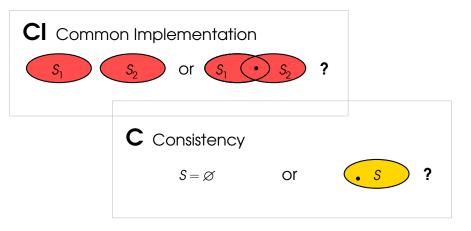
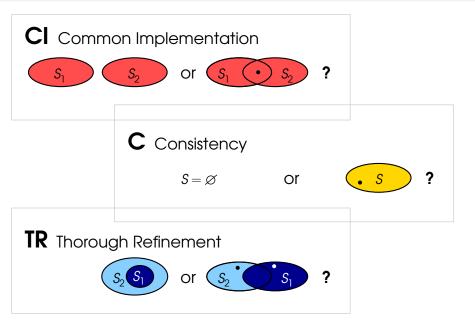

EXPTIME-complete Decision Problems for Modal and Mixed Specifications


Adam Antonik, Imperial College, London Michael Huth, Imperial College, London Kim G. Larsen, Aalborg University Ulrik Nyman, Aalborg University Andrzej Wąsowski, IT University of Copenhagen


We Ask Complexity Questions For

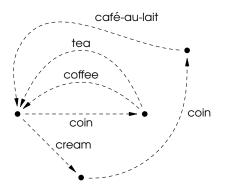
We Ask Complexity Questions For

We Ask Complexity Questions For

Agenda

- Modal and Mixed Specifications in a Nutshell
- The Problems and Our Claims
- Some **Proof** Sketches
- Open Issues & Summary

Part I

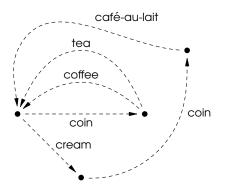

Modal & Mixed Specifications in A Nutshell

Labeled Transition Systems

A Coffeemaker Example

Some traces of the coffeemaker:

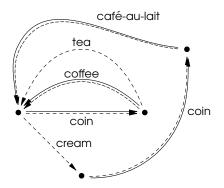
- insert coin, get coffee
- insert coin, get tea
- press cream, insert coin, get café au lait

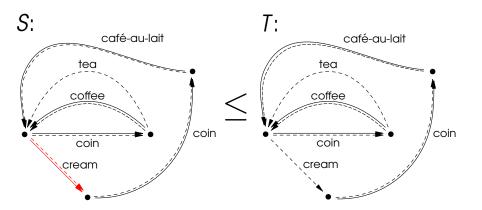


Labeled Transition Systems

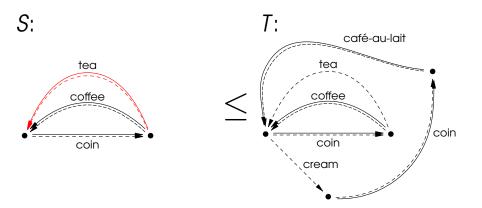
A Coffeemaker Example

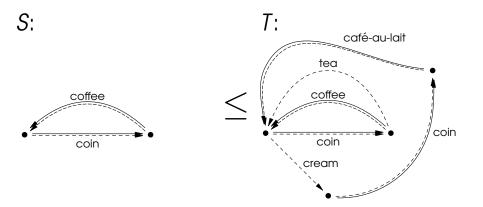
An LTS + simulation refinement

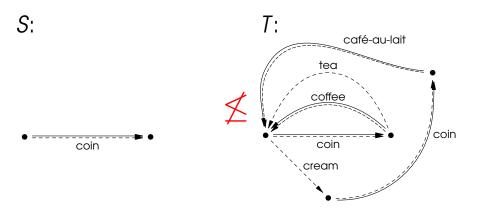

- Overapproximate possible behaviors in each state
- An empty LTS "•" is a perfect refinement.

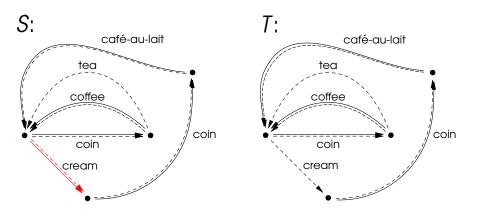

Modal Specifications

Larsen & Thomsen, LICS'88

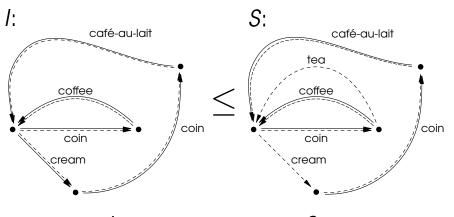

- Under- and overapproximate behavior
- Each implementation **must** accept coins and produce coffee
- Cream or tea optional
- If cream offered then caffe-au-lait must be delivered


All required behavior (**must**) is allowed (**may**).


May refines to must, may or nothing. Must refines to must.


May refines to must, may or nothing. Must refines to must.

Infinitely many more refinements exist!!!

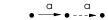


But this is not a refinement!

A relation \leq is refinement iff for every $s \leq t$ it holds that whenever $s_{-}\overset{a}{\rightarrow}s'$ then also $t_{-}\overset{a}{\rightarrow}t'$ for some t' and $s' \leq t'$ whenever $t\overset{a}{\rightarrow}t'$ then also $s\overset{a}{\rightarrow}s'$ for some s' and $s' \leq t'$

Implementations

I is an implementation of S iff


$$I \leq S$$
 and $\longrightarrow_I = - \rightarrow_I$

Mixed vs Modal Specifications

- Modal specifications: → ⊆ --→
 → Always have implementations (consistent)
- Mixed specifications: possibly $\longrightarrow \not\subseteq -- \rightarrow$ \rightarrow Larsen'89, Dams'96
- A consistent mixed specification:

• An **inconsistent** mixed specification:

Why Modal & Mixed Specifications?

