Simulation Hemi-Metrics for Timed Systems, with Relations to Ditopology

Uli Fahrenberg

Department of Computer Science
Aalborg University
Denmark

ATMCS 2008

- Motivation
- Timed traces
- Timed languages
- Bisimulation pseudometrics
- Summary

Motivation

 For real-time systems and specifications, timed bisimilarity is a rather merciless concept:

The gates will be closed 1 minute before the train goes through not timed bisimilar to

The gates will be closed 58 seconds before the train goes through

• Untimed bisimilarity on the other hand is, well, useless:

The gates will be closed 1 minute before the train goes through untimed bisimilar to

The gates will be closed 1 second before the train goes through

Or, using timed automata:

$$A = \longrightarrow \bigcirc \xrightarrow{x \leftarrow 0} \xrightarrow{\text{Close}} \bigcirc \xrightarrow{x \ge 60} \xrightarrow{\text{Train}} \bigcirc$$

not timed bisimilar to

$$B = \longrightarrow \bigcirc \xrightarrow{x \leftarrow 0} \xrightarrow{\text{Close}} \bigcirc \xrightarrow{x \ge 58} \xrightarrow{\text{Train}} \bigcirc$$

• And for the other case:

$$A = \longrightarrow \bigcirc \xrightarrow{x \leftarrow 0} \xrightarrow{\text{Close}} \bigcirc \xrightarrow{x \ge 60} \xrightarrow{\text{Train}} \bigcirc$$

untimed bisimilar to

$$C = \longrightarrow \bigcirc \xrightarrow{x \leftarrow 0} \xrightarrow{\text{Close}} \bigcirc \xrightarrow{x \ge 1} \xrightarrow{\text{Train}} \bigcirc$$

- Intuition: Want notion of bisimilarity up to ε so that $A \sim_2 B$, but $A \sim_{59} C$.
- Bisimulation

metrics

Or, using timed automata:

$$A = \longrightarrow \bigcirc \xrightarrow{x \leftarrow 0} \xrightarrow{\text{Close}} \bigcirc \xrightarrow{x \ge 60} \bigcirc \bigcirc$$

not timed bisimilar to

$$B = \longrightarrow \bigcirc \xrightarrow{x \leftarrow 0} \bigcirc \xrightarrow{x \ge 58} \bigcirc \bigcirc \xrightarrow{Train} \bigcirc$$

• And for the other case:

$$A = \longrightarrow \bigcirc \xrightarrow{x \leftarrow 0} \xrightarrow{\text{Close}} \bigcirc \xrightarrow{x \ge 60} \xrightarrow{\text{Train}} \bigcirc$$

untimed bisimilar to

$$C = \longrightarrow \bigcirc \xrightarrow{x \leftarrow 0} \bigcirc \xrightarrow{x \ge 1} \bigcirc \bigcirc$$

- Intuition: Want notion of bisimilarity up to ε so that $A \sim_2 B$, but $A \sim_{59} C$.
- Bisimulation pseudometrics

- Timed automaton on alphabet Σ :
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set C of clocks

Motivation

- Timed automaton on alphabet Σ:
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set C of clocks
 - + location invariants $I: Q \to \Phi(C)$

 $\Phi(C)$: clock constraints over C:

$$\varphi ::= x < k \mid x \le k \mid x > k \mid x \ge k \mid \varphi_1 \land \varphi_2 \qquad (x \in C, k \in \mathbb{Z})$$

- Timed automaton on alphabet Σ:
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set C of clocks
 - + location invariants $I: Q \to \Phi(C)$
 - + edge constraints $c: E \to \Phi(C)$

- Timed automaton on alphabet Σ :
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set C of clocks
 - + location invariants $I: Q \to \Phi(C)$
 - + edge constraints $c: E \to \Phi(C)$
 - + edge resets $r: E \rightarrow 2^C$

- Timed automaton on alphabet Σ:
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set C of clocks
 - + location invariants $I: Q \to \Phi(C)$ location g is enabled iff clock values satisfy I(g)
 - + edge constraints $c: E \to \Phi(C)$ edge e is enabled iff clock values satisfy c(e)
 - + edge resets $r: E \rightarrow 2^C$ on transition along edge e, values of clocks in r(e) are reset to 0

