Discount-Optimal Infinite Runs in Priced Timed Automata

Uli Fahrenberg Kim G. Larsen

Department of Computer Science
Aalborg University
Denmark

INFINITY 2008

Motivation Problem & Solution Proof Summary

Motivation

• The general goal: Find optimal infinite paths in priced timed automata

- Different versions:
 - Bouyer, Brinksma, Larsen, HSCC'04: Staying alive as cheap as possible: Given a timed automaton with two price functions, cost and reward, find infinite path with lowest ratio cost/reward
 - Bouyer, Fahrenberg, Larsen, Markey, Srba, FORMATS'08:
 Infinite Runs in Weighted Timed Automata with Energy
 Constraints: Given a timed automaton with positive or negative weights and pre-assigned thresholds a, b, find infinite path for which accumulated cost ≥ a, or ≤ b, or both
- Present work: All prices are non-negative, but for computing accumulated cost, discounting is applied
- = things which happen t time units in the future are taken into account only with a discount λ^t , for some fixed discounting factor λ

- Motivation
- 2 Problem & Solution
- 3 Proof
- Summary

• Timed automaton:

Finite automaton

- Timed automaton:
 - Finite automaton
 - + finite set of clocks $C = \{x, y, \ldots\}$
 - + location invariants

- Timed automaton:
 - Finite automaton
 - + finite set of clocks $C = \{x, y, \ldots\}$
 - + location invariants
 - + edge constraints

- Timed automaton:
 - Finite automaton
 - + finite set of clocks $C = \{x, y, \ldots\}$
 - + location invariants
 - + edge constraints
 - + edge resets

- Timed automaton:
 - Finite automaton
 - + finite set of clocks $C = \{x, y, \ldots\}$
 - + location invariants
 - + edge constraints
 - + edge resets

- Timed automaton:
 - Finite automaton
 - + finite set of clocks $C = \{x, y, \ldots\}$
 - + location invariants
 - + edge constraints
 - + edge resets
- Priced timed automaton:
 - + price rates in locations (cost per time unit)

- Timed automaton:
 - Finite automaton
 - + finite set of clocks $C = \{x, y, \ldots\}$
 - + location invariants
 - + edge constraints
 - + edge resets
- Priced timed automaton:
 - + price rates in locations (cost per time unit)
 - + prices on transitions

• An example run:

• An example run:

• An example run:

• Total (discounted) price of run: 2.16

Discounted price

Formally: Let A be a priced timed transition system and $\lambda \in]0,1[$.

• The discounted price of a *finite* alternating path $\pi = s_0 \xrightarrow{t_0} s'_0 \to s_1 \to \cdots \xrightarrow{t_{n-1}} s'_{n-1} \to s_n$ is

$$P(\pi) = \sum_{i=0}^{n-1} \left(\int_{T_{i-1}}^{T_i} \lambda^t r(s_i^t) dt + \lambda^{T_i} p(s_i' \to s_{i+1}) \right)$$

where $T_i = \sum_{j=0}^i t_j$.

• The discounted price of an *infinite* alternating path $\pi = s_0 \xrightarrow{t_0} s_0' \to s_1 \to \cdots$ is the limit

$$P(\pi) = \lim_{n \to \infty} P(s_0 \to s'_0 \to \cdots \to s'_{n-1} \to s_n)$$

provided that it exists. (!)

lotivation Problem & Solution Proof Summary

Problem and solution

Problem:

- Given: priced timed transition system A, state $s \in A$
- Find: an infinite path from s with lowest discounted price
- (or one that comes arbitrarily close)

Solution:

- For priced timed automata,
- which are bounded
- and time-divergent,
- and rational λ ,
- starting in the initial state,
- our problem is computable

Proof structure

Given priced timed automaton A:

- Use corner point abstraction to construct finite weighted graph cp(A) (refinement of region graph; Bouyer, Brinksma, Larsen, HSCC'04)
- ② Find infinite path $\tilde{\pi}$ with lowest discounted price in cp(A) using linear programming (discounted payoff games; Andersson, MSc. thesis, Uppsala '06)
- ullet Find cheapest path lying over $ilde{\pi}$ in A

This needs a soundness and completeness result:

- Given an infinite path $\tilde{\pi}$ in cp(A) for which $P(\tilde{\pi})$ converges, then for all $\varepsilon > 0$ there exists an infinite path $\pi \in \operatorname{cp}^{-1}(\tilde{\pi})$ for which $|P(\pi) P(\tilde{\pi})| < \varepsilon$.
- Given an infinite path π in A, there exists an infinite path $\tilde{\pi} \in cp(\pi)$ for which $P(\tilde{\pi}) \leq P(\pi)$.

Proof details

Given an infinite path π in A, there exists an infinite path $\tilde{\pi} \in \operatorname{cp}(\pi)$ for which $P(\tilde{\pi}) \leq P(\pi)$.