- Semantic foundation for specification & verification
- Same spec combines under- & over-approximations
 → existential and universal properties in static analysis
- Refinement is the mid-way between simulation (too weak) & bisimulation (too strong)
- See **recent survey** by the authors for more applications and more results
 - $\rightarrow\,$ Bulleting of EATCS, June 2008

Part II

The Problems & Our Claims

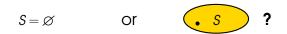
Common Implementation

Problem CI

For modal (mixed) specifications S_1 and S_2 decide if

\exists implementation *I*. *I* \leq *S*₁ and *I* \leq *S*₂

$$S_1$$
 S_2 or S_1 S_2 ?


claim: EXPTIME-complete

Problem C

For a **mixed** specification S decide if

\exists implementation *I*. *I* \leq *S*

claim: EXPTIME-complete

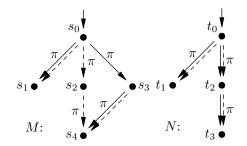
Remark: this problem is trivial for modal specifications.

Thorough Refinement

Problem **TR**

For a **mixed** specifications S_1 and S_2 decide if

 \forall implementations *I*. *I* \leq *S*₁ implies *I* \leq *S*₂


claim: EXPTIME-complete

Remark: this problem is open for **modal** specifications.

Refinement vs Thorough Refinement

Note that refinement is in P, while TR is EXPTIME-complete. So Refinement and TR **do not coincide**.

(Hüttel'88) proves this using a counterexample in this spirit:

Implementations sets of *M* and *N* are equal, but $M \not\leq N$. Similar examples exist for properly modal specifications. Part III

Proof Sketches

Bounds Before This Work

Antonik et al. FOSSACS'08

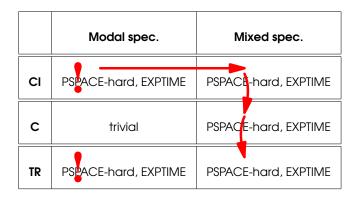
	Modal spec.	Mixed spec.
СІ	PSPACE-hard, EXPTIME	PSPACE-hard, EXPTIME
с	trivial	PSPACE-hard, EXPTIME
TR	PSPACE-hard, EXPTIME	PSPACE-hard, EXPTIME

FOSSACS'08:

- Two complicated reductions showing the red !'s.
- A chain of reductions along the red arrows.

Bounds Before This Work

Antonik et al. FOSSACS'08


	Modal spec.	Mixed spec.
СІ	PSPACE-hard, EXPTIME	PSPACE-hard, EXPTIME
с	trivial	PSPACE-hard, EXPTIME
TR	PSPACE-hard, EXPTIME	PSPACE-hard, EXPTIME

FOSSACS'08:

- Two complicated reductions showing the red !'s.
- A chain of reductions along the red arrows.

Bounds Before This Work

Antonik et al. FOSSACS'08

FOSSACS'08:

- Two complicated reductions showing the red !'s.
- A chain of reductions along the red arrows.

	Modal spec.	Mixed spec.
СІ	PSPACE-hard, EXPTIME	PSPACE-hard, EXPTIME
с	trivial	PSPACE-hard, EXPTIME
TR	PSPACE-hard, EXPTIME	PSPACE-hard, EXPTIME

- Prove hardness of CI for modal specifications
- By the know sequence of reductions arrive at the remaining results
- So far failed to reduce TR in the modal case

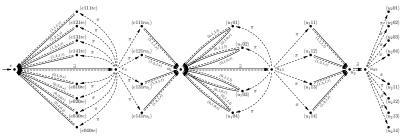
	Modal spec.	Mixed spec.
СІ	EXPTIME-hard, EXPTIME	PSPACE-hard, EXPTIME
с	trivial	PSPACE-hard, EXPTIME
TR	PSPACE-hard, EXPTIME	PSPACE-hard, EXPTIME

- Prove hardness of CI for modal specifications
- By the know sequence of reductions arrive at the remaining results
- So far failed to reduce TR in the modal case

	Modal spec.	Mixed spec.
CI	EXPTIME-hard, EXPTIME	PSPACE-hard, EXPTIME
с	trivial	PSPACE-hard, EXPTIME
TR	PSPACE-hard, EXPTIME	PSPACE-hard, EXPTIME

- Prove hardness of CI for modal specifications
- By the know sequence of reductions arrive at the remaining results
- So far failed to reduce TR in the modal case

	Modal spec.	Mixed spec.
СІ	EXPTIME-hard, EXPTIME	EXPTIME-hard, EXPTIME
с	trivial	EXPTIME-hard, EXPTIME
TR	PSPACE-hard, EXPTIME	EXPTIME-hard, EXPTIME


- Prove hardness of CI for modal specifications
- By the know sequence of reductions arrive at the remaining results
- So far failed to reduce TR in the modal case

CI for Modal Specs is EXPTIME-complete

Most of the paper is devoted to EXPTIME-completeness of CI for Modal Specifications

The proof is by reduction from the acceptance problem for linearly bounded alternating Turing machines.

A teaser:

More in the paper.

Part IV

Closing

Summary

	Modal specifications	Mixed specifications
CI	EXPTIME-complete	EXPTIME-complete
С	trivial	EXPTIME-complete
TR	PSPACE-hard, EXPTIME	EXPTIME-complete

New results in **bold**. The remaining gap in red.