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Abstract

We present a general framework for the analysis of quantitative and qualitative
properties of reactive systems, based on a notion of weighted transition systems.
We introduce and analyze three different types of distances on weighted transi-
tion systems, both in a linear and a branching version. Our quantitative notions
appear to be reasonable extensions of the standard qualitative concepts, and the
three different types introduced are shown to measure inequivalent properties.

When applied to the formalism of weighted timed automata, we show that
some standard decidability and undecidability results for timed automata extend
to our quantitative setting.

Key words: Quantitative analysis, weighted transition systems, weighted
timed automata, simulation, trace inclusion, hemimetrics

1. Introduction

The research presented in this work is motivated by the Challenge on embed-
ded systems design, posed by Henzinger and Sifakis in [7]. Henzinger and Sifakis
express the need for a coherent theory of embedded systems design, where con-
cern for physical constraints is supported by the computational models used
to model software, thus achieving a more heterogeneous approach to design.
Highly distilled, Henzinger and Sifakis call for a new mathematical basis for
systems modeling which facilitates modeling of behavioural properties as well
as environmental constraints.

Analysis and verification of concurrent and reactive systems [1] is a well-
established research field, a branch of which is referred to as implementation
verification: verification of systems design based on behavioural equivalence
checking. This approach requires a model of the system and specification, as well
as a procedure for checking whether the two are related with respect to some
equivalence. The choice of this equivalence relation reflects what one wants to
observe and how. Classical examples of such relations include trace inclusion
and various types of simulation, see e.g. the survey provided in [12]. Cor-
respondingly, the models which are analyzed must encompass all the relevant
information to facilitate the analysis. Specifically, the formalism used to model
the system must be rich enough to express the characteristics of the system, in
order for the analysis to prove or refute the proposed equivalence.
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In a quantitative setting, equivalences are replaced by real-valued distances;
intuitively the problem is lifted from a decision problem to a search problem,
i.e. from deciding on {true, false} to computing a distance ε ∈ R≥0. A distance
of 0 (zero) is given to instances which are accepted by the binary decision
procedure, and the meaning of values ε > 0 is that the instance is not equal to
the specification, yet related up to some error margin given by the distance ε.

1.1. Motivation
Although the standard approach to implementation verification may be ad-

equate when analyzing qualitative properties such as behaviour of systems, it
is arguably insufficient for reasoning about their quantitative aspects. Indeed,
it can be argued that in a setting where system models and properties include
both discrete and continuous, i.e. quantitative, information, e.g. real-time or
probabilistic systems, a quantitative approach to implementation verification is
necessary.

As an example of how quantitative models and analysis may be applied in
an industrial setting, consider the design of a hybrid vehicle using two or more
power sources, e.g. electricity and petrol. Not only would we like to be able
to verify the behaviour of the vehicle: steering, breaks etc., but also quantities
such as performance, e.g. in terms of horse power and the ratio of energy
consumption from the different sources. Hence given the option to configure the
fuel management system or suspension, a quantitative analysis should reveal
not only the qualitative property, i.e. whether the alternative component will
supply fuel or not, or whether the suspension will hold, but also the impact on
fuel consumption.

Generalizing the above example, quantitative methods are also increasingly
used for modeling optimal scheduling and control problems for hybrid systems.
In this setting, quantitative approaches to implementation verification, and to
controller generation, are essential. When generating controllers for hybrid sys-
tems for example, implementability and robustness are important issues, and
both need a quantitative approach to verification.

1.2. Contribution
We present a general framework for the analysis of quantitative and quali-

tative properties of reactive systems, based on a notion of weighted transition
systems. Weighted transition systems can be used for specifying the semantics
of systems with quantitative and qualitative properties, such as weighted timed
automata for example, which feature both weights and time.

We introduce and analyze three different types of distances on weighted
transition systems, but note that other interesting types may be treated in a
similar manner. The three types are

• point-wise distance, which measures the largest individual difference be-
tween systems,

• accumulated distance, which measures the sum of (absolute) differences
accumulated during executions of the systems, and
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• maximum-lead distance, which measures the largest distance between ac-
cumulated differences occurring during executions of the systems.

We find that there are subtle equivalences and differences between these dis-
tances.

All three kinds of distances are defined and analyzed both in a linear setting,
i.e. extending the standard notion of trace inclusion, and in a branching version,
generalizing the notion of simulation. We find that the usual relation between
simulation and trace inclusion generalizes to our quantitative setting.

We apply our quantitative framework to implementation verification for
weighted timed automata, and we collect evidence that the standard result on
undecidability of timed language inclusion for timed automata can be lifted
to our quantitative setting, and that on the other hand (and again generaliz-
ing standard results), simulation distances are computable for weighted timed
automata.

2. Hemi-metrics

We need to recall a few basic facts about asymmetric distances before we
can begin our journey into the quantification of trace inclusion and simulation
between weighted transition systems. For this section, X denotes a general set.
Also, R≥0 is the set of non-negative real numbers, R+ the set of positive real
numbers, and 2X denotes the power set of X.

Recall first the definition of hemimetric, and note that for us, a hemimetric
can assume the value ∞:

Definition 1. Let d : X ×X → R≥0 ∪{∞} be a function for which d(x, x) = 0
for all x ∈ X, and which satisfies the triangle inequality

d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X

Then d is called a hemimetric.