- Timed automaton on alphabet Σ :
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set *C* of clocks
 - + location invariants $I: Q \to \Phi(C)$ location q is enabled iff clock values satisfy I(q)
 - + edge constraints $c: E \to \Phi(C)$ edge e is enabled iff clock values satisfy c(e)
 - + edge resets $r: E \to 2^C$ on transition along edge e, values of clocks in r(e) are reset to 0

- Timed automaton on alphabet Σ:
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set C of clocks
 - + location invariants $I: Q \to \Phi(C)$ location g is enabled iff clock values satisfy I(g)
 - + edge constraints $c: E \to \Phi(C)$ edge e is enabled iff clock values satisfy c(e)
 - + edge resets $r: E \rightarrow 2^C$ on transition along edge e, values of clocks in r(e) are reset to 0

- Timed automaton on alphabet Σ:
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set C of clocks
 - + location invariants $I: Q \to \Phi(C)$ location g is enabled iff clock values satisfy I(g)
 - + edge constraints $c: E \to \Phi(C)$ edge e is enabled iff clock values satisfy c(e)
 - + edge resets $r: E \rightarrow 2^C$ on transition along edge e, values of clocks in r(e) are reset to 0

- Timed automaton on alphabet Σ:
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set C of clocks
 - + location invariants $I: Q \to \Phi(C)$ location g is enabled iff clock values satisfy I(g)
 - + edge constraints $c: E \to \Phi(C)$ edge e is enabled iff clock values satisfy c(e)
 - + edge resets $r: E \rightarrow 2^C$ on transition along edge e, values of clocks in r(e) are reset to 0

- Timed automaton on alphabet Σ :
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set *C* of clocks
 - + location invariants $I: Q \to \Phi(C)$ location q is enabled iff clock values satisfy I(q)
 - + edge constraints $c: E \to \Phi(C)$ edge e is enabled iff clock values satisfy c(e)
 - + edge resets $r: E \to 2^C$ on transition along edge e, values of clocks in r(e) are reset to 0

- Timed automaton on alphabet Σ:
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set C of clocks
 - + location invariants $I: Q \to \Phi(C)$ location g is enabled iff clock values satisfy I(g)
 - + edge constraints $c: E \to \Phi(C)$ edge e is enabled iff clock values satisfy c(e)
 - + edge resets $r: E \rightarrow 2^C$ on transition along edge e, values of clocks in r(e) are reset to 0

- Timed automaton on alphabet Σ:
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set C of clocks
 - + location invariants $I: Q \to \Phi(C)$ location g is enabled iff clock values satisfy I(g)
 - + edge constraints $c: E \to \Phi(C)$ edge e is enabled iff clock values satisfy c(e)
 - + edge resets $r: E \rightarrow 2^C$ on transition along edge e, values of clocks in r(e) are reset to 0

- Timed automaton on alphabet Σ:
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set C of clocks
 - + location invariants $I: Q \to \Phi(C)$ location g is enabled iff clock values satisfy I(g)
 - + edge constraints $c: E \to \Phi(C)$ edge e is enabled iff clock values satisfy c(e)
 - + edge resets $r: E \rightarrow 2^C$ on transition along edge e, values of clocks in r(e) are reset to 0

- Timed automaton on alphabet Σ :
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set *C* of clocks
 - + location invariants $I: Q \to \Phi(C)$ location q is enabled iff clock values satisfy I(q)
 - + edge constraints $c: E \to \Phi(C)$ edge e is enabled iff clock values satisfy c(e)
 - + edge resets $r: E \to 2^C$ on transition along edge e, values of clocks in r(e) are reset to 0

- Timed automaton on alphabet Σ:
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set C of clocks
 - + location invariants $I: Q \to \Phi(C)$ location g is enabled iff clock values satisfy I(g)
 - + edge constraints $c: E \to \Phi(C)$ edge e is enabled iff clock values satisfy c(e)
 - + edge resets $r: E \rightarrow 2^C$ on transition along edge e, values of clocks in r(e) are reset to 0

- Timed automaton on alphabet Σ:
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set C of clocks
 - + location invariants $I: Q \to \Phi(C)$ location g is enabled iff clock values satisfy I(g)
 - + edge constraints $c: E \to \Phi(C)$ edge e is enabled iff clock values satisfy c(e)
 - + edge resets $r: E \rightarrow 2^C$ on transition along edge e, values of clocks in r(e) are reset to 0

