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Part I

Modal & Mixed
Specifications
in A Nutshell



Labeled Transition Systems
A Coffeemaker Example

Some traces of the
coffeemaker:

• insert coin, get coffee
• insert coin, get tea
• press cream, insert coin,

get café au lait

coin
coin

coffee

tea

cream

café-au-lait



Labeled Transition Systems
A Coffeemaker Example

An LTS + simulation
refinement

• Overapproximate
possible behaviors in
each state

• An empty LTS “•“ is a
perfect refinement.

coin
coin

coffee

tea

cream

café-au-lait



Modal Specifications
Larsen & Thomsen, LICS’88

• Under- and over-
approximate behavior

• Each implementation
must accept coins and
produce coffee

• Cream or tea optional
• If cream offered then

caffe-au-lait must be
delivered

coin

tea

coffee

coin

cream

café-au-lait

All required behavior (must) is allowed (may).



Refinement

S:

coin
coin

coffee

tea

cream
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May refines to must, may or nothing. Must refines to must.
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Refinement

S:
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Infinitely many more refinements exist!!!



Refinement

S:

coin
coin

café-au-lait
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But this is not a refinement!



Refinement

S:

coin
coin

coffee

tea

cream

café-au-lait
T :

coin

tea

coffee

coin

cream

café-au-lait

A relation ≤ is refinement iff for every s ≤ t it holds that
whenever s a99Ks′ then also t a99Kt ′ for some t ′ and s′ ≤ t ′

whenever t a−→t ′ then also s a−→s′ for some s′ and s′ ≤ t ′



Implementations

I:

coin
coin

coffee

cream

café-au-lait

≤

S:

coin

tea

coffee

coin

cream

café-au-lait

I is an implementation of S iff

I ≤ S and−→I = 99KI



Mixed vs Modal Specifications

• Modal specifications: −→ ⊆ 99K
→ Always have implementations (consistent)

• Mixed specifications: possibly−→ 6⊆ 99K
→ Larsen’89, Dams’96

• A consistent mixed specification:

a

a

• An inconsistent mixed specification: a a



Why Modal & Mixed Specifications ?

• Semantic foundation for specification & verification

• Same spec combines under- & over-approximations
→ existential and universal properties in static analysis

• Refinement is the mid-way between
simulation (too weak) & bisimulation (too strong)

• See recent survey by the authors for more
applications and more results

→ Bulleting of EATCS, June 2008



Part II

The Problems
&

Our Claims



Common Implementation

Problem CI

For modal (mixed) specifications S1 and S2 decide if

∃ implementation I. I ≤ S1 and I ≤ S2

S2S1 ?orS1 S2

Claim: EXPTIME-complete



Consistency

Problem C

For a mixed specification S decide if

∃ implementation I. I ≤ S

?orS = S

Claim: EXPTIME-complete
Remark: this problem is trivial for modal specifications.



Thorough Refinement

Problem TR

For a mixed specifications S1 and S2 decide if

∀ implementations I. I ≤ S1 implies I ≤ S2

S1 S1S2 ?orS2

Claim: EXPTIME-complete
Remark: this problem is open for modal specifications.



Refinement vs Thorough Refinement

Note that refinement is in P, while TR is EXPTIME-complete.

So Refinement and TR do not coincide.

[Hüttel’88] proves this using a counterexample in this spirit:

s0

s1 s2 s3

s4

π
π

π

π
π

M :

t0

t1 t2

t3

π
π

π

N :

Implementations sets of M and N are equal, but M 6≤ N.
Similar examples exist for properly modal specifications.



Part III

Proof Sketches



Bounds Before This Work
Antonik et al. FOSSACS’08

Modal spec. Mixed spec.

CI PSPACE-hard, EXPTIME PSPACE-hard, EXPTIME

C trivial PSPACE-hard, EXPTIME

TR PSPACE-hard, EXPTIME PSPACE-hard, EXPTIME

FOSSACS’08:
• Two complicated reductions showing the red !’s.
• A chain of reductions along the red arrows.
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New Bounds — The Proof Structure

Modal spec. Mixed spec.
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• By the know sequence of reductions arrive at the

remaining results
• So far failed to reduce TR in the modal case
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CI for Modal Specs is EXPTIME-complete

Most of the paper is devoted to EXPTIME-completeness of
CI for Modal Specifications

The proof is by reduction from the acceptance problem
for linearly bounded alternating Turing machines.

A teaser:
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More in the paper.



Part IV

Closing



Summary

Modal specifications Mixed specifications

CI EXPTIME-complete EXPTIME-complete

C trivial EXPTIME-complete

TR PSPACE-hard, EXPTIME EXPTIME-complete

New results in bold.
The remaining gap in red.