We will need two different notions of equivalence of hemimetrics later; for
metrics, these are standard and can be found in any textbook:

Definition 2. Hemimetrics d1, d2 on X are said to be

• topologically equivalent provided that for all x ∈ X and all ε ∈ R+, there
exists δ ∈ R+ such that d1(x, y) < δ implies d2(x, y) < ε and d2(x, y) < δ
implies d1(x, y) < ε for all y ∈ X,

• Lipschitz equivalent if there exist m,M ∈ R+ such that md1(x, y) ≤
d2(x, y) ≤Md1(x, y) for all x, y ∈ X.

Recall also that topological equivalence is the same as asking the identity
function (X, d1) → (X, d2) to be continuous, and Lipschitz equivalence is the
same as requiring it to be a Lipschitz function; hence Lipschitz equivalence
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is stronger than topological equivalence. We shall later see that topological
equivalence is useful for transferring negative results from one hemimetric to
another, whereas Lipschitz equivalence is used for positive results.

We shall use the following standard construction to lift hemimetrics from a
set to its set of subsets:

Definition 3. The Hausdorff hemimetric d on 2X associated with a hemimetric
d on X is given by

d(A,B) = sup
x∈A

inf
y∈B

d(x, y)

Note the following alternative formulation, which follows straight from the
definition:

Proposition 4. For a hemimetric d on X, A,B ⊆ X, and ε ∈ R+, we have
d(A,B) ≤ ε if and only if for any x ∈ A there exists y ∈ B for which d(x, y) ≤ ε.

For distance 0, we have the following useful fact:

Lemma 5. For a hemimetric d on X and A,B ⊆ X, we have d(A,B) = 0 if
and only if Ā ⊆ B̄, where Ā, B̄ denote the closures of A, respectively B, in the
topology induced on X by d.

3. Weighted transition systems and weighted timed automata

We now define our notion of weighted transition system (WTS), essentially
an extension of the standard concept of (labeled) transition system [11], which
have been used to introduce operational semantics for a wide range of systems.
The intention of WTS is to describe a system’s behaviour as well as quantitative
properties in terms of weights and lengths. Recall that a transition system is a
quadruple (S, s0,Γ, R) consisting of a set S of states with initial state s0 ∈ S, a
finite set Γ of labels, and a set of transitions R ⊆ S × Γ× S.

Definition 6. A weighted transition system is a triple (S, w, lg), where

• S = (S, s0,Γ, R) is a transition system,

• w : R→ R≥0 assigns weights to transitions, and

• lg : Γ→ R≥0 assigns lengths to labels.

We write s α,w−−→ s′ whenever (s, α, s′) ∈ R and w(s, α, s′) = w, and s 6→
if there is no transition (s, α, s′) in R for any α and s′. The presence of both
weights of transitions and lengths of labels is to some degree redundant, but we
will see later that it is indeed merited.

We lift the standard notions of path and trace to WTS:
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Definition 7. Let S = ((S, s0,Γ, R), w, lg) be a WTS and s ∈ S. A path from
s in S is a (possibly infinite) sequence ((s0, α0, s1), (s1α1, s2), . . . ) of transi-
tions (si, αi, si+1) ∈ R with s0 = s. A (weighted) trace from s is a sequence
((α0, w0), (α1, w1), . . . ) of pairs (αi, wi) ∈ Γ×R≥0 for which there exists a path
((s0, α0, s1), (s1α1, s2), . . . ) from s for which wi = w(si, αi, si+1).

The set of traces from a state s is denoted Tr(s). Given a trace σ, we denote
by U(σ) ∈ Γω its label sequence (i.e. the associated unweighted trace), by
lg(σ) ∈ N ∪ {∞} its length, and by σi its i’th label-weight pair.

As finite models of weighted transition systems we use weighted timed au-
tomata. Recall [2, 4] that a timed automaton is essentially a finite automaton
augmented with a set C of clocks, which are used for imposing invariants on lo-
cations and guards on transitions and hence controlling when these are enabled.
These invariants and guards are given as clock constraints, where the set Ψ(C)
of clock constraints is generated by the following grammar:

ψ ::= x ./ k | x− y ./ k | ψ1 ∧ ψ2 x, y ∈ C, k ∈ Z, ./∈ {≤, <,=, >,≥}

Weighted timed automata (WTA), introduced in [3, 5], are an extension of
timed automata with weights:

Definition 8. A weighted timed automaton is a tuple (L, `0, C, I, E, r) where:

• L is a finite set of locations, with `0 as the initial location,

• C is a finite set of clocks,

• I : L→ Ψ(C) assigns invariants to locations,

• E ∈ L×Ψ(C)× 2C ×N× L is a set of weighted edges, and

• r : L→ N is a location weight-rate function.

We write ` ψ,C−−→
p

`′ instead of (`, ψ, C, p, `′) ∈ E.

An example of a WTA, taken from [5], is depicted in Figure 1. It represents a
simple production plant with three different levels of productivity Low, Medium,
and High and rates modeling the cost of operation at each level. The plant will
automatically decrease in production level (action d) if unattended for 3 time
units.

