
Submitted to:
QAPL 2011

c© Fahrenberg, Thrane & Larsen
This work is licensed under the Creative Commons
Attribution-Share Alike License.

Distances for Weighted Transition Systems:
Games and Properties

Uli Fahrenberg
IRISA/INRIA∗
Rennes Cedex

France
ulrich.fahrenberg@irisa.fr

Claus Thrane Kim G. Larsen
Department of Computer Science

Aalborg University
Denmark

{crt,kgl}@cs.aau.dk

We develop a general framework for reasoning about distances between transition systems with quan-
titative information. Taking as starting point an arbitrary distance on system traces, we show how
this leads to natural definitions of a linear and a branching distance on states of such a transition
system. We show that our framework generalizes and unifies a large variety of previously considered
system distances, and we develop some general properties of our distances. We also show that if the
trace distance admits a recursive characterization, then the corresponding branching distance can be
obtained as a least fixed point to a similar recursive characterization. The central tool in our work is
a theory of infinite path-building games with quantitative objectives.

1 Introduction

In verification of concurrent and reactive systems, one generally seeks to assert properties of systems
expressed in terms of sets of traces (or languages) or in terms of computation trees. The language
point of view leads to what is generally called linear semantics, whereas the tree point of view leads to
branching semantics. These semantics are the extreme points in a spectrum containing a number of other
useful notions; see [16] for an overview.

As emphasized in [20], working with applications in complex reactive systems or in embedded sys-
tems means that classical notions of linear and branching equivalence (or inclusion) of processes often
need to be extended to accommodate quantitative information. This can be in relation to real-time be-
havior, resource usage, or can be probabilistic or stochastic information. In such a quantitative setting,
equivalences and inclusions are replaced by symmetric or asymmetric distances between systems.

This approach of quantitative analysis has been taken in numerous papers by multiple authors, both
in the real-time (or hybrid), in the probabilistic, and in general quantitative settings, see [2, 3, 8–12,
15, 19, 21, 26] for a (non-exhaustive) choice of references. Indeed, the quantitative approach is also
useful in settings without quantitative information in the models, e.g. in [8] various distances related to
implementation correctness of discrete systems are considered.

The above-mentioned dichotomy between languages and trees persists in the quantitative setting,
where one hence encounters both notions of linear and of branching distances. To the best of our
knowledge, the treatment of those distances, and of the relations between them, has so far been somewhat
ad hoc. Indeed, the general approach appears to be to introduce some particular distances which are
relevant for a particular application and then show some useful properties; in this paper, we try to unify
and generalize some of these approaches.

∗Most of this work was conducted while this author was still at Aalborg University.

http://creativecommons.org
http://creativecommons.org/licenses/by-sa/3.0/

2 Distances for Weighted Transition Systems

The present paper is in a sense a follow-up to previous papers [12, 26] by the same authors. In
those papers, we introduce and investigate three different linear and branching distances. A paper similar
in spirit to these is [2], which analyses properties of what we later will call the point-wise distance for
weighted Kripke structures. The starting point for the present paper is then the observation of similarities
between the constructions for different types of distances, which we here generalize to encompass all of
them and to construct a coherent framework.

In this paper, we take the view that in practical applications, say in reactive systems, the system dis-
tance which measures adherence to the property which we want to verify, will be specific to the concrete
domain of the application. Hence in a general framework like the one proposed here, its description
must be given as an input. A method to obtain the actual system distances, for some desired level of
interaction, is then prescribed by the framework.

In this paper we assume that this system distance input is given as a distance on traces: Given two
sequences of executions, one needs only to define what it means for these sequences to be closely related
to each other. We show that such a trace distance always gives rise to natural notions both of linear and
of branching distance.

To relate linear and branching distances, we introduce a general notion of simulation game with
quantitative objectives. The idea of using games for linear and branching equivalences is not new [24]
and has been used in a quantitative setting e.g. in [9,11], but here we explore this idea in its full generality.

One interesting result which we can show in our general framework is that for all interesting trace
distances, the corresponding linear and branching distance are topologically inequivalent. From an ap-
plication point of view this means that corresponding linear and branching distances (essentially) always
measure very different things and that results about one of them cannot generally be transferred to the
other. This result – and indeed also its proof – is a generalization of the well-known fact that language
inclusion does not imply simulation to a quantitative setting.

We also show that for the common special case that the trace distance has a recursive characteri-
zation, the associated branching distance can be obtained as a least fixed point to a similar recursive
characterization. This is again a generalization of some standard facts about simulation, but shows that
for a large class of branching distances, characterizations as least fixed points are available.

Acknowledgment

The authors acknowledge interesting and fruitful discussions on the topic of this work with Tom Hen-
zinger, Pavol Černý and Arjun Radhakrishna of IST Austria.

2 From Trace Distances to System Distances

Our object of study in this work are generalK-weighted transition systems (to be defined below), where
K is some set of weights. For applications, K may be further specified and admit some extra structure,
but below we just assumeK to be some finite or infinite set.

Definition 1. A trace is an infinite sequence
(
σ j
)∞

j=0 of elements in K. The set of all such traces is
denotedKω .

Note that we confine our study to infinite traces; this is mostly for convenience, to avoid issues with
finite traces of different length. All our results are valid when also finite traces are allowed and the
definitions changed accordingly. We write σ j for the jth element in a trace σ , and σ j for the trace
obtained from σ by deleting elements σ0 up to σ j−1.

Fahrenberg, Thrane & Larsen 3

Definition 2. AK-weighted transition system (WTS) is a pair A= (S,T) of sets S,T with T ⊆ S×K×S.

