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Upshot

Specification theory: (cf.
[Bauer-David-Hennicker-Larsen-Legay-Nyman-Wąsowski–FASE’12])
class of specifications S
satisfaction / refinement relation ≤
parallel composition

S ≤ T ∧ S ′ ≤ T ′ =⇒ S‖S ′ ≤ T‖T ′

quotient
∀X ∈ S : S‖X ≤ T ⇐⇒ X ≤ T 
 S

conjunction
∀X ∈ S : X ≤ S ∧ T ⇐⇒ X ≤ S ∧ X ≤ T

What if refinement is quantitative ?
instead of relation ≤ ⊆ S × S, a distance S × S → R≥0 ∪ {∞}
what are the defining properties of operations ?
what are useful properties of operations ?
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Structured Modal Transition Systems

Spec: set of specification labels with partial order v
denoting refinement of labels

Imp = {k ∈ Spec | k ′ v k =⇒ k ′ = k}: set of implementation labels

Definition: Structured modal transition system

A SMTS is a tuple (S , s0, 99K,−→) with

S : set of states, s0 ∈ S ,

−→, 99K ⊆ S × Spec× S ,

for all s k−→ s ′ there is s
`

99K s ′ with k v `.

Definition: Implementation

A SMTS is an implementation if −→ = 99K ⊆ S × Imp× S .
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Refinement Distance

Old definition:
Modal refinement: relation dm : S1 × S2 → {0, 1}: greatest fixed point
to

dm(s1, s2) = min

∀s1
k

99K1 t1 : ∃s2
k

99K2 t2 : dm(t1, t2) = 1 ,

∀s2
k−→2 t2 : ∃s1

k−→1 t1 : dm(t1, t2) = 1 .

New definition

Modal refinement distance dm : S1 × S2 → L: least fixed point to

dm(s1, s2) = max


sup

s1
k1
99K1t1

inf

s2
k2
99K2t2

F (k1, k2, dm(t1, t2)) ,

sup
s2
k2−→2t2

inf
s1
k1−→1t1

F (k1, k2, dm(t1, t2)) .
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Distance Iterator

L and F : Spec× Spec× L→ L come from
[F.-Legay-Thrane-FSTTCS’11]:

L = (R≥0 ∪ {∞})M (M some set): complete lattice with partial
order vL and addition ⊕L
F : distance iterator function which computes distances recursively.

so e.g. for traces k0k1 . . . kn, `0`1 . . . `m:

dT (k0k1 . . . kn, `0`1 . . . `m) = F (k0, `0, dT (k1 . . . kn, `1 . . . `m))

actual distances are obtained using a fixed lattice homomorphism
L→ R≥0 ∪ {inf}
axioms for F (k , `, α):

continuous in k and `, monotone in α
F (k , `, α) = supk ′vk inf`′v` F (k ′, `′, α)
F (k , `, α)⊕L F (`,m, β) wL F (k,m, α⊕L β)
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Structural Composition

Needs:

partial label synchronization operator : : Spec× Spec ↪→ Spec

bound function P : L× L→ L for which

F (k : k ′, `: `′,P(α, α′)) vL P(F (k, `, α),F (k ′, `′, α′))

Definition of structural composition is the standard one:

s
k

99KS s ′ t
`

99KT t ′ k : ` defined

(s, t)
k:`
99KS‖T (s ′, t ′)

s k−→S s ′ t `−→T t ′ k : ` defined

(s, t)
k:`−→S‖T (s ′, t ′)

Theorem

dm(S‖S ′,T‖T ′) vL P(dm(S ,T ), dm(S ′,T ′))
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Quotient

Needs partial label operator ; : Spec× Spec ↪→ Spec which is inverse
to ::

for k, `,m ∈ Spec: `; k is defined and m v `; k if and only if
k : m is defined and k : m v `

Quantitative properties:

good quotient: F (m, `; k, α) wL F (k : m, `, α) for all k , `,m, α

exact quotient: F (m, `; k, α) = F (k : m, `, α) for all k , `,m, α

Definition of quotient is the standard one (has to be!)

Theorem

Assume S deterministic and that T 
 S exists.

good: dm(X ,T 
 S) w dm(S‖X ,T )

exact: dm(X ,T 
 S) = dm(S‖X ,T )
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Conjunction

Needs partial label conjunction operator ? : Spec× Spec ↪→ Spec

lower bound: k ? ` v k and k ? ` v `
greatest lower bound: if m v k and m v `, then m v k ? `

bounded: bound function C : L× L→ L for which

F (m, k ? `,C (α, α′)) vL C (F (m, k, α),F (m, `, α′))

Definition of conjunction is the standard one (has to be!)

Theorem

If ? is lower bound: dm(S ∧ T , S) = dm(S ∧ T ,T ) = ⊥L.

If ? is greatest lower bound and S or T deterministic, then
dm(U,S) = dm(U,T ) = ⊥L imply dm(U,S ∧ T ) = ⊥L.

If ? is bounded and S or T deterministic, then
dm(U,S ∧ T ) vL C (dm(U, S), dm(U,T )).
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Spec = Σ× {[x , y ] | x ∈ Z ∪ {−∞}, y ∈ Z ∪ {∞}}
d((a, [l , r ]), (a, [l ′, r ′])) = maxx∈[l ,r ] minx ′∈[l ′,r ′] |x − x ′| =
max(0, l ′ − l , r − r ′)

[Bauer-F.-Juhl-Larsen-Legay-Thrane–MFCS’11]:

L = R≥0 ∪ {∞}, F (k, `, α) = d(k , `) + λα (accumulating
distance)
(a, [l , r ]) : (a, [l ′, r ′]) = (a, [l + l ′, r + r ′]): bounded by
P(x , x ′) = x + x ′; exact quotient
(a, [l , r ]) ? (a, [l ′, r ′]) = (a, [max(l , l ′),min(r , r ′)]): not bounded!

More useful for real-time systems:

L = (R≥0 ∪ {∞}R, F (k , `, α)(δ) =
max(|δ + d ′(k , `)|, α(δ + d ′(k, `))) (max-lead distance)
k : ` = k ? ` (intersection): bounded by P(x , x ′) = max(x , x ′);
good quotient
conjunction not bounded
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Relaxed Conjunction

What to do if conjunction is not bounded?
typical reason: may have d(m, k) 6=∞ and d(m, `) 6=∞, but
k ? ` empty!
idea: systematic widening of labels: if d(m, k) 6=∞ and
d(m, `) 6=∞, then there are k ′ w k and `′ w ` with k ′ ? `′

non-empty

Theorem

Let S, T be SMTS with S or T deterministic and ? relaxed
conjunctively bounded by C . If there is an SMTS U for which
dm(U,S), dm(U,T ) 6= >L, then there exist β- and γ-widenings S ′ of S
and T ′ of T for which S ′ ∧ T ′ is defined, and such that
dm(U,S ′ ∧ T ′) vL Cβ,γ(dm(U,S), dm(U,T )) for all SMTS U for which
dm(U,S) 6= >L and dm(U,T ) 6= >L.

Works for both examples.
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