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Parallelism vs. Concurrency
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Parallelism vs. Concurrency

D(a||b) =
max(D(a), D(b))

a b

b a

D(a.b + b.a) =
D(a) + D(b)

a||b

Real-time systems

a.b + b.a
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Parallelism vs. Concurrency
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Parallelism vs. Concurrency

One dimension up:

Three actions, any two of them in parallel:

(Think of three users sharing two printers.)

Three actions in parallel:
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Higher-Dimensional Automata

So a higher-dimensional automaton is a pointed precubical set

A = {An}
δ0

i , δ1
i : An → An−1 (i = 1, . . . , n)

back
front

right
left

top
bottom

(The point ∗ ∈ A0 is the initial state.)
[Serre 1951; Pratt, van Glabbeek 1991]
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The “van Glabbeek Hierarchy”
HDA

Automata

66mmmmmmmmmmmmmmmmmm
Petri nets

hhQQQQQQQQQQQQQQQQQQ

Configuration structures

hhPPPPPPPPPPPPPPPPPP

66nnnnnnnnnnnnnnnnnn

Event structures

OO

Synchronization trees

OO

arrows = embeddings up to history preserving bisimulation
[van Glabbeek 2004]
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The Link to Geometry

Geometric realisation:

precubical set A −→ topological space |A|

The geometry of |A| gives information about the behaviour of
the HDA A:

HDA A Space |A|
Mutual exclusion Hole

Deadlock Upper corner
Unreachable state Lower corner

etc.

Papers by Goubault, Fajstrup, Raussen, . . .
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The Link to Geometry

Geometric realisation is a functor:

A

f
��

B

−−−−−→

|A|

|f |
��

|B|

My contribution:

HDA-map f continuous function |f |
Property x Property x ′
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Why is This Interesting

HDA-map f continuous function |f |
bisimulation path-lifting

bisimulation up to equivalence path-lifting up to homotopy

Topology is good at showing negative properties

So the above should be useful for deciding that two given
HDA are not bisimilar
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Morphisms of HDA

Morphisms of HDA should be simulations:
A → B iff whatever A can compute, B can compute, too.

So what is a computation?

* [van Glabbeek 1991]

So simulations are just morphisms of pointed precubical sets:

f : A → B is f = {fn : An → Bn} s.t. δν
i ◦ fn = fn−1 ◦ δν

i
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Other People, Other Computations . . .

Me:

*
Cattani/Sassone 1996, Worytkiewicz 2004:

*
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Labels, Compositions, etc.

Labeled HDA X

Idle transitions X

Compositions X
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Bisimulation

Two HDA A, B are bisimilar if whatever A can compute, B can
also compute, and vice versa.

So a morphism f : A → B is an open map if for any
a ∈ A and for any computation starting in f (a),
there is a computation starting in a which maps to
the computation in B.

(For simplicity, we ignore reachability issues:
For this talk, all cubes are assumed to be
reachable by a computation.)

And two HDA B, C are bisimilar if there are open maps
[Joyal, Nielsen, Winskel 1996]

A
��





��
44

4

B C
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Local po-spaces

The geometric realisation of a precubical set is a local
po-space; a topological space X with a relation ≤ which is

reflexive,

antisymmetric,

locally transitive, and locally closed.

~I
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Local po-spaces

The geometric realisation of a precubical set is a local
po-space; a topological space X with a relation ≤ which is
reflexive, antisymmetric, and locally transitive and closed.

Geometric realisation of precubical set A:

|A| =
⊔

n∈N
An × [0, 1]n

/
≡

where ≡ is the equivalence induced by

(δν
i a; t1, . . . , tn−1) ≡ (a; t1, . . . , ti−1, ν, ti , . . . , tn−1)

and ≤ is induced by the natural order on the cubes [0, 1]n.
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Directed Maps

A dimap f : X → Y is a mapping which is continuous and
locally increasing:

∀ x ∈ X ,∃ U 3 x : ∀ x1 ≤ x2 ∈ U, f (x1) ≤ f (x2) ∈ Y
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Directed Maps

A dimap f : X → Y is a mapping which is continuous and
locally increasing:

∀ x ∈ X ,∃ U 3 x : ∀ x1 ≤ x2 ∈ U, f (x1) ≤ f (x2) ∈ Y

A dipath in X is a dimap~I → X .
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The Main Result

Theorem: f : A → B is an open map if and only if |f | : |A| → |B|
has the dipath-lifting property

0 // |A|

|f |
��

|B|
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– connection to (directed) fibrations, obstruction theory, etc.
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So What?