We use the familiar notation s x−→ s′ to indicate that (s,x,s′) ∈ T . Note that S and T may indeed be
infinite, also infinite branching. For simplicity’s sake we shall follow the common assumption that all
our WTS are non-blocking, i.e. that for any state s ∈ S there is a transition s x−→ s′ in T .

A path from s0 ∈ S in a WTS (S,T) is an infinite sequence
(
s j

x j−→ s j+1
)∞

j=0 of transitions in T .
The set of such is denoted Pa(s0). We will in some places also need finite paths, i.e. finite sequences(
s j

x j−→ s j+1
)n

j=0 of transitions; the set of finite paths from s0 is denoted fPa(s0). For a finite path π as
above, we let len(π) = n denote its length and last(π) = sn+1 its last state. We write π j = s j for the
(j+1)th state and tr(π) j for the (j+1)th weight in a finite or infinite path.

A path π =
(
s j

x j−→ s j+1
)∞

j=0 gives rise to a trace tr(π) =
(
x j
)∞

j=0. The set of (infinite) traces from
s0 ∈ S is denoted Tr(s0) =

{
tr(π)

∣∣ π ∈ Pa(s0)
}

.

2.1 Interlude: Hemimetrics

Before we proceed, we recall some of the notions regarding asymmetric metrics which we will be using.
First, a hemimetric on a set X is a function d : X ×X → [0,∞] which satisfies d(x,x) = 0 for all x ∈ X
and the triangle inequality d(x,y)+d(y,z)≥ d(x,z) for all x,y,z ∈ X .

We will have reason to consider two different notions of equivalence of hemimetrics. Two hemimet-
rics d1, d2 on X are said to be Lipschitz equivalent if there are constants m,M ∈R such that

md1(x,y)≤ d2(x,y)≤M d1(x,y)

for all x,y ∈ X . Lipschitz equivalent hemimetrics are hence dependent on each other; intuitively, a
property using one hemimetric can always be approximated using the other.

Another, weaker, notion of equivalence of hemimetrics is the following: Two hemimetrics d1, d2 on
X are said to be topologically equivalent if the topologies on X generated by the open balls Bi(x;r) =
{y ∈ X | di(x,y) < r}, for i = 1,2, x ∈ X , and r > 0, coincide. Topological equivalence hence preserves
topological notions such as convergence of sequences: If a sequence (x j) of points in X converges in one
hemimetric, then it also converges in the other.

It is a standard fact that Lipschitz equivalence implies topological equivalence. From an application
point-of-view, topological equivalence is interesting for showing negative results; proving that two hemi-
metrics are not topologically equivalent can be comparatively easy, and implies that intuitively, the two
hemimetrics measure very different properties.

2.2 Examples of Trace Distances

The framework we are proposing in this article takes as starting point a trace distance defined on execu-
tions of a weighted automaton, i.e. a hemimetric dT :Kω ×Kω → [0,∞]. In this section we introduce
a number of different such trace distances, to show that the framework is applicable to a variety of
interesting examples.

Discrete trace distances. The discrete trace distance on Kω is defined by dT (σ ,τ) = 0 if σ = τ and
dT (σ ,τ) = ∞ otherwise. Hence only equality or inequality of traces is measured; we shall see below that
this distance exactly recovers the usual Boolean framework of trace inclusion and simulation.

4 Distances for Weighted Transition Systems

If K comes equipped with a preorder v ⊆K×K indicating that a label x ∈K may be replaced by
any y∈Kwith xv y, as e.g. in [25], then we may refine the above distance by instead letting dT (σ ,τ)= 0
if σ j v τ j for all j and dT (σ ,τ) = ∞ otherwise. We will see later that using this trace distance, we exactly
recover the extended simulation of [25]; note that something similar is done in [22].

Hamming distance. If one defines a metric d on K by d(x,y) = 0 if x = y and d(x,y) = 1 otherwise,
then the sum ∑ j d(σ j,τ j) for any pair of finite traces σ , τ of equal length is precisely the well-known
Hamming distance [18]. For infinite traces, some technique can be used for providing finite values for
infinite sums; two such techniques are to use limit average or discounting. We can hence define the
limit-average Hamming distance by dT (σ ,τ) = liminf j→∞

1
j ∑ j d(σ j,τ j), and for a fixed discounting

factor 0≤ λ < 1, the discounted Hamming distance by dT (σ ,τ) = ∑ j λ jd(σ j,τ j).
Note that this approach can easily be generalized to other (hemi)metrics d onK; indeed the discrete

trace distances from above can be recovered using d(x,y) = 0 if xv y and d(x,y) = ∞ otherwise.

Labeled weighted transition systems. A common example of weighted systems [6–9, 26] has K =
Σ×R where Σ is a discrete set of labels. Hence x = (x`,xw) ∈ K has x` ∈ Σ as discrete component
and xw ∈ R as real weight. A useful trace distance for this type of systems is the point-wise distance,
see [2, 26], given by dT (σ ,τ) = sup j |σw

j − τw
j | if σ `

j = τ`
j for all j and dT (σ ,τ) = ∞ otherwise. This

measures the biggest individual difference between σ and τ .
Another interesting trace distance in this setting is the accumulated distance [26], where individual

differences in weights are added up. Again one can use limit average or discounting for infinite sums;
limit-average accumulating distance is defined by

dT (σ ,τ) =

liminf
j→∞

1
j ∑ j |σw

j − τw
j | if σ `

j = τ`
j for all j

∞ otherwise

and discounted accumulating distance, for a fixed λ < 1, by

dT (σ ,τ) =

{
∑ j λ j|σw

j − τw
j | if σ `

j = τ`
j for all j

∞ otherwise

This is indeed a generalization of the Hamming distance above, setting d
(
(x,w),(y,v)

)
= |w−v| if x = y

and d
(
(x,w),(y,v)

)
= ∞ otherwise.