- Timed automaton on alphabet Σ:
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set C of clocks
 - + location invariants $I: Q \to \Phi(C)$ location g is enabled iff clock values satisfy I(g)
 - + edge constraints $c: E \to \Phi(C)$ edge e is enabled iff clock values satisfy c(e)
 - + edge resets $r: E \rightarrow 2^C$ on transition along edge e, values of clocks in r(e) are reset to 0

- Timed automaton on alphabet Σ:
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set C of clocks
 - + location invariants $I: Q \to \Phi(C)$ location g is enabled iff clock values satisfy I(g)
 - + edge constraints $c: E \to \Phi(C)$ edge e is enabled iff clock values satisfy c(e)
 - + edge resets $r: E \rightarrow 2^C$ on transition along edge e, values of clocks in r(e) are reset to 0

- Timed automaton on alphabet Σ:
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set C of clocks
 - + location invariants $I: Q \to \Phi(C)$ location g is enabled iff clock values satisfy I(g)
 - + edge constraints $c: E \to \Phi(C)$ edge e is enabled iff clock values satisfy c(e)
 - + edge resets $r: E \rightarrow 2^C$ on transition along edge e, values of clocks in r(e) are reset to 0

- Timed automaton on alphabet Σ :
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set *C* of clocks
 - + location invariants $I: Q \to \Phi(C)$ location q is enabled iff clock values satisfy I(q)
 - + edge constraints $c: E \to \Phi(C)$ edge e is enabled iff clock values satisfy c(e)
 - + edge resets $r: E \to 2^C$ on transition along edge e, values of clocks in r(e) are reset to 0

- Timed automaton on alphabet Σ:
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set C of clocks
 - + location invariants $I: Q \to \Phi(C)$ location g is enabled iff clock values satisfy I(g)
 - + edge constraints $c: E \to \Phi(C)$ edge e is enabled iff clock values satisfy c(e)
 - + edge resets $r: E \rightarrow 2^C$ on transition along edge e, values of clocks in r(e) are reset to 0

- Timed automaton on alphabet Σ:
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set C of clocks
 - + location invariants $I: Q \to \Phi(C)$ location g is enabled iff clock values satisfy I(g)
 - + edge constraints $c: E \to \Phi(C)$ edge e is enabled iff clock values satisfy c(e)
 - + edge resets $r: E \rightarrow 2^C$ on transition along edge e, values of clocks in r(e) are reset to 0

- Timed automaton on alphabet Σ :
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set *C* of clocks
 - + location invariants $I: Q \to \Phi(C)$ location q is enabled iff clock values satisfy I(q)
 - + edge constraints $c: E \to \Phi(C)$ edge e is enabled iff clock values satisfy c(e)
 - + edge resets $r: E \to 2^C$ on transition along edge e, values of clocks in r(e) are reset to 0

- Timed automaton on alphabet Σ :
 - Finite automaton $(Q, q_0, E \subseteq Q \times \Sigma \times Q)$
 - + finite set C of clocks
 - + location invariants $I: Q \to \Phi(C)$
 - + edge constraints $c: E \to \Phi(C)$
 - + edge resets $r: E \rightarrow 2^C$
- Semantics of timed automata as (uncountable!) timed transition systems

Timed traces

technically, on timed transition systems)

• Recap: Want bisimulation pseudometrics on timed automata (or,

- Easier to define: metrics on timed languages (in the "linear domain")
- Timed automata generate timed traces:

$$L(A) = \{(t_0, a_0, t_1, a_1, \ldots) \mid \text{ exists alternating path}$$

$$s_0 \xrightarrow{t_0} s_0' \xrightarrow{a_0} s_1 \xrightarrow{t_1} s_1' \xrightarrow{a_1} \cdots \text{ in } A\}$$

(In this talk, we consider only infinite timed traces)

 Coming up: Different metrics on timed traces → Hausdorff metrics construction → different metrics on timed languages