So two HDA B, C are bisimilar if and only if there is a diagram

A
f
��		
		 g

��
55

55

B C

where |f | and |g| are dipath-lifting dimaps.

Enter Topology: Provide an algebraic invariant β such that if B
and C are connected by a diagram like above, then
β(B) = β(C). This is future work.

Algorithm: Given two HDA B, C, compute β(B) and β(C). If
β(B) 6= β(C), then B and C are not bisimilar.
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Equivalence of Computations

Two computations (x1, . . . , xn), (y1, . . . , yn) are adjacent if
xi = yi for all but one i .

Equivalence of computations is the equivalence relation
generated by adjacency. [van Glabbeek 1991]
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Bisimulation up to Equivalence

A morphism f : A → B is called an open map up to equivalence
if for any a ∈ A and for any computation starting in f (a), there is
a computation starting in a which maps to a computation in B
that is equivalent to the given one.
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Bisimulation up to Equivalence

A morphism f : A → B is called an open map up to equivalence
if for any a ∈ A and for any computation starting in f (a), there is
a computation starting in a which maps to a computation in B
that is equivalent to the given one.

Conjecture: f : A → B is an open map up to equivalence if and
only |f | : |A| → |B| lifts dipaths up to dihomotopy

0 // |A|

|f |
��

|B|
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Bisimulation up to Equivalence

A morphism f : A → B is called an open map up to equivalence
if for any a ∈ A and for any computation starting in f (a), there is
a computation starting in a which maps to a computation in B
that is equivalent to the given one.

Conjecture: f : A → B is an open map up to equivalence if and
only |f | : |A| → |B| lifts dipaths up to dihomotopy

Hypothesis (J. Srba): Bisimulation up to equivalence
generalizes hereditary history-preserving bisimulation of
asynchronous transition systems (and other formalisms).
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Leftovers

Labeled HDA

For labeling HDA, we work in a comma
category of pointed precubical sets over a
category of certain special alphabet precubical
sets (which are ∞-tori). [Goubault 1995]

For idle transitions, we need to introduce
degeneracies, i.e. to work with cubical sets
instead of precubical. So the category of
labeled HDA has diagrams like these:

Black arrows: precubical morphisms
Red arrows: cubical morphisms

a b

ab

A

L

*
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a b

ab

ab

A

L

*
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Leftovers

Compositions

Product
∗

��

∗

��

∗
��

A
λ

��

⊗ B
µ

��

= A⊗ B
λ⊗µ

��

L M L⊗M

Relabeling
∗

��

∗

��

A

��

A

��

L // M

Restriction
∗

!!

��

��

A //

��

B

��

L // M
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Leftovers

Open Maps

Open maps are open in the sense of Joyal, Nielsen & Winskel
with respect to the category CPath of acyclic rooted
computation paths:

f : A → B is an open map iff, for any m : P → Q ∈ CPath, any
diagram as below has a lift r :

P //

m
��

X

f
��

Q //

r

??

Y
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Leftovers

The Main Result

Theorem: f : A → B is an open map if and only if |f | : |A| → |B|
has the dipath-lifting property

Key of proof: For any dipath, there is a unique computation
through (the geometric realisation of) which it “runs.”

[Fajstrup 2003]

Only holds for locally finite HDA.
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Leftovers

Bisimulation up to Equivalence

In this framework, simulations (and bisimulations) do not
respect labels:

a

b

a

b

. . . ab . . . . . . ba . . .

So we need to allow precubical morphisms that permute labels,
to a certain extent.
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