The operational semantics of a timed automaton is given as a timed transi-
tion system, i.e. an infinite transition system with both discrete (switch) and
continuous (delay) transitions. Similarly, the semantics of a WTA is usually
defined by a timed transition system with weights on transitions. Here we use
a slightly different approach, translating a WTA into a WTS with lengths:
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Figure 1: Simple production system example

Definition 9. The semantics of a weighted timed automaton A is given by the
weighted transition system JAK = ((S, {?} ∪R≥0, T ), w, lg) with

S =
{

(`, v) ∈ L×RC≥0

∣∣ v |= I(`)
}

T =
{

(`, v)
?,p−−→ (`′, v′)

∣∣ ∃ ` ψ,C−−→
p

`′ ∈ E : v |= ψ, v′ = v[C ← 0]
}

∪
{

(`, v)
δ,r−−→ (`, v + δ)

∣∣ ∀ δ′ ∈ [0, δ] : v + δ′ |= I(`), r(`) = r
}

lg(?) = 1 lg(δ) = δ for δ ∈ R≥0

4. Quantitative Analysis

In this section we introduce our quantitative analysis of WTS, both in a
linear and branching setting. For ease of exposition we concentrate on trace
inclusion and strong simulation here and defer treatment of both trace equiva-
lence and bisimulation, and of weak relations, to other work. We shall introduce
three different quantitative notions of trace inclusion and of strong simulation,
all filling in the gap between the unweighted and the weighted relations, which
we recall below:

Definition 10. Let ((S, s0,Γ, R), w, lg) be a WTS. A relation R ⊆ S × S is

• an unweighted simulation provided that for all (s, t) ∈ R and s α,c−−→ s′,
also t α,d−−→ t′ for some d ∈ R≥0 and (s′, t′) ∈ R,

• a (weighted) simulation provided that for all (s, t) ∈ R and s α,c−−→ s′, also
t
α,c−−→ t′ for some (s′, t′) ∈ R.

We write

• s 4u t if (s, t) ∈ R for some unweighted simulation R,

• s 4 t if (s, t) ∈ R for some weighted simulation R.

Also, we write

• s ≤u t if U(Tr(s)) ⊆ U(Tr(t)),

• s ≤ t if Tr(s) ⊆ Tr(t).
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We shall fill in the gap between unweighted and weighted relations using
(asymmetric) distance functions R : S ×S → R≥0 ∪ {∞}. Any of the distances
defined below will obey the properties given in the following definition; note
that we require them to be hemimetrics:

Definition 11. A hemimetric R : S×S → R≥0 ∪{∞} defined on the states of
a WTS ((S, s0,Γ, R), w, lg) is called

• a trace distance if s ≤ t implies R(s, t) = 0, and s 6≤u t implies R(s, t) =
∞,

• a simulation distance if s 4 t implies R(s, t) = 0, and s 64u t implies
R(s, t) =∞.

As usual, we can generalize distances between states of a single WTS to
distances between two different WTS by taking their disjoint union.

Our distance functions are essentially based on three different metrics on the
set of sequences of real numbers. Throughout the paper, these are referred to as
point-wise (1), accumulated (2), and maximum-lead (3) distances, respectively.
For sequences a = (ai), b = (bi) these are defined as follows:

d�(a, b) = sup
i

{
|ai − bi|

}
(1)

d+(a, b) =
∑
i

|ai − bi| (2)

d±(a, b) = sup
i

{∣∣∣ i∑
j=0

aj −
i∑

j=0

bj

∣∣∣} (3)

The intuition behind these metrics is that d� measures the largest individual
difference of sequence entries, d+ measures the accumulated sum of (the ab-
solute values of) the entries’ differences, and d± measures the largest lead of
one sequence over the other, i.e. the maximum difference in accumulated val-
ues. Hence the maximum-lead distance of two sequences is the same as the
point-wise distance of their partial sum sequences.

Besides the above three, other metrics on sequences of reals are also of inter-
est, and we expect that linear and branching distances of WTS based on these
other metrics can be developed similarly to the ones we introduce in this paper.

In the following we will consider discounted distances, where the contribu-
tion of each step is decreased exponentially over time. To this end, we fix a
discounting factor λ ∈ [0, 1]; as extreme cases, λ = 1 means that the future is
undiscounted, and λ = 0 means that only the present is considered.

Also, we fix a WTS (S, w, lg) with S = (S, s0,Γ, R).

4.1. Linear distances
We will now introduce our quantitative trace distances. In the following we

denote by si(σ) =
∑i
j=0 lg(σj) the accumulated lengths of labels up to the i’th

step; recall that U(σ) denotes the label sequence of a trace σ. The cost of a
label-weight pair σi = (αi, wi) is given by c(σi) = wi · lg(αi).
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Definition 12. For traces σ, σ′, the point-wise, accumulating, and maximum-
lead distances are given by |σ, σ′|� = |σ, σ′|+ = |σ, σ′|± = ∞ if U(σ) 6= U(σ′),
and for U(σ) = U(σ′),

|σ, σ′|� = sup
i

{
λsi(σ)|c(σi)− c(σ′i)|

}
|σ, σ′|+ =

∑
i

λsi(σ)|c(σi)− c(σ′i)|

|σ, σ′|± = sup
i

{
λsi(σ)

∣∣∣ i∑
j=0

c(σj)−
i∑

j=0

c(σ′j)
∣∣∣}

Observe that the above distances on traces are symmetric; they are indeed
metrics on the set of traces. This is not the case when lifted to states:

Definition 13. For states s, t ∈ S, the point-wise, accumulating and maximum-
lead trace distances are given by

|s, t|� = sup
σ∈Tr(s)

inf
σ′∈Tr(t)

|σ, σ′|� |s, t|+ = sup
σ∈Tr(s)

inf
σ′∈Tr(t)

|σ, σ′|+

|s, t|± = sup
σ∈Tr(s)

inf
σ′∈Tr(t)

|σ, σ′|±

Note that this is precisely the Hausdorff-hemimetric construction from Def-
inition 3, hence it can be generalized to other distances between traces. Also,
it is quite natural, cf. Proposition 4. It can easily be shown that the distances
defined above are indeed trace distances in the sense of Definition 11.

