_{n}\right)
$$

Directed Maps

A dimap $f: X \rightarrow Y$ is a mapping which is continuous and locally increasing:

$$
\forall x \in X, \exists U \ni x: \forall x_{1} \leq x_{2} \in U, f\left(x_{1}\right) \leq f\left(x_{2}\right) \in Y
$$

Geometric realisation of precubical set A :

$$
\text { local po-space }|A|=\bigsqcup_{n \in \mathbb{N}} A_{n} \times[0,1]^{n} / \equiv
$$

Geometric realisation of precubical map $f: A \rightarrow B$:

$$
\operatorname{dimap}|f|\left(a ; t_{1}, \ldots, t_{n}\right)=\left(f(a) ; t_{1}, \ldots, t_{n}\right)
$$

The Main Result

Theorem: $f: A \rightarrow B$ is an open map if and only if $|f|:|A| \rightarrow|B|$ has the dipath-lifting property

The Main Result

Theorem: $f: A \rightarrow B$ is an open map if and only if $|f|:|A| \rightarrow|B|$ has the dipath-lifting property

The Main Result

Theorem: $f: A \rightarrow B$ is an open map if and only if $|f|:|A| \rightarrow|B|$ has the dipath-lifting property

The Main Result

Theorem: $f: A \rightarrow B$ is an open map if and only if $|f|:|A| \rightarrow|B|$ has the dipath-lifting property

- connection to (directed) fibrations, obstruction theory, etc.

So What?

So two HDA B, C are bisimilar if and only if there is a diagram

where $|f|$ and $|g|$ are dipath-lifting dimaps.
Enter Topology: Provide an algebraic invariant β such that if B and C are connected by a diagram like above, then $\beta(B)=\beta(C)$.

Algorithm: Given two HDA B, C, compute $\beta(B)$ and $\beta(C)$. If $\beta(B) \neq \beta(C)$, then B and C are not bisimilar.

So What?

So two HDA B, C are bisimilar if and only if there is a diagram

where $|f|$ and $|g|$ are dipath-lifting dimaps.
Enter Topology: Provide an algebraic invariant β such that if B and C are connected by a diagram like above, then $\beta(B)=\beta(C)$.

Algorithm: Given two HDA B, C, compute $\beta(B)$ and $\beta(C)$. If $\beta(B) \neq \beta(C)$, then B and C are not bisimilar.

So What?

So two HDA B, C are bisimilar if and only if there is a diagram

where $|f|$ and $|g|$ are dipath-lifting dimaps.
Enter Topology: Provide an algebraic invariant β such that if B and C are connected by a diagram like above, then $\beta(B)=\beta(C)$.

Algorithm: Given two HDA B, C, compute $\beta(B)$ and $\beta(C)$. If $\beta(B) \neq \beta(C)$, then B and C are not bisimilar.

So What?

So two HDA B, C are bisimilar if and only if there is a diagram

where $|f|$ and $|g|$ are dipath-lifting dimaps.
Enter Topology: Provide an algebraic invariant β such that if B and C are connected by a diagram like above, then $\beta(B)=\beta(C)$. This is future work.

Algorithm: Given two HDA B, C, compute $\beta(B)$ and $\beta(C)$. If $\beta(B) \neq \beta(C)$, then B and C are not bisimilar.

Bisimulation up to Equivalence

(9) Introduction
(2) Simulation and Bisimulation
(3) The Geometry of HDA

4 Bisimulation up to Equivalence

- Equivalence of Computations
- Bisimulation up to Equivalence

Equivalence of Computations

Equivalence of Computations

Equivalence of Computations

Equivalence of Computations

Equivalence of Computations

Two computations $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)$ are adjacent if $x_{i}=y_{i}$ for all but one i.

Equivalence of computations is the equivalence relation generated by adjacency.

Bisimulation up to Equivalence

A morphism $f: A \rightarrow B$ is called an open map up to equivalence if for any $a \in A$ and for any computation starting in $f(a)$, there is a computation starting in a which maps to a computation in B that is equivalent to the given one.

Bisimulation up to Equivalence

A morphism $f: A \rightarrow B$ is called an open map up to equivalence if for any $a \in A$ and for any computation starting in $f(a)$, there is a computation starting in a which maps to a computation in B that is equivalent to the given one.

Conjecture: $f: A \rightarrow B$ is an open map up to equivalence if and only $|f|:|A| \rightarrow|B|$ lifts dipaths up to dihomotopy

Bisimulation up to Equivalence

A morphism $f: A \rightarrow B$ is called an open map up to equivalence if for any $a \in A$ and for any computation starting in $f(a)$, there is a computation starting in a which maps to a computation in B that is equivalent to the given one.