Also of interest is the maximum-lead distance from [19], where the individual weights are added up
and one is concerned with the maximal difference between the accumulated weights. The definition is

dT (σ ,τ) =

{
sup j

∣∣∑ j
i=0 σw

i −∑
j
i=0 τw

i

∣∣ if σ `
j = τ`

j for all j
∞ otherwise

2.3 Simulation Games

In this central section we introduce the game which we will use to define both the linear and the branching
distances. We shall use some standard terminology and constructions from game theory here; for a good
introduction to the subject see e.g. [13].

Fahrenberg, Thrane & Larsen 5

Let A = (S,T) be a weighted transition system with s, t ∈ S and dT : Kω ×Kω → [0,∞] a trace
distance. Using A as a game graph, the simulation game played on A from (s, t) is an infinite turn-
based two-player game, where we denote the strategy space of Player i by Θi and the utility function of
Player 1 by u : Θ1×Θ2→ [0,∞]. As usual u determines the pay-off of Player 1; we will not use pay-offs
for Player 2 here.

The game moves along transitions in A while building a pair of paths extending from s and t, accord-
ing to the strategies of the players. In the terminology of [5, 14] we are playing a partisan path-forming
game.

A configuration of the game is a pair of finite paths (π1,π2) ∈ fPa(s)× fPa(t) (i.e. the history) which
are consecutively updated by the players as the game progresses. The players must play according to a
strategy of the following types:

• Θ1 = T fPa(s)×fPa(t), the set of mappings from pairs of finite paths to transitions, with the additional
requirement that for all θ1 ∈ Θ1 and (π1,π2) ∈ fPa(s)× fPa(t), θ1(π1,π2) = (last(π1),x,s′) for
some x∈K, s′ ∈ S. This is the set of Player-1 strategies which observe the complete configuration.

• Similarly, Θ2 = T fPa(s)×fPa(t) with the additional requirement that for all θ2 ∈ Θ2 and (π1,π2) ∈
fPa(s)× fPa(t), θ2(π1,π2) = (last(π2),y, t ′) for some y ∈K, t ′ ∈ S.

• Θ̃1 = T fPa(s), the set of blind Player-1 strategies which cannot observe the moves of Player 2.
(Blind Player-2 strategies can be defined similarly, but we will not need those here.) It is convenient
to identify Θ̃1 with the subset of Θ1 of all strategies θ1 which satisfy θ1(π1,π2) = θ1(π1,π

′
2) for

all π1 ∈ fPa(s), π2,π
′
2 ∈ fPa(t).

• In the proof of Proposition 4 we will also need Player-2 strategies with additional memory. Such
a strategy is a mapping fPa(s)× fPa(t)×M→ T ×M, where M is a set used as memory.

Given a game with configuration (π1,π2), a round is played, according to a strategy profile (i.e. a
pair of strategies) (θ1,θ2)∈Θ1×Θ2, by first updating π1 according to θ1 and then updating the resulting
configuration according to θ2. Hence we define

Round(θ1,θ2)(π1,π2) =
(
π1 ·θ1(π1,π2),π2 ·θ2(π1 ·θ1(π1,π2),π2)

)
where · denotes sequence concatenation.

A strategy profile (θ1,θ2) ∈ Θ1×Θ2 inductively determines an infinite sequence
(
(π j

1 ,π
j

2)
)∞

j=0 of
configurations given by (π0

1 ,π
0
2) = (s, t) and (π j

1 ,π
j

2) = Round(θ1,θ2)(π
j−1

1 ,π j−1
2) for j ≥ 1. The paths

in this sequence satisfy π
j

i v π
j+1

i , where v denotes prefix ordering, hence the limits π1(θ1,θ2) =

lim j→∞ π
j

1 ∈ Pa(s), π2(θ1,θ2) = lim j→∞ π
j

2 ∈ Pa(t) exist (as infinite paths). We define the utility function
u as

u(θ1,θ2) = dT
(

tr(π1(θ1,θ2)), tr(π2(θ1,θ2))
)

This determines the pay-off to Player 1 when the game is played according to strategies θ1, θ2. Note
again that the utility function for Player 2 is left undefined; especially we make no claim as to the game
being zero-sum.

The value of game on A from (s, t) is defined to be the optimal Player-1 pay-off

v(s, t) = sup
θ1∈Θ1

inf
θ2∈Θ2

u(θ1,θ2)

Observe that the game is asymmetric; in general, v(s, t) 6= v(t,s).

6 Distances for Weighted Transition Systems

A strategy θ̂1 for Player 1 is said to be optimal if it realizes the supremum above, i.e. whenever
infθ2∈Θ2 u(θ̂1,θ2) = supθ1∈Θ1

infθ2∈Θ2 u(θ1,θ2). The strategy is called ε-optimal for some ε > 0 provided
that infθ2∈Θ2 u(θ̂1,θ2) ≥ supθ1∈Θ1

infθ2∈Θ2 u(θ1,θ2)− ε . Note that ε-optimal strategies always exist for
any ε > 0, whereas optimal strategies may not.

We also recall that the game is said to be determined if the sup and inf above can be interchanged,
i.e. if v(s, t) = infθ2∈Θ2 supθ1∈Θ1

u(θ1,θ2). Intuitively, the game is determined if there also exist ε-optimal
Player-2 strategies for any ε > 0 which realize the value of the game (up to ε) independent of the strategy
Player 1 might choose.