Example 1. To illustrate differences between the three trace distances intro-
duced above, consider the three WTS models of beverage machines depicted in
Figure 2; a Tea maker MT, a Tea and Coffee maker MTC and a Tea, Coffee and
Chocolate maker MTCC. In the figure, all edges have length 1, and edges without
specified weight have weight 0.

The production of a beverage consists of six operations: Selecting the drink,
boiling the water, mixing the beverage, outputting the finished product, self clean-
ing, and resetting. Each operation consumes a certain amount of power depend-
ing on its implementation by electrical components. Weights thus model power
consumption, and are given in such a way as that in more powerful machines,
some operations, as e.g. boiling, require more power, whereas some other, as
e.g. resetting, require less.

By design of the beverage machines, there are unweighted trace inclusions
MT ≤u MTC ≤u MTCC; any behaviour of a “lesser” machine can be emulated
qualitatively by a “better” one. What is less obvious is how they compare in
power consumption.

Noting that any infinite behaviour in the beverage machines is cyclic in loops
of width 6, we can introduce some ad-hoc notation to simplify calculations. Let
|MT,MTC|6� denote point-wise distance from MT to MTC when only traces of
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Figure 2: Three beverage machines

length at most 6 are considered, and similarly for the other machines and dis-
tances. For a (realistic) discount factor of λ = .90, the point-wise distances can
be computed as follows:

|MT,MTC|� = sup
i

{
|MT,MTC|6� · λ6i

}
= |MT,MTC|6� = 1.80

|MT,MTCC|� = sup
i

{
|MT,MTCC|6� · λ6i

}
= |MT,MTCC|6� = 1.80

|MTC,MTCC|� = sup
i

{
|MTC,MTCC|6� · λ6i

}
= |MTC,MTCC|6� = 2.70

For the accumulating distances,

|MT,MTC|+ =
∑
i

|MT,MTC|6� · λ6i = |MT,MTC|6�
1

1− λ6
≈ 2.52

|MT,MTCC|+ =
∑
i

|MT,MTCC|6� · λ6i = |MT,MTCC|6�
1

1− λ6
≈ 8.80

|MTC,MTCC|+ =
∑
i

|MTC,MTCC|6� · λ6i = |MTC,MTCC|6�
1

1− λ6
≈ 7.41

Similarly, the maximum-lead distances can be computed as follows:

|MT,MTC|± ≈ 1.62
|MT,MTCC|± ≈ 2.62
|MTC,MTCC|± ≈ 3.34

The following lemma provides recursive bounds on trace distances and will
be useful as motivation for the definition of branching distance below.
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Lemma 14. For states s, t ∈ S,

|s, t|� ≤ sup
s
α,c−−→s′

inf
t
α,d−−→t′

max
(
|c− d|lg(α), λlg(α) · |s′, t′|�

)
|s, t|+ ≤ sup

s
α,c−−→s′

inf
t
α,d−−→t′

|c− d|lg(α) + λlg(α) · |s′, t′|+

|s, t|δ± ≤ sup
s
α,c−−→s′

inf
t
α,d−−→t′

max
(
|δ|, λlg(α) · |s′, t′|

δ+(c−d)lg(α)

λlg(α)

±

)
Proof. We only show the proof for accumulated distance; the others are simi-
lar. If Tr(s) = ∅, then |s, t|+ = 0 and we are done. Otherwise, let σ ∈ Tr(s); we
need to show that

inf
σ′∈Tr(t)

|σ, σ′|+ ≤ sup
s
α,c−−→s′

inf
t
α,d−−→t′

|c− d|lg(α) + λlg(α) · |s′, t′|+

Let π be a path from s which realizes σ, write π = s
α,c−−→ s1 → . . . , and

let σ1 be the trace generated by the suffix of π starting in s1. If t 6
α−→, then the

infimum on the right hand side of the equation is ∞, and we are done. Assume
that the infimum is finite, then t α,d−−→ t′ for some d, t′.

Let ε ∈ R+ and t α,d−−→ t′ be such that

|c− d|lg(α) + λlg(α) · |s′, t′|+ ≤ inf
t
α,d−−→t′

|c− d|lg(α) + λlg(α) · |s′, t′|+ + ε
2

and let σ′1 ∈ Tr(t′) be such that |σ1, σ
′
1|+ ≤ |s′, t′|+ + ε

2lg(α) . Then

|σ, σ′|+ = |c− d|lg(α) + λlg(α) · |σ1, σ
′
1|+

≤ |c− d|lg(α) + λlg(α) · |s′, t′|+ + ε
2

≤ inf
t
α,d−−→t′

|c− d|lg(α) + λlg(α) · |s′, t′|+ + ε

The above holds for all ε ∈ R+, hence

inf
σ′∈Tr(t)

|σ, σ′|+ ≤ inf
t
α,d−−→t′

|c− d|lg(α) + λlg(α) · |s′, t′|+

and the claim follows.