Conjecture: $f: A \rightarrow B$ is an open map up to equivalence if and only $|f|:|A| \rightarrow|B|$ lifts dipaths up to dihomotopy

Bisimulation up to Equivalence

A morphism $f: A \rightarrow B$ is called an open map up to equivalence if for any $a \in A$ and for any computation starting in $f(a)$, there is a computation starting in a which maps to a computation in B that is equivalent to the given one.

Conjecture: $f: A \rightarrow B$ is an open map up to equivalence if and only $|f|:|A| \rightarrow|B|$ lifts dipaths up to dihomotopy

Bisimulation up to Equivalence

A morphism $f: A \rightarrow B$ is called an open map up to equivalence if for any $a \in A$ and for any computation starting in $f(a)$, there is a computation starting in a which maps to a computation in B that is equivalent to the given one.

Conjecture: $f: A \rightarrow B$ is an open map up to equivalence if and only $|f|:|A| \rightarrow|B|$ lifts dipaths up to dihomotopy

Hypothesis (J. Srba): Bisimulation up to equivalence generalizes hereditary history-preserving bisimulation of asynchronous transition systems (and other formalisms).

Thank You!

Uli Fahrenberg
Ph.D. student, Aalborg University, Denmark

uli@math.aau.dk
http://www.math.aau.dk/~uli

Selected Bibliography

- V. Pratt, Modeling Concurrency with Geometry. Proc. 18th ACM Symposium on Principles of Programming Languages, 1991.
- R. van Glabbeek, Bisimulations for Higher Dimensional Automata. Email message, 1991.
- R. van Glabbeek, On the Expressiveness of Higher Dimensional Automata. Proc. EXPRESS 2004, to be published.
- E. Goubault, The Geometry of Concurrency. Ph.D. thesis, 1995.
- L. Fajstrup, E. Goubault, M. Raussen, Algebraic Topology and Concurrency. Theor.Comp.Sci., to be published.
- L. Fajstrup, Dipaths and Dihomotopies in a Cubical Complex. Adv.Appl.Math., to be published.

Labeled HDA

For labeling HDA, we work in a comma category of pointed precubical sets over a category of certain special alphabet precubical sets (which are ∞-tori). [Goubault 1995]

For idle transitions, we need to introduce degeneracies, i.e. to work with cubical sets instead of precubical. So the category of labeled HDA has diagrams like these:

Black arrows: precubical morphisms Red arrows: cubical morphisms

Labeled HDA

For labeling HDA, we work in a comma category of pointed precubical sets over a category of certain special alphabet precubical sets (which are ∞-tori). [Goubault 1995]

For idle transitions, we need to introduce degeneracies, i.e. to work with cubical sets instead of precubical. So the category of labeled HDA has diagrams like these:

Black arrows: precubical morphisms Red arrows: cubical morphisms

Labeled HDA

For labeling HDA, we work in a comma category of pointed precubical sets over a category of certain special alphabet precubical sets (which are ∞-tori). [Goubault 1995]

For idle transitions, we need to introduce degeneracies, i.e. to work with cubical sets instead of precubical. So the category of labeled HDA has diagrams like these:

Black arrows: precubical morphisms Red arrows: cubical morphisms

Compositions

Product

Relabeling

Restriction

Open Maps

Open maps are open in the sense of Joyal, Nielsen \& Winskel with respect to the category CPath of acyclic rooted computation paths:
$f: A \rightarrow B$ is an open map iff, for any $m: P \rightarrow Q \in$ CPath, any diagram as below has a lift r :

The Main Result

Theorem: $f: A \rightarrow B$ is an open map if and only if $|f|:|A| \rightarrow|B|$ has the dipath-lifting property

Key of proof: For any dipath, there is a unique computation through (the geometric realisation of) which it "runs."
[Fajstrup 2003]

Only holds for locally finite HDA.

The Main Result

Theorem: $f: A \rightarrow B$ is an open map if and only if $|f|:|A| \rightarrow|B|$ has the dipath-lifting property

Key of proof: For any dipath, there is a unique computation through (the geometric realisation of) which it "runs."
[Fajstrup 2003]

Only holds for locally finite HDA.

Bisimulation up to Equivalence

In this framework, simulations (and bisimulations) do not respect labels:

...ab...

...ba...

So we need to allow precubical morphisms that permute labels, to a certain extent.

Bisimulation up to Equivalence

In this framework, simulations (and bisimulations) do not respect labels:

So we need to allow precubical morphisms that permute labels, to a certain extent.