Summary

Metrics on timed traces

- Two timed traces: $\tau = (t_0, a_0, t_1, a_1, t_2, a_2, \ldots)$ $\tau' = (t'_0, a'_0, t'_1, a'_1, t'_2, a'_2 \dots)$
- If $a_i \neq a_i'$ for some i (difference in actions), we set $d(\tau, \tau') = \infty$.
- Otherwise: $d_{\mathsf{pair}}(\tau, \tau') = \sup_{i} \{ |t_i - t_i'| \}$

$$d_{\mathsf{sum}}(au, au') = \mathsf{sup}_i \left\{ \left| \sum_{j=1}^i t_j - \sum_{j=1}^i t_j' \right| \right\}$$

$$\begin{split} d_{\mathsf{pair},\mathsf{drift}}(\tau,\tau') &= \log \left(\, \mathsf{sup}_i \left\{ \, \mathsf{max} \left(\frac{t_i}{t_i'}, \frac{t_i'}{t_i} \right) \right\} \right) \\ d_{\mathsf{sum},\mathsf{drift}}(\tau,\tau') &= \log \left(\, \mathsf{sup}_i \left\{ \, \mathsf{max} \left(\frac{\sum_{j=1}^i t_j}{\sum_{i=1}^i t_i'}, \frac{\sum_{j=1}^i t_j'}{\sum_{i=1}^i t_j} \right) \right\} \right) \end{split}$$

Metrics on timed traces

- Two timed traces: $\tau = (t_0, a_0, t_1, a_1, t_2, a_2, \ldots)$ $\tau' = (t'_0, a'_0, t'_1, a'_1, t'_2, a'_2 \ldots)$
- If $a_i \neq a_i'$ for some i (difference in actions), we set $d(\tau, \tau') = \infty$.
- Otherwise: $d_{\mathsf{pair}}(\tau, \tau') = \sup_{i} \{ |t_i - t_i'| \}$

(measures maximal difference in pairs of delays)

$$d_{\mathsf{sum}}(\tau, \tau') = \mathsf{sup}_i \left\{ \left| \sum_{j=1}^i t_j - \sum_{j=1}^i t_j' \right| \right\}$$

$$\begin{split} d_{\mathsf{pair},\mathsf{drift}}(\tau,\tau') &= \log \left(\, \mathsf{sup}_i \left\{ \, \mathsf{max} \left(\frac{t_i}{t_i'}, \frac{t_i'}{t_i} \right) \right\} \right) \\ d_{\mathsf{sum},\mathsf{drift}}(\tau,\tau') &= \log \left(\, \mathsf{sup}_i \left\{ \, \mathsf{max} \left(\frac{\sum_{j=1}^i t_j}{\sum_{i=1}^i t_i'}, \frac{\sum_{j=1}^i t_j'}{\sum_{i=1}^i t_j} \right) \right\} \right) \end{split}$$

Metrics on timed traces

- Two timed traces: $\tau = (t_0, a_0, t_1, a_1, t_2, a_2, \ldots)$ $\tau' = (t'_0, a'_0, t'_1, a'_1, t'_2, a'_2 \ldots)$
- If $a_i \neq a_i'$ for some i (difference in actions), we set $d(\tau, \tau') = \infty$.
- Otherwise: $d_{\mathsf{pair}}(\tau, \tau') = \sup_{i} \{ |t_i - t_i'| \}$

(measures maximal difference in pairs of delays)

$$d_{\mathsf{sum}}(au, au') = \mathsf{sup}_i \left\{ \left| \sum_{j=1}^i t_j - \sum_{j=1}^i t_j' \right| \right\}$$

(measures maximal difference in accumulated delay)

$$\begin{aligned} d_{\mathsf{pair},\mathsf{drift}}(\tau,\tau') &= \log \left(\, \mathsf{sup}_i \left\{ \, \mathsf{max} \left(\frac{t_i}{t_i'}, \frac{t_i'}{t_i} \right) \right\} \right) \\ d_{\mathsf{sum},\mathsf{drift}}(\tau,\tau') &= \log \left(\, \mathsf{sup}_i \left\{ \, \mathsf{max} \left(\frac{\sum_{j=1}^i t_j}{\sum_{i=1}^i t_i'}, \frac{\sum_{j=1}^i t_j'}{\sum_{i=1}^i t_i'} \right) \right\} \right) \end{aligned}$$