4.2. Simulation distances
As usual in implementation verification, the above linear approach may not

yield a sufficient correctness criterion for certain systems; moreover, there are
some uncomputability issues with trace inclusion, see Section 6. Thus we now
introduce quantitative extensions of simulation.

In the following we use parameterized families {Rε ⊆ S × S} and {Rε,δ ⊆
S × S}, i.e. functions R≥0 → 2S×S and R≥0 ×R≥0 → 2S×S , respectively; we
shall show how these give rise to distances in Section 4.3.
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Definition 15. A family of relations R = {Rε ⊆ S × S | ε ≥ 0} is

• a point-wise simulation family provided that for all (s, t) ∈ Rε ∈ R and
s

α,c−−→ s′, also t
α,d−−→ t′ with |c − d|lg(α) ≤ ε for some d ∈ R≥0 and

(s′, t′) ∈ Rε′ ∈ R with ε′ ≤ ε
λlg(α) ,

• an accumulating simulation family provided that for all (s, t) ∈ Rε ∈ R

and s α,c−−→ s′, also t α,d−−→ t′ with |c − d|lg(α) ≤ ε for some d ∈ R≥0 and
(s′, t′) ∈ Rε′ ∈ R with ε′ ≤ ε−|c−d|lg(α)

λlg(α) .

A family of relations R = {Rε,δ ⊆ S × S | ε ≥ 0,−ε ≤ δ ≤ ε} is

• a maximum-lead simulation family provided that for all (s, t) ∈ Rε,δ ∈ R

and s α,c−−→ s′, also t α,d−−→ t′ with |δ + (c − d)lg(α)| ≤ ε for some d ∈ R≥0

and (s′, t′) ∈ Rε′,δ′ ∈ R with ε′ ≤ ε
λlg(α) and δ′ ≤ δ+(c−d)lg(α)

λlg(α) .

We write

• s 4�
ε t if (s, t) ∈ Rε ∈ R for some point-wise simulation family R,

• s 4+
ε t if (s, t) ∈ Rε ∈ R for some accumulating simulation family R,

• s 4±ε t if (s, t) ∈ Rε,0 ∈ R for some maximum-lead simulation family R.

Note that the relations defined in the last part above again can be collected
into families 4� = {4�

ε| ε ≥ 0}, 4+ = {4+
ε | ε ≥ 0}, and 4± = {4±ε | ε ≥ 0}.

Some explanatory remarks regarding these definitions will be in order. For
point-wise simulation, (s, t) ∈ Rε is to mean that any computation from s can
be matched by one from t with the same labels and a point-wise cost difference
of at most ε. Hence the requirement that s α,c−−→ s′ imply t

α,d−−→ t′ with cost
difference |c − d|lg(α) ≤ ε, and that computations from the target states s′, t′
be matched with (inverse) discounted point-wise distance ε′ = ε

λlg(α) .
For accumulated simulation, (s, t) ∈ Rε is interpreted so that any com-

putation from s can be matched by one from t with the same labels and ac-
cumulated absolute-value cost difference at most ε. Hence we again require
that |c − d|lg(α) ≤ ε, but now computations from the target states have to
be matched by what is left of ε after |c − d|lg(α) has been used (and inverse
discounting applied).

Maximum-lead simulation is slightly more complicated, because we need to
keep track of the lead δ which one computation has accomplished over the other.
Hence (s, t) ∈ Rε,δ is to mean that any computation from s which starts with
a lead of δ, can be matched by a computation from t with accumulated cost
difference at most ε. Thus we require that lead plus cost difference, δ + (c −
d)lg(α), be in-between −ε and ε, and the new lead for computations from the
target states is set to that value (again with inverse discounting applied).

For later use we collect the following easy facts about the above simulations:

Lemma 16.
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1. The families 4� , 4+ and 4± are the largest respective simulation
families.

2. For ε ≤ ε′ and Rε,Rε′ ∈ R a point-wise or accumulating simulation
family, Rε ⊆ Rε′ . For ε ≤ ε′, −ε ≤ δ ≤ ε and Rε,δ,Rε′,δ ∈ R a
maximum-lead simulation family, Rε,δ ⊆ Rε′,δ.

3. For states s, t ∈ S and ε ≤ ε′, s 4�
ε t implies s 4�

ε′ t, s 4+
ε t implies

s 4+
ε′ t, and s 4±ε t implies s 4±ε′ t.

4. For states s, t ∈ S, s 4 t implies s 4�
0 t, s 4+

0 t, and s 4±0 t.

5. For states s, t ∈ S, s 64u t implies s 64�
ε t, s 64+

ε t, and s 64±ε t for any ε.