The 1-blind value of the game is defined to be

ṽ(s, t) = sup
θ1∈Θ̃1

inf
θ2∈Θ2

u(θ1,θ2)

2.4 Example: Discrete Trace Distance

It may be instructive to apply the above simulation game in the context of the discrete trace distance
dT (σ ,τ) = 0 if σ = τ , dT (σ ,τ) = ∞ otherwise, from Section 2.2. In this case, the game has value
v(s, t) = 0 if and only if, for every θ1 ∈ Θ1 there exist a θ2 ∈ Θ2 which in each round i≥ 0 of the game,
in configuration (π i

1,π
i
2), maps θ2(π

i
1,π

i
2) = (last(π i

2),x, ti+1) whenever θ1(π
i
1,π

i
2) = (last(π i

1),x,si+1).
Otherwise, v(s, t) = ∞.

Hence we have v(s, t) = 0 if t simulates s in the sense of [23], and v(s, t) = ∞ otherwise. In other
words, for discrete trace distance the game reduces to the standard simulation game of [24].

Likewise, the blind value ṽ(s, t) = 0 if and only if every θ1 ∈ Θ̃1 and corresponding path π1 has
a match θ2 ∈ Θ2 where configuration (π i

1,π
i
2), of round i ≥ 0 facilitates θ2(π

i
1,π

i
2) = (last(π i

2),x, ti+1)
whenever θ1(π

i
1,π

i
2) = (last(π i

1),x,si+1). Hence ṽ(s, t) = 0 if Tr(s) ⊆ Tr(t); we recover standard trace
inclusion.

2.5 Linear and Branching Distance

We can now use the game introduced in Section 2.3 to define linear and branching distance:
Definition 3. Let A = (S,T) be a WTS and s, t ∈ S.
• The linear distance from s to t is the 1-blind value dL(s, t) = ṽ(s, t).

• The branching distance from s to t is the value dB(s, t) = v(s, t).

We proceed to show that the distances so defined are hemimetrics on S, cf. the proof of Theorem 1
in [8]. For linear distance, this also follows from Theorem 6 below, and we only include the proof for
reasons of exposition. For branching distance, we have to assume in the proof below that the simulation
game is determined; currently we do not know whether this assumption can be lifted.
Proposition 4. Linear distance dL is a hemimetric on S, and if the simulation game is determined, so is
dB.

Proof. Non-negativity of dL and dB follow directly from the non-negativity of dT . To prove that dL(s,s)=
dB(s,s) = 0 for all s∈ S, given any strategy θ1 ∈Θ1, we construct a Player-2 strategy θ2 ∈Θ2 that mimics
θ1 and attains the game value of 0, as follows:

θ2(π
′,π) =

{
θ1(π,π) if π ′ = π ·θ1(π,π)

(last(π),y,s′) for some (last(π),y,s′) ∈ T otherwise

Fahrenberg, Thrane & Larsen 7

s1

θ
1,3
1

θ
1,2
1

s2

θ
1,2
2 θ

2,3
1

s3

θ
1,3
2

θ
2,3
2

Figure 1: Construction of strategies in the proof of Proposition 4

It can be seen easily that the paths constructed by both players are the same, i.e. u(π1,π2) = dT (τ,τ) for
some τ ∈ Pa(s0). Therefore, u(π1,π2) = 0 as dT is a hemimetric, whence dL(s,s) = dB(s,s) = 0.

We are left with showing that dL and dB obey the triangle inequality. For linear distance, let s1,s2,s3 ∈
S and write Θ

i, j
k (Θ̃i, j

k) for the set of (blind) Player-k strategies in the simulation game computing dL(si,s j),
for i, j ∈ {1,2,3} and k ∈ {1,2}. Let ε > 0. It might be beneficial to look at Figure 1 to see the “chase
of strategies” we will be conducting.

Choose a blind Player-1 strategy θ
1,3
1 ∈ Θ̃

1,3
1 . Blind strategies correspond to choosing a path, so

let π1 ∈ Pa(s1) be the path chosen by θ
1,3
1 . This path in turn corresponds to a blind Player-1 strategy

θ
1,2
1 ∈ Θ̃

1,2
1 .

Let θ
1,2
2 ∈ Θ

1,2
2 be a Player-2 strategy for which u(θ 1,2

1 ,θ 1,2
2)< dL(s1,s2)+

ε

2 . Write π2 ∈ Pa(s2) for
the path constructed by the strategy profile (θ 1,2

1 ,θ 1,2
2), and let θ

2,3
1 ∈ Θ̃

2,3
1 be a blind Player-1 strategy

which constructs π2.
Let θ

2,3
2 ∈ Θ

2,3
2 ensure u(θ 2,3

1 ,θ 2,3
2) < dL(s2,s3)+

ε

2 . Write π3 ∈ Pa(s3) for the path constructed by
the strategy profile (θ 2,3

1 ,θ 2,3
2), and let θ

1,3
2 ∈ Θ

1,3
2 be a strategy which constructs π3. For the strategy

profile (θ 1,3
1 ,θ 1,3

2) in G1,3, the paths constructed are π1 ∈ Pa(s1) and π3 ∈ Pa(s3). Hence we have

inf
θ2∈Θ

1,3
2

u(θ 1,3
1 ,θ2)≤ u(θ 1,3

1 ,θ 1,3
2) = dT (π1,π3)

≤ dT (π1,π2)+dT (π2,π3)

= u(θ 1,2
1 ,θ 1,2

2)+u(θ 2,3
1 ,θ 2,3

2)

≤ dL(s1,s2)+dL(s2,s3)+ ε

(1)

As θ
1,3
1 ∈ Θ̃

1,3
1 was chosen arbitrarily, we have

sup
θ1∈Θ̃

1,3
1

inf
θ2∈Θ

1,3
2

u(θ1,θ2)≤ dL(s1,s2)+dL(s2,s3)+ ε

and as also ε was chosen arbitrarily, dL(s1,s3)≤ dL(s1,s2)+dL(s2,s3).