Metrics on timed traces

- Two timed traces: $\tau = (t_0, a_0, t_1, a_1, t_2, a_2, \ldots)$ $\tau' = (t'_0, a'_0, t'_1, a'_1, t'_2, a'_2 \ldots)$
- If $a_i \neq a_i'$ for some i (difference in actions), we set $d(\tau, \tau') = \infty$.
- Otherwise: $d_{\mathsf{pair}}(\tau, \tau') = \sup_{i} \{ |t_i - t_i'| \}$

(measures maximal difference in pairs of delays)

$$d_{\mathsf{sum}}(\tau, \tau') = \mathsf{sup}_i \left\{ \left| \sum_{j=1}^i t_j - \sum_{j=1}^i t_j' \right| \right\}$$

(measures maximal difference in accumulated delay)

$$\begin{aligned} d_{\mathsf{pair},\mathsf{drift}}(\tau,\tau') &= \log \left(\, \mathsf{sup}_i \left\{ \, \mathsf{max} \left(\frac{t_i}{t_i'}, \frac{t_i'}{t_i} \right) \right\} \right) \\ d_{\mathsf{sum},\mathsf{drift}}(\tau,\tau') &= \log \left(\, \mathsf{sup}_i \left\{ \, \mathsf{max} \left(\frac{\sum_{j=1}^i t_j}{\sum_{j=1}^i t_j'}, \frac{\sum_{j=1}^i t_j'}{\sum_{j=1}^i t_j'} \right) \right\} \right) \end{aligned}$$

(similar, but now we measure quotients (drift) instead of difference)

Metrics on timed traces

$$\begin{split} d_{\mathsf{pair}}(\tau,\tau') &= \mathsf{sup}_i \left\{ |t_i - t_i'| \right\} \\ d_{\mathsf{sum}}(\tau,\tau') &= \mathsf{sup}_i \left\{ \left| \sum_{j=1}^i t_j - \sum_{j=1}^i t_j' \right| \right\} \\ d_{\mathsf{pair},\mathsf{drift}}(\tau,\tau') &= \mathsf{log} \left(\mathsf{sup}_i \left\{ \mathsf{max} \left(\frac{t_i}{t_i'}, \frac{t_i'}{t_i} \right) \right\} \right) \\ d_{\mathsf{sum},\mathsf{drift}}(\tau,\tau') &= \mathsf{log} \left(\mathsf{sup}_i \left\{ \mathsf{max} \left(\frac{\sum_{j=1}^i t_j}{\sum_{j=1}^i t_j'}, \frac{\sum_{j=1}^i t_j'}{\sum_{j=1}^i t_j'} \right) \right\} \right) \end{split}$$

- For all of the above, $d(\tau, \tau') = 0$ implies $\tau = \tau'$ (hence they are indeed metrics)
- General p-metrics can be defined above are the cases $p = \infty$; for p = 1 e.g., sup; is replaced by \sum_{i}
- The above four are not topologically equivalent

Metrics on timed traces

$$\begin{split} d_{\mathsf{pair}}(\tau,\tau') &= \mathsf{sup}_i \left\{ |t_i - t_i'| \right\} \\ d_{\mathsf{sum}}(\tau,\tau') &= \mathsf{sup}_i \left\{ \left| \sum_{j=1}^i t_j - \sum_{j=1}^i t_j' \right| \right\} \\ d_{\mathsf{pair},\mathsf{drift}}(\tau,\tau') &= \mathsf{log} \left(\mathsf{sup}_i \left\{ \mathsf{max} \left(\frac{t_i}{t_i'}, \frac{t_i'}{t_i} \right) \right\} \right) \\ d_{\mathsf{sum},\mathsf{drift}}(\tau,\tau') &= \mathsf{log} \left(\mathsf{sup}_i \left\{ \mathsf{max} \left(\frac{\sum_{j=1}^i t_j}{\sum_{j=1}^i t_j'}, \frac{\sum_{j=1}^i t_j'}{\sum_{j=1}^i t_j'} \right) \right\} \right) \end{split}$$