4.3. Branching distances
We present an alternative characterization of the above simulation relations

in form of recursive equations; note that these closely resemble the inequalities
of Lemma 14:

Definition 17. For states s, t ∈ S, the point-wise, accumulated, and maximum-
lead branching distances are the respective minimal fixed points to the following
recursive equations:

os, to� = sup
s
α,c−−→s′

inf
t
α,d−−→t′

max
(
|c− d|lg(α), λlg(α) · os′, t′o�

)
os, to+ = sup

s
α,c−−→s′

inf
t
α,d−−→t′

|c− d|lg(α) + λlg(α) · os′, t′o+

os, to± = os, to0±

with os, toδ± = sup
s
α,c−−→s′

inf
t
α,d−−→t′

max
(
|δ|, λlg(α) · os′, t′o

δ+(c−d)lg(α)

λlg(α)

±

)
Again, some remarks regarding these definitions will be in order. First note

that sup and inf are taken over the complete lattice R≥0 ∪ {∞} here, whence
inf ∅ = ∞ and sup ∅ = 0. Thus os, to� = 0 in case s 6→ and os, to� = ∞ in case
s
α,c−−→ but t 6 α−→ for some α, and similarly for the other distances.
The functionals defined by the first two equations above are endofunctions

on the complete lattice of functions S×S → R≥0 ∪{∞}; they are easily shown
to be monotone, hence minimal fixed points exist. For the last equation, the
functional is an endofunction on the complete latticeR→

(
S×S → R≥0∪{∞}

)
,

mapping each lead δ ∈ R to a function o·, ·oδ±. Also this functional can be shown
to be monotone and hence to have a minimal fixed point.

It is not difficult to see that the branching distances defined above are sim-
ulation distances in the sense of Definition 11. Below we show that they are
closely related to the simulations of Definition 15:

Proposition 18. For states s, t ∈ S and ε ∈ R≥0, we have

12



• s 4�
ε t if and only if os, to� ≤ ε,

• s 4+
ε t if and only if os, to+ ≤ ε,

• s 4±ε t if and only if os, to± ≤ ε.

Proof. Each of the six implications involved can be shown using standard
structural-induction arguments.

Example 2. We show a computation of the six different distances between
states s1 and t1 in the (unlabeled) weighted transition system in Fig 3. All edges
have length 1, edges without specified weight have weight 0, and the discount
factor is λ = .90.

s1

s2

s5s4

3

511

t1

t2 t3

t4 t5

3 4

5 15

Figure 3: Example WTS

We compute trace distances first. It is easy to see that supremum trace
distance is obtained for the path from s1 which always turns left at s2, i.e. takes
the transition s2

11−→ s4, and then for the point-wise and accumulating trace
distances, that the matching trace from t1 giving infimum trace distance in turn
is obtained for the path which always takes the transition t1

4−→ t3. Hence we
can compute

|s1, t1|� = sup
i

{
max(1, 4λ) · λ3i

}
= 3.60

|s1, t1|+ =
∑
i

(1 + 4λ)λ3i ≈ 17.0

For maximum-lead trace distance the situation is more involved. It can be
shown that for this distance, an infimum trace σ′ from t1 follows the path which
takes t1

4−→ t3, followed by t1
3−→ t2 three times, and then repeats t1

4−→ t3
indefinitely. Using this trace, we obtain

|s1, t1|± = 4.60

For the branching distances, repeated application of the definition yields the

13



following fixed-point equations:

os1, t1o� = inf
{

max
(
6λ, λ3os1, t1o�

)
,max

(
10λ, λ3os1, t1o�

)}
os1, t1o+ = 1 + 10λ+ λ3os1, t1o+
os1, ttoδ± = inf

{
max

(
|δ|, |δ + 6λ|, λ3os1, ttoδλ

−3+6λ−2

± , λ3os1, ttoδλ
−3

±

)
,

max
(
|δ|, |δ − 1|, |δ − 1− 4λ|, |δ − 1− 10λ|,

λ3os1, tto(δ−1)λ−3−4λ−2

± , λ3os1, tto(δ−1)λ−3−10λ−2

±

)}
Solving these, one arrives at os1, t1o� = 5.40, os1, t1o+ ≈ 36.9, and also os1, t1o± =
5.40.

5. Properties of distances

In this section we present a number of properties of the six distances intro-
duced above.

5.1. Simulation versus trace distance
For the qualitative relations, simulation implies trace inclusion, i.e. s 4u t

implies s ≤u t, and s 4 t implies s ≤ t. Below we show a natural generalization
of this to our quantitative setting, where implications translate to inequalities;
note that an equivalent statement of the theorem is that for any ε, os, to ≤ ε
implies |s, t| ≤ ε for all three distances considered.

Theorem 19. For all states s, t ∈ S, we have

|s, t|� ≤ os, to� |s, t|+ ≤ os, to+ |s, t|± ≤ os, to±

Proof. This follows from Lemma 14 by an easy structural-induction argument.

Note that Example 2 shows that indeed, all distances in the equations above
can be finite. Other, standard examples show however that WTS exist for
which s 64 t and yet s ≤ t, hence os, to =∞ and |s, t| = 0 for all three distances,
showing the following theorem:

Theorem 20. The distances |·, ·|� and o·, ·o� are topologically inequivalent. Sim-
ilarly, |·, ·|+ and o·, ·o+, and also |·, ·|± and o·, ·o±, are topologically inequivalent.

5.2. Relationship between distances
The theorems below sum up the relationship between our three trace dis-

tances; note that the results depend heavily on whether or not discounting is
applied. The following lemma is useful and easily shown:

14



Lemma 21. For states s, t ∈ S, we have

|s, t|� ≤ |s, t|+ |s, t|± ≤ |s, t|+ |s, t|� ≤ 2|s, t|±
os, to� ≤ os, to+ os, to± ≤ os, to+ os, to� ≤ 2os, to±

The restrictions on traces mentioned below are understood to be applied to
the sets Tr(s), Tr(t) in Definition 13.