Write
$$\pi = (q_0, \nu_0) \rightarrow (q_0, \nu_0 + t_0) \xrightarrow[\rho_0]{} (q_1, \nu_1) \rightarrow (q_1, \nu_1 + t_1) \xrightarrow[\rho_1]{} \cdots$$

Then

$$P(\pi) = \sum_{i=0}^{\infty} \left(\int_{T_{i-1}}^{T_i} \lambda^t r(q_i) dt + \lambda^{T_i} p_i \right)$$
$$= \sum_{i=0}^{\infty} \left(\frac{1}{\ln \lambda} r(q_i) \left(\lambda^{T_i} - \lambda^{T_{i-1}} \right) + p_i \lambda^{T_i} \right)$$

– a function in variables T_0, T_1, \ldots

 \Longrightarrow Optimization problem: Minimize $P(\pi) = f(T_0, T_1, ...)$ under the constraint that $T_0, T_1, ...$ lie in a specific *zone* defined by π above.

$$P(\pi) = f(T_0, T_1, \dots) = \sum_{i=0}^{\infty} \left(\frac{1}{\ln \lambda} r(q_i) \left(\lambda^{T_i} - \lambda^{T_{i-1}} \right) + p_i \lambda^{T_i} \right)$$

Task: Minimize $f(T_0, T_1,...)$ under the constraint that $(T_0, T_1,...) \in Z$ for a given (bounded, closed) zone Z.

- (can be shown that) f is (weakly) monotonic
- easy to see: monotonic functions over finite-dimensional closed zones attain their minimum in a corner point
- → for finite paths, the corner point abstraction can "see" the path with lowest price (because it goes through corners) → done
 - Need: Generalization of the above to infinite-dimensional zones
 - not easy, because infinite-dimensional zones are not compact
 - difficult part: show that infimum is attained somewhere

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- ullet f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2,...) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$ \implies exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$

Standard argument: Z is compact $\Longrightarrow x$ contains converging subsequence $x' \Longrightarrow \text{let } z = \lim x' \Longrightarrow \text{done}$.

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- ullet f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2,...) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$ \implies exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$

Standard argument: Z is compact $\Longrightarrow x$ contains converging subsequence $x'\Longrightarrow \text{let }z=\lim x'\Longrightarrow \text{done}.$

But Z is not compact.

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- ullet f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2, ...) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$

 \implies exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$

 $x = x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7 \quad x_8 \quad x_9$

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2, \dots) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$
- \implies exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$

 $\chi = lacksquare$

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2, ...) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$

 \implies exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$

—

Proof details, 3.

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2, \dots) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$
- \implies exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$

$$x =$$

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2,...) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$
- \implies exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$

 $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{>0}$ (non-negative values!)
- $f(x_1, x_2, \dots) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$
- \implies exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$

$$x = \bullet$$

$$r=$$
 $lacktriangledown$ $lacktriangledown$ $lacktriangledown$ $lacktriangledown$ $lacktriangledown$ $lacktriangledown$ $lacktriangledown$ $lacktriangledown$

 $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{>0}$ (non-negative values!)
- $f(x_1, x_2, \dots) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$
- \implies exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$

$$x =$$

 $\rightarrow Z_1$

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- ullet f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2, ...) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$
- \implies exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$

$$X = \bullet \bullet \bullet \bullet \bullet$$

- - •

 $\rightarrow Z_1$

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- ullet f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2, ...) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$
- \implies exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$

$$x =$$

- _

- •
 - •

- •
- $\bullet \longrightarrow z_1$
- , 2

•

- - - •

- • •

 $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{>0}$ (non-negative values!)
- $f(x_1, x_2, \dots) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$

 \implies exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Proof: Let $x : \mathbb{N} \to Z$ be a sequence for which $\lim f(x_i) = \inf_{y \in Z} f(y)$

x =

 $\rightarrow z_1$

Theorem: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed (in the supremum metric)

- ullet f_1, f_2, \ldots continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$ (non-negative values!)
- $f(x_1, x_2, ...) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$
- \implies exists $z \in Z$ for which $f(z) = \inf_{y \in Z} f(y)$

Corollary: $Z \subseteq \mathbb{R}^{\infty}$ bounded and closed zone

- f_1, f_2, \ldots monotonous continuous functions $\operatorname{pr}_i Z \to \mathbb{R}_{\geq 0}$
- $f(x_1, x_2, ...) = \sum_{i=1}^{\infty} f_i(x_i) : Z \to [0, \infty]$ converges for some $x \in Z$
- \implies exists corner point z of Z for which $f(z) = \inf_{y \in Z} f(y)$

So corner point abstraction can see the path with lowest price \Longrightarrow done

Summary

- We show that, under certain mild assumptions, the discount-optimal infinite path problem is computable for priced timed automata
- We use a generalization of a well-known fact about monotonous functions defined on zones, to infinite zones
- (Other applications?)
- Computable yes, feasible NO
- But efficient, zone-based algorithm should exist
- ullet Also, for λ close to 1, discount-optimal probably the same as limit-ratio optimal
- Games?