- For all of the above, $d(\tau, \tau') = 0$ implies $\tau = \tau'$ (hence they are indeed metrics)
- General p-metrics can be defined above are the cases $p = \infty$; for p=1 e.g., sup; is replaced by \sum_{i}
- The above four are not topologically equivalent
- (Two metrics, d_1 and d_2 , are topologically equivalent iff they generate the same topology, iff there are constants m and M such that $md_1(x,y) \leq d_2(x,y) \leq Md_1(x,y)$ for all x,y

Pseudometrics on timed languages

 For measuring differences of timed languages (which is what we want), use Hausdorff pseudometric:

Given a set X with pseudometric d, the Hausdorff pseudometric on the power set of X is d^H defined as follows:

$$d^{\mathsf{H}}(A,B) = \max \left(\sup_{a \in A} \inf_{b \in B} d(a,b), \sup_{b \in B} \inf_{a \in A} d(a,b) \right)$$

- Hence for timed languages L_1 , L_2 we have $d(L_1, L_2) \leq \varepsilon$ iff any timed trace in L_1 can be matched by a timed trace in L_2 with distance $\leq \varepsilon$, and vice versa - quite natural!
- So we have metrics $d_{\text{pair}}^{\text{H}}$, $d_{\text{sum}}^{\text{H}}$, $d_{\text{pair}}^{\text{H}}$, $d_{\text{sum}}^{\text{H}}$ for timed languages
- And $d^{H}(L_1, L_2) = 0$ iff $\overline{L_1} = \overline{L_2}$ (topological closure)
- Lemma: Two pseudometrics are topologically equivalent iff their Hausdorff pseudometrics are.

Bisimulation pseudometrics

Motivation

- Problem: for timed automata A, B, it is undecidable whether L(A) = L(B)
- i.e. it is undecidable whether d(L(A), L(B)) = 0
- hence all our pseudometrics on timed languages are most probably uncomputable in general!

Motivation

- *i.e.* it is undecidable whether d(L(A), L(B)) = 0
- hence all our pseudometrics on timed languages are most probably uncomputable in general!
- Back to the "branching domain": It is decidable whether two timed automata are bisimilar
- → Want to introduce bisimulation pseudometrics on timed automata which correspond to our pseudometrics on timed languages
 - correspond should mean: $d(A,B) = \varepsilon < \infty \Longrightarrow d(L(A),L(B)) = \varepsilon$
 - in other words: For automata with finite bisimulation distance, the language mapping should be distance preserving.

Motivation

Bisimulation pseudometrics

• Pair version: For states s_1 , s_2 in timed transition systems A, B, say that $s_1 \sim_{\epsilon}^{\text{pair}} s_2$ iff

$$\forall s_{1} \xrightarrow{a} s'_{1} \in A : \exists s_{2} \xrightarrow{a} s'_{2} \in B : s'_{1} \sim_{\varepsilon}^{\mathsf{pair}} s'_{2}$$

$$\land \forall s_{2} \xrightarrow{a} s'_{2} \in B : \exists s_{1} \xrightarrow{a} s'_{1} \in A : s'_{1} \sim_{\varepsilon}^{\mathsf{pair}} s'_{2}$$

$$\land \forall s_{1} \xrightarrow{t_{1}} s'_{1} \in A : \exists s_{2} \xrightarrow{t_{2}} s'_{2} \in B : s'_{1} \sim_{\varepsilon}^{\mathsf{pair}} s'_{2} \land |t_{1} - t_{2}| \leq \varepsilon$$

$$\land \forall s_{2} \xrightarrow{t_{2}} s'_{2} \in B : \exists s_{1} \xrightarrow{t_{1}} s'_{1} \in A : s'_{1} \sim_{\varepsilon}^{\mathsf{pair}} s'_{2} \land |t_{1} - t_{2}| \leq \varepsilon$$

- (Recall that for timed traces, $d_{pair}(\tau, \tau') = \sup_{i} \{ |t_i t_i'| \}$)
- Define $d_{pair}(A, B) = \inf\{\varepsilon \mid A \sim_{\varepsilon}^{pair} B\}$
- Then the L mapping is indeed distance preserving
- Similar can be done for $d_{pair,drift}$
- What about computability?