For branching distance, we cannot construct the paths in a one-shot manner as above, as the tran-
sitions chosen by Player 1 may depend on the history of the play. Let again ε > 0; assuming that the
simulation game is determined, we can choose Player-2 strategies θ

1,2
2 ∈ Θ

1,2
2 , θ

2,3
2 ∈ Θ

2,3
2 for which

sup
θ1∈Θ

1,2
1

u(θ1,θ
1,2
2)< dB(s1,s2)+

ε

2 and sup
θ1∈Θ

2,3
1

u(θ1,θ
2,3
2)< dB(s2,s3)+

ε

2 . Intuitively, we will use
these strategies to allow Player 2 to find replying moves to Player-1 moves in the game computing

8 Distances for Weighted Transition Systems

dB(s1,s2) by using the reply given by θ
2,3
2 to the reply given by θ

1,2
2 . Hence we still follow the proof

strategy depicted in Figure 1, but now for individual moves.
The strategy θ

1,3
2 uses a finite path m = π2 ∈ fPa(s2) as memory and is defined by

θ
1,3
2 (π1,π3)(π2) = θ

2,3
2

(
π2 ·θ 1,2

2 (π1,π2),π3
)

with memory update m(π1,π3)(π2) = π2 ·θ 1,2
2 (π1,π2). The initial memory for θ

1,3
2 is set to be the empty

path, hence as the game progresses, a path π2 ∈ Pa(s2) is constructed.
Now choose some θ

1,3
1 ∈ Θ

1,3
1 , and let π1 ∈ Pa(s1) and π3 ∈ Pa(s3) be the paths constructed by the

strategy profile (θ 1,3
1 ,θ 1,3

2). If π2 ∈ Pa(s2) is the corresponding memory path, then the pair (π1,π2) is
constructed by the strategy profile (θ 1,3

1 ,θ 1,2
2) and the pair (π2,π3) by the profile (θ 1,2

2 ,θ 2,3
2). Hence we

can use the exact same reasoning as in (1) to conclude that

inf
θ2∈Θ

1,3
2

u(θ 1,3
1 ,θ2)≤ dB(s1,s2)+dB(s2,s3)+ ε

and hence dB(s1,s3)≤ dB(s1,s2)+dB(s2,s3).

2.6 Properties

The following general result confirms that, regardless of the trace distance chosen, the linear distance
is always bounded above by the branching distance. In the context of the discrete trace distance from
Section 2.2, this specializes to the well-known fact that simulation implies language inclusion.

Theorem 5. For any s, t ∈ S, we have dL(s, t)≤ dB(s, t).

Proof. Any Player-1 strategy in Θ̃1 is also in Θ1, hence

sup
θ1∈Θ̃1

inf
θ2∈Θ2

u(θ1,θ2)≤ sup
θ1∈Θ1

inf
θ2∈Θ2

u(θ1,θ2)

The game definition of linear distance yields the following explicit formula. Note the resemblance
of this to the well-known Hausdorff construction for lifting a metric on a set to its set of subsets.

Theorem 6. For all s, t ∈ S we have

dL(s, t) = sup
σ∈Tr(s)

inf
τ∈Tr(t)

dT (σ ,τ)

Proof. The definition of ṽ(s, t) immediately entails the fact that for any π1 ∈ Pa(s) there exists π2 ∈ Pa(t)
such that dT (tr(π1), tr(π2)) ≤ ṽ(s, t). It remains to show that ṽ(s, t) ≤ supσ∈Tr(s) infτ∈Tr(t) dT (σ ,τ). By
blindness, any θ1 ∈ Θ̃1 produces a unique path π1 ∈ Pa(s) independent of the opponent strategy θ2 ∈Θ2.
Hence we need only consider strategies θ2 which define a single path π2 from t, and the result follows.

We finish this section by exposing two properties regarding equivalence of the introduced hemimet-
rics. Transferring (in)equivalence of distances from one setting to another is an important subject, and
we hope to show other results of the below kind, especially relating trace distance to branching distance,
in future work.

Proposition 7 (cf. [4, Thm. 3.87]). If trace distances d1
T and d2

T are Lipschitz equivalent, then the cor-
responding linear distances d1

L and d2
L are topologically equivalent.

Fahrenberg, Thrane & Larsen 9

s

σ0 = τ0

τ1σ1

σ2 τ2

t
σ0 τ0

τ1σ1

σ2 τ2

Figure 2: Weighted transition system for the proof of Proposition 9

Proof. This follows immediately from Theorem 6 and Theorem 3.87 in [4]. Note that the theorem in [4]
actually is stronger; it is enough to assume d1

T and d2
T to be uniformly equivalent.

The next theorem shows that if a trace distance can be used for measuring trace differences beyond
the first symbol (which will be the case except for some especially trivial trace distances), then the cor-
responding linear and branching distances are topologically inequivalent. The proof is an easy adaption
of the standard argument for the fact that language inclusion does not imply simulation.

Definition 8. A trace distance dT : Kω ×Kω is said to be one-step indiscriminate if σ0 = τ0 implies
dT (σ ,τ) = 0 for all σ ,τ ∈Kω .

Proposition 9. If dT is not one-step indiscriminate, then there exists a weighted transition system A on
which the corresponding distances dL and dB are topologically inequivalent.

Proof. Let σ ,τ ∈Kω such that σ0 = τ0, dT (σ ,τ)> 0, and dT (τ,σ)> 0. A is depicted in Figure 2.
We have Tr(s) =Tr(t), hence dL(s, t) = 0. On the other hand, dB(s, t) =min

(
dT (σ ,τ),dT (τ,σ)

)
> 0.

