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Boolean world “Quantification”

Trace equivalence ≡ Linear distance dL

Bisimilarity ∼ Branching distance dB

s ∼ t implies s ≡ t dL(s, t) ≤ dB(s, t)
s |= ϕ or s 6|= ϕ JϕK(s) is a quantity
s ∼ t iff ∀ϕ : s |= ϕ⇔ t |= ϕ dB(s, t) = supϕ d

(
JϕK(s), JϕK(t)

)
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CT, UF, KGL: Quantitative analysis of weighted transition
systems. JLAP, to appear.

UF, KGL, CT: A quantitative characterization of weighted
Kripke structures in temporal logic. CAI, to appear.

UF, CT, KGL: Linear and branching distances for weighted
automata. To be written.
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Weighted automata and traces

Definition

A weighted automaton: states S , transitions T ⊆ S ×R× S

(Yes, we can deal with more general weights than R. Also: labels.)

Definition

A trace is an infinite sequence of weights.

Definition: Trace distances (values in R ∪ {∞})

point-wise accumulating

d•L(σ, τ) = supi λ
i |σi − τi | d+

L (σ, τ) =
∑

i λ
i |σi − τi |

λ ∈ [0, 1] is a fixed discounting factor.
(Yes, there are other interesting trace distances.)
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Linear distance

Linear distance between states: use Hausdorff distance:

Definition

d ·L(s, t) = sup


sup

σ∈Tr(s)
inf

τ∈Tr(t)
d ·L(σ, τ)

sup
τ∈Tr(t)

inf
σ∈Tr(s)

d ·L(σ, τ)

Lemma

d•L(s, t) ≤ sup


sup

s
x−→s′

inf
t

y−→t′
max

(
|x − y |, λd•L(s ′, t ′)

)
sup
t

y−→t′
inf

s
x−→s′

max
(
|x − y |, λd•L(s ′, t ′)

)
and similarly for d+

L
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Branching distances

Definition: Branching distances are minimal fixed points

d•B(s, t) = sup


sup

s
x−→s′

inf
t

y−→t′
max

(
|x − y |, λd•B(s ′, t ′)

)
sup
t

y−→t′
inf

s
x−→s′

max
(
|x − y |, λd•B(s ′, t ′)

)

d+
B (s, t) = sup


sup

s
x−→s′

inf
t

y−→t′
|x − y |+ λd+

B (s ′, t ′)

sup
t

y−→t′
inf

s
x−→s′
|x − y |+ λd+

B (s ′, t ′)

Theorem

d ·L(s, t) ≤ d ·B(s, t)
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Metric properties

d•L and d•B are topologically inequivalent

Likewise, d+
L and d+

B are topologically inequivalent

For λ = 1,

d•L and d+
L are topologically inequivalent

and so are d•B and d+
B

For λ < 1,

d•L and d+
L are Lipschitz equivalent

and so are d•B and d+
B

Uli Fahrenberg Claus Thrane Kim G. Larsen Linear and Branching Distances for Weighted Automata



Motivation Linear distances Branching distances Properties Logics Further work

Logical characterization

For both point-wise and accumulating branching distance, there is
an adequate logical characterization using weighted CTL (with two
different semantics).
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Where to go from here?

Other interesting distances: e.g. maximum-lead distance

d±L (σ, τ) = sup
i
λi
∣∣∣ i∑
j=0

σj −
i∑

j=0

τj
∣∣

Want corresponding branching distance X

General picture: Linear distances are easy to define, branching
distances are easy to compute

Want general framework for linear distances on K-weighted
automata (for a semiring K) and general recipy for how to go
from linear to branching distances.

(We’re almost there.)
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