Bisimulation pseudometrics

- The sum version is more difficult: Need to remember differences in delays across transitions
- For states s_1 , s_2 in timed transition systems A, B, say that $s_1 \sim_{\varepsilon,\delta}^{\text{sum}} s_2$ iff

$$\forall s_{1} \xrightarrow{a} s'_{1} \in A : \exists s_{2} \xrightarrow{a} s'_{2} \in B : s'_{1} \sim_{\varepsilon,\delta}^{\text{sum}} s'_{2}$$

$$\land \forall s_{2} \xrightarrow{a} s'_{2} \in B : \exists s_{1} \xrightarrow{a} s'_{1} \in A : s'_{1} \sim_{\varepsilon,\delta}^{\text{sum}} s'_{2}$$

$$\land \forall s_{1} \xrightarrow{t_{1}} s'_{1} \in A : \exists s_{2} \xrightarrow{t_{2}} s'_{2} \in B : s'_{1} \sim_{\varepsilon,\delta+t_{1}-t_{2}}^{\text{sum}} s'_{2} \land |\delta+t_{1}-t_{2}| \leq \varepsilon$$

$$\land \forall s_{2} \xrightarrow{t_{2}} s'_{2} \in B : \exists s_{1} \xrightarrow{t_{1}} s'_{1} \in A : s'_{1} \sim_{\varepsilon,\delta+t_{1}-t_{2}}^{\text{sum}} s'_{2} \land |\delta+t_{1}-t_{2}| \leq \varepsilon$$

- (δ is the lead which A hitherto has worked up compared to B)
- Define $d_{sum}(A, B) = \inf\{\varepsilon \mid A \sim_{\varepsilon, 0}^{sum} B\}$
- This is work by Henzinger, Majumdar, Prabhu (FORMATS 2005)
- (Similar can be done for $d_{sum,drift}$)
- Yes, the L mapping is again distance preserving
- And HMP'05 shows that d_{sum} is computable!

What we have:

- Four different interesting pseudometrics on the set TA of timed automata (or, if you wish, on the set TS of timed transition systems)
- For each of them, a corresponding pseudometric on the set TL of timed languages
- such that the language mapping L: TA → TL is continuous and distance preserving

What we have:

- Four different interesting pseudometrics on the set TA of timed automata (or, if you wish, on the set TS of timed transition systems)
- For each of them, a corresponding pseudometric on the set TL of timed languages
- such that the language mapping L: TA → TL is continuous and distance preserving

What we want to know:

- Computability: One of the bisimulation pseudometrics is computable;
 what about the other three?
- Feasibility: Even though this pseudometric is computable, the algorithm is not in any way feasible. But maybe there are other, feasible, algorithms?

What we have:

- Four different interesting pseudometrics on the set TA of timed automata (or, if you wish, on the set TS of timed transition systems)
- For each of them, a corresponding pseudometric on the set TL of timed languages
- such that the language mapping L: TA → TL is continuous and distance preserving

What we also want to know:

- Topological properties of TA, TS, and TL with these pseudometrics:
 - not T₀
 - the four topologies on TA are not the same
 - neither are there any refinement relations
 - More!

What we have:

- Four different interesting pseudometrics on the set TA of timed automata (or, if you wish, on the set TS of timed transition systems)
- For each of them, a corresponding pseudometric on the set TL of timed languages
- such that the language mapping L: TA → TL is continuous and distance preserving

What we also want to know:

- Properties of the L mapping
 - expecially interesting: What can be said about d(L(A), L(B)) for points $A, B \in \mathbf{TA}$ with $d(A, B) = \infty$
 - Conjecture: $d(A, B) = \infty$ implies $d(L(A), L(B)) = \infty$ or d(L(A), L(B)) = 0 (for all four pseudometrics).

What we have:

- Four different interesting pseudometrics on the set TA of timed automata (or, if you wish, on the set TS of timed transition systems)
- For each of them, a corresponding pseudometric on the set TL of timed languages
- such that the language mapping L: TA → TL is continuous and distance preserving

What we also want to know:

- Properties of the associated metric spaces ${\sf TA}_* = {\sf TA}/_{d(A,B)=0}$, ${\sf TS}_*$, ${\sf TL}_*$
 - (these are metric, hence nice spaces)
 - What about the properties of the induced L* mapping?