As two equivalent hemimetrics have value 0 at the same set of pairs of points, this finishes the proof.

Also note that if σ and τ are cyclic, the construction can be adapted to yield a finite WTS A.

3 Recursively Defined Distances

The game definition of branching distance in Definition 3 gives a useful framework, but it is not very
operational. In this section we show that if the given trace distance has a recursive characterization,
then the corresponding branching distance can be obtained as the least fixed point of a similar recursive
formula.

We give the fixed-point theorem first and show in Section 3.1 below that the theorem covers all
examples of distances introduced earlier.

Theorem 10. Let L be a complete lattice and f :Kω×Kω → L, g : L→ [0,∞], F :K×K×L→ L such
that dT = g◦ f , g is monotone, F(x,y, ·) : L→ L is monotone for all x,y ∈K, and

f (σ ,τ) = F
(
σ0,τ0, f (σ1,τ1)

)
(2)

10 Distances for Weighted Transition Systems

for all σ ,τ ∈Kω . Define I : LS×S→ LS×S by

I(h)(s, t) = sup
s

x−→s′
inf

t
y−→t ′

F
(
x,y,h(s′, t ′)

)
Then I has a least fixed point h∗ : S×S→ L, and dB = g◦h∗.

Let us give some intuition about the theorem before we prove it. Note first the composition dT =
g ◦ f , where f maps pairs of traces to the lattice L which will act as memory in the applications below.
Equation (2) then expresses that F acts as a distance iterator function which, within the lattice domain,
computes the trace distance by looking at the first elements in the traces and then iterating over the rest
of the trace. Under the premises of the theorem then, branching distance is the projection by g of the
least fixed of a similar recursive function involving F .
Proof. It is not difficult to show that I indeed has a least fixed point: The lattice LS×S with partial order
defined point-wise by h1 ≤ h2 iff h1(s, t)≤ h2(s, t) for all s, t ∈ S is complete, and I is monotone because
of the monotonicity condition on F , hence Tarski’s Fixed-point Theorem can be applied.

To show that dB = g ◦ h∗, we pull back dB along g: With the notation for the simulation game from
Section 2.3, define

fB(s, t) = sup
θ1∈Θ1

inf
θ2∈Θ2

f
(

tr(π1(θ1,θ2)), tr(π2(θ1,θ2))
)

We have dB = g◦ fB by monotonicity of g, so it will suffice to show that fB = h∗.
Let us first prove that fB is a fixed point for I: Let s, t ∈ S, then

I(fB)(s, t) = sup
s

x−→s′
inf

t
y−→t ′

F
(
x,y, fB(s′, t ′)

)
= sup

s
x−→s′

inf
t

y−→t ′
F
(
x,y, sup

θ ′1∈Θ′1

inf
θ ′2∈Θ′2

f (tr(π1(θ
′
1,θ
′
2)), tr(π2(θ

′
1,θ
′
2)))
)

= sup
s

x−→s′
inf

t
y−→t ′

sup
θ ′1∈Θ′1

inf
θ ′2∈Θ′2

F
(
x,y, f (tr(π1(θ

′
1,θ
′
2)), tr(π2(θ

′
1,θ
′
2)))
)

(the last step by the monotonicity assumption on F ; note that in the second sup-inf pair, strategies from
s′ and t ′ are considered). By the recursion formula (2) for F , we end up with

I(fB)(s, t) = sup
s

x−→s′
inf

t
y−→t ′

sup
θ ′1∈Θ′1

inf
θ ′2∈Θ′2

f (x · tr(π1(θ
′
1,θ
′
2)),y · tr(π2(θ

′
1,θ
′
2)))

Now because of independence of choices, we can rewrite this to

I(fB)(s, t) = sup
s

x−→s′
sup

θ ′1∈Θ′1

inf
t

y−→t ′
inf

θ ′2∈Θ′2

f (x · tr(π1(θ
′
1,θ
′
2)),y · tr(π2(θ

′
1,θ
′
2)))

and collapsing the sup-sup and inf-inf into one sup and inf, respectively, conclude I(fB) = fB.
To show that fB is the least fixed point for I, let h̄ : S×S→ L such that I(h̄) = h̄; we want to prove

fB ≤ h̄. Note first that for all s, t ∈ S and all s x−→ s′, there is t
y−→ t ′ such that F(x,y, h̄(s′, t ′)) ≤ I(h̄)(s, t).

Now fix s, t ∈ S and let θ1 ∈ Θ1; we will be done once we can construct a Player-2 strategy θ2 ∈ Θ2 for
which f (tr(π1(θ1,θ2)), tr(π2(θ1,θ2)))≤ h̄(s, t).

We have to define θ2 for configurations (π ′1,π2) ∈ fPa(s)× fPa(t) in which π ′1 = π1 · (s j,x,s j+1) and
len(π1) = len(π2). Write last(π2) = t j; by the note above, we can choose a transition t j

y−→ t j+1 for which
F(x,y, h̄(s′, t ′))≤ I(h̄)(s, t), so we let θ2(π

′
1,π2) = (t j,y, t j+1). The so-defined strategy has

f (tr(π1(θ1,θ2)), tr(π2(θ1,θ2)))≤ sup
s

x−→s′
inf

t
y−→t ′

F(x,y, h̄(s′, t ′)) = h̄(s, t)

Fahrenberg, Thrane & Larsen 11

3.1 Applications

We reconsider here the example trace distances from Section 2.2 and exhibit the corresponding linear
and branching distances.