Theorem 22. Assume the discounting factor λ = 1.

1. When restricted to traces of bounded length, the three trace distances |·, ·|�,
|·, ·|+, |·, ·|± on S are Lipschitz equivalent.

2. For traces of unbounded length, the trace distances are mutually topologi-
cally inequivalent.

Proof. If the length of traces is bounded above by N ∈ N, then |s, t|+ ≤
N |s, t|� for all s, t ∈ S, and the result follows with Lemma 21.

For traces of unbounded length, topological inequivalence of |·, ·|� and |·, ·|+,
and of |·, ·|� and |·, ·|±, can be shown by the following infinite WTS:

s s1 s2

· · ·
sn

· · ·0 1
2

1
4

1
2n

Here we have |s, sn|+ = |s, sn|± = ∞ for all n, but for any δ ∈ R+ there
is an n for which |s, sn|� < δ. Similarly, topological inequivalence of |·, ·|+ and
|·, ·|± is shown by the infinite WTS below:

s s1 s2 sn

s′ s′1 s′2

· · ·

s′n

· · ·0 1
2

1
4

1
2n1 1− 1

2 1− 1
4 1− 1

2n

Theorem 23. For discounting factor λ < 1, the three trace distances |·, ·|�,
|·, ·|+, |·, ·|± on S are Lipschitz equivalent.

Proof. This is similar to the first claim of the previous theorem: For all states
s, t ∈ S, we have |s, t|+ ≤ 1

1−λ |s, t|�, and the result follows with Lemma 21.

Theorem 24. For discounting factor λ = 1, the three simulation distances
o·, ·o�, o·, ·o+, o·, ·o± on S are mutually topologically inequivalent. For λ < 1, they
are Lipschitz equivalent.

Proof. The first claim can be shown using the same example WTS as for
the second part of the proof of Theorem 22, and for the second claim we have
os, to+ ≤ 1

1−λ os, to� and can apply Lemma 21.
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6. Computability

This section present our results on computability of distances on the subset
of WTS generated by the set A of WTA.

First we provide the following easy result regarding upper bounds on dis-
tances. Recall that a timed automaton is said to be bounded if there is an upper
boundM on all its reachable clock valuations, i.e. if every reachable state (`, v)
has v(c) ≤ M for all clocks c, and that any WTA is weighted bisimilar to a
bounded WTA.

Proposition 25. Assuming the discounting factor λ < 1, upper bounds on
point-wise, accumulating, and maximum-lead trace and branching distances are
computable for bounded weighted timed automata.

Proof. If P denote the maximum edge weight, R the maximum location rate,
and M the clock bound of the WTA A under investigation, then the weight of
any transition in JAK is bounded by k = max(P,M · R). Hence the point-wise
distances, if finite, are bounded by k, and accumulating and maximum-lead
distances, if finite, are bounded by k

1−λ .

For standard (unweighted) timed automata, it is well-known that trace inclu-
sion is undecidable, but similarity is decidable. The following theorems provide
a partial generalization to our quantitative setting:

Theorem 26. For discounting factor λ < 1 and |·, ·| any of the three trace
distances, it is undecidable whether |s, t| = 0 for weighted timed automata.

Proof. By Theorem 23, we have |s, t|� = 0 if and only if |s, t|+ = 0, if and
only if |s, t|± = 0, hence it suffices to consider point-wise trace distance. By
Lemma 5, |s, t|� = 0 if and only if Tr(s) ⊆ Tr(t), where Tr(s) denotes closure in
the topology generated on Tr(s) by the point-wise distance.

Let Ā denote the closure of the WTA A under investigation as defined in [9],
then it is easy to see that Tr(s) = Tr(s)Ā, the set of traces from s in Ā. Hence
|s, t|� = 0 if and only if Tr(s)Ā ⊆ Tr(t)Ā, but by [10], language inclusion for
closed timed automata, and hence also for closed WTA, is undecidable.

Theorem 27. For discounting factor λ < 1, accumulating branching distance
from deterministic to non-deterministic weighted timed automata is computable.

The proof of this result will occupy the rest of this section and will proceed
along the following lines: We will show that from deterministic WTS to (non-
deterministic) WTS, calculating accumulating branching distance reduces from
a sup-inf computation to an inf computation, i.e. a minimization problem. For
WTA, we are then able to reduce this minimization problem to one of minimizing
accumulated (discounted) weight of infinite paths in a corresponding product
WTA, which is shown computable by results in [8].

Definition 28. The independent product U ⊗ V = (S, s0,Γ, R,w, lg) of WTS
U = (SU , sU0 ,Γ

U , RU , wU , lgU ), V = (SV , sV0 ,Γ
V , RV , wV , lgV ) is defined by
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Figure 4: Independent product (c) of WTS (a) and (b).

• S ⊆ SU × SV partitioned by SV U ] SUV with s0 = (sU0 , s
V
0 ) ∈ SUV .

• Γ = ΓU ] ΓV and R = RUV ∪RV U is constructed such that:

RUV = {(u, v) α−→ (u′, v) | u α−→ u′ ∈ RU} ⊆ SUV × Γ× SV U ,

RV U = {(u, v) α−→ (u, v′) | v α−→ v′ ∈ RV } ⊆ SV U × Γ× SUV

• w(t)

{
wU (u α−→ u′) if t = (u, v) α−→ (u′, v) ∈ RUV
wV (v α−→ v′) if t = (u, v) α−→ (u, v′) ∈ RV U

• lg(α) = lgV (α) if α ∈ ΓV and lgU (α) otherwise.