Simulation, and directed topology

- 6 Simulation hemimetrics
- Memimetrics on timed languages
- 8 From hemimetrics to d-spaces
- Conclusion

Simulation hemimetrics

- Like bisimulation, but one-way:
- Pair version: For states s_1 , s_2 in timed transition systems A, B, say that $s_1 \prec_{\varepsilon}^{pair} s_2$ iff

$$\forall s_1 \xrightarrow{a} s_1' \in A : \exists s_2 \xrightarrow{a} s_2' \in B : s_1' \preceq_{\varepsilon}^{\mathsf{pair}} s_2'$$

$$\land \forall s_1 \xrightarrow{t_1} s_1' \in A : \exists s_2 \xrightarrow{t_2} s_2' \in B : s_1' \preceq_{\varepsilon}^{\mathsf{pair}} s_2' \land |t_1 - t_2| \le \varepsilon$$

• Sum version: Say that $s_1 \leq_{\varepsilon,\delta}^{sum} s_2$ iff

$$\forall s_1 \xrightarrow{a} s_1' \in A : \exists s_2 \xrightarrow{a} s_2' \in B : s_1' \preceq_{\varepsilon, \delta}^{\mathsf{sum}} s_2'$$

$$\land \forall s_1 \xrightarrow{t_1} s_1' \in A : \exists s_2 \xrightarrow{t_2} s_2' \in B : s_1' \preceq_{\varepsilon, \delta + t_1 - t_2}^{\mathsf{sum}} s_2' \land |\delta + t_1 - t_2| \leq \varepsilon$$

- and define $\vec{d}_{pair}(A, B) = \inf\{\varepsilon \mid A \leq_{\varepsilon}^{pair} B\}$, $d_{\mathsf{sum}}(A, B) = \inf\{\varepsilon \mid A \leq_{\varepsilon}^{\mathsf{sum}} B\}$
- these are hemimetrics (or δ -metrics; asymmetric pseudometrics)
- (and d_{sum} is also in HMP05, and is computable)
- (and $\vec{d}_{pair,drift}$, $\vec{d}_{sum,drift}$ can be defined similarly)

From hemimetrics to d-spaces

Hemimetrics on timed languages

• Hausdorff hemimetric:

Given a set X with hemimetric \vec{d} , the Hausdorff hemimetric on the power set of X is \vec{d}^H defined as follows:

$$\vec{d}^{\mathsf{H}}(A,B) = \sup_{a \in A} \inf_{b \in B} \vec{d}(a,b)$$

- hence: have hemimetrics \vec{d}_{pair} , \vec{d}_{sum} , $\vec{d}_{pair,drift}$, $\vec{d}_{sum,drift}$ on TA, TS, and TL
- and the L mapping TA → TL (or TS → TL if you wish) is d-distance preserving

From hemimetrics to d-spaces

- Marco Grandis, "The Fundamental Weighted Category of a Weighted Space", HHA 9 (2007) is paving the way from hemimetrics to directed spaces:
 - Given a set X with hemimetric \vec{d} , define a metric on X by $\vec{d}(a,b) = \min(\vec{d}(a,b), \vec{d}(b,a))$,
 - ullet take the topology on X generated by d,
 - and say that a continuous path $p: I \to X$ is directed if $\sup\{\sum_{i=1}^p \vec{d}(a_{i-1}, a_i) \mid 0 = t_0 < \dots < t_p = 1, p \in \mathbb{N}\}$ is finite.
- Interpretation:
 - *d*, *i.e.* the topology, measures how close one of the systems is to the other
 - Along directed paths, "completeness" of systems is increasing: For a directed path p and $t \le t'$, the system p(t') simulates p(t) up to $\vec{d}(p(t), p(t'))$

Conclusion

What we have:

- Four different interesting hemimetrics on each of TA, TS, and TL
- such that the L mapping is (continuous and) d-distance preserving
- An interesting interpretation of the d-spaces arising from these hemimetrics

What we would like to know:

- Properties of these d-spaces:
 - ullet not T_0 ; saturated; not locally partially ordered
 - maybe convenient in the sense of Fajstrup-Rosický? maybe streams in the sense of Sanjeevi? what about a cubical structure?
- We know what d-paths "mean". What about d-homotopies?
- Hemimetrics give also rise to w-spaces (also in Grandis07). Do these have an interesting interpretation?
- etc.

