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Upshot

Specification theory: (cf.
[Bauer-David-Hennicker-Larsen-Legay-Nyman-Wasowski—-FASE'12])
o class of specifications S
o satisfaction / refinement relation <
o parallel composition
o SSTAS ST =S| <T|T
@ quotient
o VX eSS SIXS T« X<T\S
@ conjunction
VX eSS XSSAT<= X<SAXLST

What if refinement is quantitative 7
o instead of relation < C S x S, a distance S x § — R>o U {00}
@ what are the defining properties of operations ?
@ what are useful properties of operations ?
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@ Definitions

© Structured modal transition systems
© Refinement distance

@ Operations

Examples
(5 p

Q Relaxed conjunction
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Structured modal transition systems

Structured Modal Transition Systems

Spec: set of specification labels with partial order C
o denoting refinement of labels

Imp = {k € Spec | k' C k = k’ = k}: set of implementation labels

Definition: Structured modal transition system
A SMTS is a tuple (S, s, -+, —) with
o S: set of states, s € S,

@ —» --» C S xSpec x S,

k . y4 .
o for all s — s’ there is s -=» s’ with k C ¢.

Definition: Implementation

A SMTS is an implementation if — = --+ C S X Imp X §S.
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Refinement distance

Refinement Distance

Old definition:
Modal refinement: relation dp, : S1 X Sp — {0,1}: greatest fixed point
to

k k
. Vsy —=+1 t1 :dsy —=30 b : dm(tl, t2) =1,
dm(s1,s2) = min

Vs i>2 tr : dsy L>1 t1 : dm(tl, t2) =1.

Modal refinement distance d,,, : S1 X So — IL: least fixed point to

sup inf F(kl,kQ,dm(tl,tg)),
k k
51"1-’11”1 52"2*2t2

sup inf  F(ky, ko, dm(t1, 12)) .

ko k1
So—=otr s1—1t1

dm(s1,52) = max
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Refinement distance
Distance Iterator

IL and F : Spec x Spec x I. —+ I, come from
[F.-Legay-Thrane-FSTTCS'11]:
o L = (Rxo U {co})M (M some set): complete lattice with partial
order C, and addition &,
o F: distance iterator function which computes distances recursively.

@ so e.g. for traces koki ... kn, lol1... Im:
dT(kOkl R kn,fogl .. gm) = F(ko,go, dT(kl R kmgl .. fm))

@ actual distances are obtained using a fixed lattice homomorphism
L — R>o U {inf}
e axioms for F(k, ¢, a):
o continuous in k and ¢, monotone in «
° F(k,g, a) = SUPy/k infg/g F(kl,fl, a)
o F(k,t,0)@r F(¢,m,B) dr. F(k,m,a @, B)
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Operations

Structural Composition

Needs:
o partial label synchronization operator @ : Spec x Spec < Spec
@ bound function P : L x I. — IL for which

F(ko K, 0D, P(a,d)) T P(F(k, ¢, ), F(K, 0, a))

Definition of structural composition is the standard one:

K ¢ ) .
s--355 t--»1t kO defined si>5 s’ tih- t' k@ / defined
kDL [30Y4
(57 t) TTPS|T (5/7 t/) (S, t) —s|T (5/7 t/)

dm(S|IS", T T') Er P(dm(S, T), dm(S, T'))
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Operations
Quotient

Needs partial label operator © : Spec x Spec < Spec which is inverse
to O:

o for k, ¢, m € Spec: £ S k is defined and m C / © k if and only if
k ® mis defined and k O mC ¢

Quantitative properties:
e good quotient: F(m,/© k,«a) Iy, F(k © m, ¢, «) for all k,¢,m, «
@ exact quotient: F(m, £ k,a) = F(k © m, ¢, «) for all k,¢,m, «

Definition of quotient is the standard one (has to be!)

Assume S deterministic and that T \\ S exists.
o good: dm(X, T\ S) 3 dn(S|X, T)
o exact: dn(X, T\ S) =dn(S|X,T)
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Operations
Conjunction

Needs partial label conjunction operator ® : Spec x Spec < Spec
o lower bound: k®/C kand k® VT /¢
o greatest lower bound: if mCE kand mE £, then mC kD /
@ bounded: bound function C : L x I. = LL for which

F(m k®l,Cla,a')) Ty, C(F(m, k,a), F(m,£,a'))

Definition of conjunction is the standard one (has to be!)

o If ® is lower bound: d(SAT,S)=dn(SAT,T)= Lg.
o If @® is greatest lower bound and S or T deterministic, then
dm(U,S) = dm(U, T) = Ly, imply dpn(U,SAT) = Lp.

o If® is bounded and S or T deterministic, then
dm(U,SAT)Cr C(dn(U,S),dn(U, T)).
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Examples

o Spec =X x {[x,y] | x € ZU{—o0},y € ZU {oo}}

o d((a. [/, r]),(a [//7 I‘/])) = MaXye[l,r] minX’E[I/,r’] x — X/‘ =
max(0,/" — 1, r—r')

[Bauer-F.-Juhl-Larsen-Legay-Thrane-MFCS'11]:
o L =R>oU {0}, F(k,{,a) = d(k, )+ A (accumulating
distance)
o (a,[l,r])®(a,[l',r]) = (a,[I +I',r 4+ r]): bounded by
P(x,x") = x + x’; exact quotient
o (a,[l,r])® (a,[l,r']) = (a,[max(/,I"), min(r, r")]): not bounded!

More useful for real-time systems:
o I = (Rxo U {oc}®, F(k,£,a)(0) =
max (|6 + d'(k, £)|, (6 + d’(k,£))) (max-lead distance)
o k@ ¢ = ko (intersection): bounded by P(x, x") = max(x, x');
good quotient
@ conjunction not bounded
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Relaxed conjunction
Relaxed Conjunction

What to do if conjunction is not bounded?
@ typical reason: may have d(m, k) # oo and d(m,{) # oo, but
k ® ¢ empty!
o idea: systematic widening of labels: if d(m, k) # oo and
d(m, ¢) # oo, then there are k' J k and ¢/ J ¢ with k' ® ¢/
non-empty

Theorem

Let S, T be SMTS with S or T deterministic and ® relaxed
conjunctively bounded by C. If there is an SMTS U for which
dm(U,S), dm(U, T) # Ty, then there exist 3- and ~y-widenings S" of S
and T' of T for which S' A T is defined, and such that

dm(U,S"AT') Cr, Ca~(dm(U, S), dm(U, T)) for all SMTS U for which
dm(U,S) # T, and dpm(U, T) # Tr..

4

@ Works for both examples.
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