Observe that this product construction, starting with a transition from U ,
ensures that transitions alternate. That is, whenever a transition from U is
taken, it is followed by a transition from V and vice versa. Alternately, the
product may be viewed as bipartite graph or a two-player game graph. Fig. 4
illustrates the construction.

Lemma 29. For U , V WTS with U deterministic, we have oU, V o+ = min+(s0),
where s0 is the initial state of U ⊗ V and min+ is given recursively by

min+(s) = inf
{
|c− d|lg(α) + λlg(α) min+(s′)

∣∣ s α,c−−→ t
α,d−−→ s′

}
(4)
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Proof. Compared to the definition of oU, V o+, the initial sup part can be re-
moved because of determinacy of U . The resulting inf computation can then be
carried out in the independent product U ⊗ V .

By introducing a similar independent-product construction on WTA, syn-
chronized on time but not on actions, we obtain a finite product construction
lifting the semantic product to the syntactic level:

Definition 30. The independent product A ⊗ B = (L, `0, C ] {u}, I, E, r) of
WTA A = (LA, `A0 , C, IA, EA, rA), B = (LB , `B0 , C, IB , EB , rB) is defined by

• L ⊆ LA × LB, partitioned by LA ] LB with `0 = (`A0 , `
B
0 ) ∈ LA

• E =→A ∪→B ∪→TL (A-, B-, and time-locked edges) given by:

→A =
{

(p, q)
ψ,C∪{u}−−−−−−→

p
(p′, q)

∣∣ p ψ,C−−→
p

p′ ∈ E(A)} ⊆ LA × Ψ(C) × 2C ×

N× LB
}

→B =
{

(p, q)
ψ,C−−→
p

(p, q′)
∣∣ q ψ,C−−→

p
q′ ∈ E(B)} ⊆ LB×Ψ(C)×2C×N×LA

}
→TL =

{
(p, q)

tt,∅−−→
∞

(p, q)
∣∣ (p, q) ∈ L

}
• I(`, `′) =

{
IA(`) ∧ IB(`′) for (`, `′) ∈ LA
{u = 0} otherwise

• r(`, `′) = |rA(`)− rB(`′)|

Note that an extra clock u is introduced in the product WTA, in order to
make LB locations urgent. The following is clear by construction:

Lemma 31. For A, B WTA we have JA ⊗ BK = JAK ⊗ JBK.

We are now able to present the proof of Theorem 27:

Proof (of Theorem 27 (Sketch)). We need to compute min+(s0), where
s0 = (`A0 , `

B
0 , v0) is the initial state of JA ⊗ BK = JAK ⊗ JBK. It can be shown

that this amounts to solving the minimization problem for a corresponding
discounted cost function on traces of A ⊗ B, and as this cost function is concave-
regular in the sense of [8], it is computable.

7. Conclusion

We have argued above that our proposed extension of the qualitative notion
of trace inclusion and simulation to a quantitative setting is reasonable, and we
have shown some evidence that for weighted timed automata, our generaliza-
tion works as expected with respect to standard undecidability and decidability
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results. As a side note to this, we should mention that in [6] it is shown that a
variant of our maximum-lead branching distance can be approximated with ar-
bitrary precision for timed automata (without weights); whether a similar result
can be obtained for our WTA maximum-lead branching distance is open.

We should also remark that our algorithm for computing accumulated branch-
ing distance, and also the algorithm for computing maximum-lead branching
distance given in [6], are not computationally efficient. To devise feasible algo-
rithms for these kinds of calculations remains future work.

For the three types of distances considered in this work, we have seen
that trace distances can easily be introduced, whereas definition of simula-
tion distances requires more work and involves fixed-point computations. Our
Lemma 14 remedies some of these difficulties, and we expect this remedy to also
be applicable for other interesting trace distances; hence a general procedure for
obtaining simulation distances from trace distances should be available.

We have shown that all our three trace distances are topologically inequiv-
alent to their corresponding simulation distance, thus measure inherently dif-
ferent properties. Still, and analogously to the qualitative setting, simulation
distance can be used as an over-approximation of trace distance. Also, and
perhaps more surprisingly, whether different trace, or simulation, distances are
mutually equivalent depends on the usage of discounting. We expect all these
results to also hold for other kinds of trace and simulation distances.

As a side remark to this, we should note that inequivalence of hemimetrics
does not pass to subsets, hence for weighted timed automata some of the above
inequivalences might turn into equivalences. This issue is potentially important
for distance calculation algorithms and hence should be investigated.

We have mentioned earlier that in this work we concentrate on trace inclusion
and simulation (asymmetric) distances, and of course similar treatment should
be given to trace equivalence and bisimulation distances. Symmetric trace dis-
tances are easily defined as symmetrizations of the trace distances introduced
here, but for the branching distances there are subtle differences between sym-
metrized simulation distances on the one hand and bisimulation distances on
the other hand which should be analyzed in depth.

In regards to bisimulation distances, it would be appropriate to investigate
whether quantitative logical characterizations of these distances can be devel-
oped. Early results indicate that this is indeed the case, but further research
is needed. Quantitative logical characterizations are expected to be useful for
model checking and compositional reasoning about systems with quantitative
properties.
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