Discrete trace distances. For the discrete trace distance on Kω given by dT (σ ,τ) = 0 if σ = τ and
dT (σ ,τ) = ∞ otherwise, we saw already in Section 2.4 that we recover ordinary trace inclusion and
simulation. For linear distance, we can also use Theorem 6 to show that dL(s, t) = 0 if Tr(s)⊆ Tr(t) and
dL(s, t) = ∞ otherwise.

For the branching distance, we can now also apply Theorem 10 with L = [0,∞], g the identity map-
ping, and F(x,y,z) = z if x = y, F(x,y,z) = ∞ otherwise. Then the branching distance is the least fixed
point of the equations dB(s, t) = sup

s
x−→s′

inf
t

x−→t ′
dB(s′, t ′), hence dB(s, t) = 0 if t simulates s in the stan-

dard sense [23], and dB(s, t) = ∞ otherwise.
For the refined discrete trace distance dT (σ ,τ) = 0 if σ j v τ j for all j, dT (σ ,τ) = ∞ otherwise,

we analogously get dL(s, t) = 0 if all σ ∈ Tr(s) can be refined by a τ ∈ Tr(t) (i.e. σ j v τ j for all j) and
dL(s, t) = ∞ otherwise. Also, dB(s, t) = 0 if there is a relation R⊆ S×S for which (s, t)∈ R and whenever
(s′, t ′) ∈ R and s′ x−→ s′′, then also t ′

y−→ t ′′ with x v y and (s′′, t ′′) ∈ R (the extended simulation of [25]),
and dB(s, t) = ∞ otherwise.

Hamming distance. For Hamming distance induced by the metric d(x,y) = 0 if x = y and d(x,y) =
1 otherwise on K, linear distance is given by dL(s, t) ≤ k if and only if any trace σ ∈ Tr(s) can be
matched by a trace τ ∈ Tr(t) with Hamming distance at most k, both for the limit-average and the
discounting interpretation. The branching distance associated with the discounting version is precisely
the (discounted) correctness distance of [8]: dB(s, t) measures “how often [the system starting in s2] can
be forced to cheat”, i.e. to take a transition different from the one the system starting in s1 takes.

Labeled weighted transition systems. For the trace distances on labeled weighted transition systems,
let us for simplicity assume that |Σ| = 1, hence K = R. For the point-wise trace distance dT (σ ,τ) =
sup j |σ j− τ j| we can derive a recursive formula for the corresponding branching distance by applying
Theorem 10 with L = [0,∞], g the identity mapping, and F(x,y,z) = max

(
|x−y|,z). Then dB is the least

fixed point to the equations

dB(s, t) = sup
s

x−→s′
inf

t
y−→t ′

max
(
|x− y|,dB(s′, t ′)

)
For discounted accumulated trace distance dT (σ ,τ) =∑ j λ j|σ j−τ j|, we can similarly let F(x,y,z) =

|x− y|+λ z, then the corresponding branching distance is the least fixed point to the equations

dB(s, t) = sup
s

x−→s′
inf

t
y−→t ′
|x− y|+λdB(s′, t ′)

Note that these two branching distances are exactly the ones the authors define in [26].
For the maximum-lead distance dT (σ ,τ) = sup j

∣∣∑ j
i=0 σi−∑

j
i=0 τi

∣∣, we need to do more work. In-
tuitively, a recursive formulation needs to keep track of the accumulated delay, hence needs (infinite)
memory. This can be accomplished by letting L = [0,∞][−∞,∞]; the set of functions from leads to dis-

12 Distances for Weighted Transition Systems

tances. We can then define

f (σ ,τ)(δ) = max
(
|δ |, ∞

sup
j=0
|δ +

j

∑
i=0

σ j−
j

∑
i=0

τ j|
)

and g(h) = h(0). Now with F(x,y,h)(δ) = max
(
|δ +x−y|,h(δ +x−y)

)
, we indeed have that f (σ ,τ) =

F
(
σ0,τ0, f (σ1,τ1)

)
, hence we can apply Theorem 10 to conclude that dB(s, t) = h∗(s, t)(0), where h∗ is

the least fixed point to the equations

h(s, t)(δ) = sup
s

x−→s′
inf

t
y−→t ′

max
(
|δ + x− y|,h(s′, t ′)(δ + x− y)

)
This is precisely the formulation of branching maximum-lead distance given in [19].

4 Conclusion and Future Work

We have shown that simulation games with quantitative objectives provide a general framework for
studying linear and branching distances for quantitative systems. Specifically, that our framework covers
and unifies a number of previously distinct approaches, and that certain common special cases lead to
useful recursive characterizations of branching distance.

Already we have seen that one very general property, topological inequivalence of linear and branch-
ing distance, follows almost immediately from the game characterization. Also this general approach
permits the conclusion that independent of the trace distance, the branching distance provides an upper
bound on the linear distance, a property which is useful for applications such as analysis of real-time
systems, where linear distances are known to be uncomputable [26].

It seems likely that by permitting a broader range of strategies, we may encompass more advanced
levels of system interaction and observations, and hence capture quantitative extensions of other well-
known system relations such as 2-nested simulation [1, 17] or bisimulation [23]. Thus, we expect our
framework to be of great use for reasoning about, and applying quantitative verification.

The game perspective on linear and branching distances also suggests that several interesting results
and properties of games with quantitative objectives are transferable to our setting. As an example,
one may consider computability and complexity results: For a concrete setting such as finite weighted
labeled automata, discounted or limit average accumulating distances can be computed using discounted
and mean-payoff games, respectively. Hence the complexity of computing these branching distances is in
NP∩coNP. Similarly, results concerning strategy iteration or value iteration for games with quantitative
objectives may be transferred to the distance setting.

References

[1] Luca Aceto, Wan Fokkink & Anna Ingólfsdóttir (2001): 2-Nested Simulation Is Not Finitely Equationally
Axiomatizable. In Afonso Ferreira & Horst Reichel, editors: STACS. Lecture Notes in Computer Science
2010, Springer, pp. 39–50.

[2] Luca de Alfaro, Marco Faella & Mariëlle Stoelinga (2009): Linear and Branching System Metrics. IEEE
Trans. Software Eng. 35(2), pp. 258–273.

[3] Luca de Alfaro, Thomas A. Henzinger & Rupak Majumdar (2003): Discounting the Future in Systems The-
ory. In: Proc. ICALP’03. Lecture Notes in Computer Science 2719, Springer-Verlag, pp. 1022–1037.

Fahrenberg, Thrane & Larsen 13

[4] Charalambos D. Aliprantis & Kim C. Border (2007): Infinite Dimensional Analysis: A Hitchhiker’s Guide,
3rd edition. Springer-Verlag.

[5] Hans L. Bodlaender (1993): Complexity of Path-Forming Games. Theoretical Computer Science 110(1), pp.
215–245.

[6] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, Nicolas Markey & Jiří Srba (2008): Infinite Runs in
Weighted Timed Automata with Energy Constraints. In: Proc. FORMATS’08. Lecture Notes in Computer
Science 5215, Springer-Verlag, pp. 33–47.

[7] Franck van Breugel (2005): A Behavioural Pseudometric for Metric Labelled Transition Systems. In: Proc.
CONCUR’05. Lecture Notes in Computer Science 3653, Springer-Verlag, pp. 141–155.

[8] Pavol Černý, Thomas A. Henzinger & Arjun Radhakrishna (2010): Simulation Distances. In: Proc. CON-
CUR’10. Lecture Notes in Computer Science 6269, Springer-Verlag, pp. 253–268.

[9] Krishnendu Chatterjee, Laurent Doyen & Thomas A. Henzinger (2010): Quantitative languages. ACM
Trans. Comput. Log. 11(4).

[10] Josee Desharnais, Vineet Gupta, Radha Jagadeesan & Prakash Panangaden (2004): Metrics for labelled
Markov processes. Theoretical Computer Science 318(3), pp. 323–354.

[11] Josée Desharnais, François Laviolette & Mathieu Tracol (2008): Approximate Analysis of Probabilistic Pro-
cesses: Logic, Simulation and Games. In: QEST. IEEE Computer Society, pp. 264–273.

[12] Uli Fahrenberg, Kim G. Larsen & Claus Thrane (2010): A Quantitative Characterization of Weighted Kripke
Structures in Temporal Logic. Computing and Informatics 29.

[13] Thomas S. Ferguson: Game Theory. http://www.math.ucla.edu/~tom/Game_Theory/Contents.
html.

[14] Aviezri S. Fraenkel & Shai Simonson (1993): Geography. Theoretical Computer Science 110(1), pp. 197–
214.

[15] Alessandro Giacalone, Chi-chang Jou & Scott A. Smolka (1990): Algebraic Reasoning for Probabilistic
Concurrent Systems. In: Proc. IFIP TC2 Working Conference on Programming Concepts and Methods.
North-Holland, pp. 443–458.

[16] Rob J. van Glabbeek (2001): The Linear Time – Branching Time Spectrum I. In Jan A. Bergstra, Alban Ponse
& Scott A. Smolka, editors: Handbook of Process Algebra, Chapter 1. Elsevier, pp. 3–99.

[17] Jan Friso Groote & Frits W. Vaandrager (1992): Structured Operational Semantics and Bisimulation as a
Congruence. Inf. Comput. 100(2), pp. 202–260.

[18] Richard W. Hamming (1950): Error Detecting and Error Correcting Codes. Bell System Technical Journal
29, pp. 147–160.

[19] Thomas A. Henzinger, Rupak Majumdar & Vinayak Prabhu (2005): Quantifying Similarities Between Timed
Systems. In: Proc. FORMATS’05. Lecture Notes in Computer Science 3829, Springer-Verlag, pp. 226–241.

[20] Thomas A. Henzinger & Joseph Sifakis (2006): The Embedded Systems Design Challenge. In: Proc. FM’06.
Lecture Notes in Computer Science 4085, Springer-Verlag, pp. 1–15.

[21] Dexter Kozen (1983): A Probabilistic PDL. In: STOC. ACM, pp. 291–297.

[22] Ana Karla Alves de Medeiros, Wil M. P. van der Aalst & A. J. M. M. Weijters (2008): Quantifying process
equivalence based on observed behavior. Data & Knowledge Engineering 64(1), pp. 55–74.

[23] Robin Milner (1989): Communication and Concurrency. Prentice Hall.

[24] Colin Stirling (1995): Modal and Temporal Logics for Processes. In: Proc. Banff Higher Order Workshop.
Lecture Notes in Computer Science 1043, Springer-Verlag, pp. 149–237.

[25] Bent Thomsen (1987): An Extended Bisimulation Induced by a Preorder on Actions. Master’s thesis, Aalborg
University Centre.

[26] Claus Thrane, Uli Fahrenberg & Kim G. Larsen (2010): Quantitative analysis of weighted transition systems.
Journal of Logic and Algebraic Programming 79(7), pp. 689–703.

http://www.math.ucla.edu/~tom/Game_Theory/Contents.html
http://www.math.ucla.edu/~tom/Game_Theory/Contents.html

	Introduction
	From Trace Distances to System Distances
	Interlude: Hemimetrics
	Examples of Trace Distances
	Simulation Games
	Example: Discrete Trace Distance
	Linear and Branching Distance
	Properties

	Recursively Defined Distances
	Applications

	Conclusion and Future Work

