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Motivation

Lower bound problems for energy automata, examples:

Given finite automaton with integer weights on transitions:
does there exist an infinite run in which the accumulated
weight never drops below 0?

decidable in P
Bouyer-F.-Larsen-Markey-Srba: FORMATS’08

Given timed automaton with integer weights on edges and
integer rates in locations: decide the same problem

decidable for 1 clock; high complexity
by reduction to finite automata with special weight
update functions on transitions
Bouyer-F.-Larsen-Markey: HSCC’10

Proof principle: if there’s an infinite run, then there’s a “lasso”

Goal: Generalize. What’s the natural setting?
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What is the minimum amount of battery required for the satellite
to always be able to send and receive messages?



Energy Automata

Energy function:

right-continuous autofunction f on {⊥} ∪R≥0 ∪ {∞}
⊥ means “undefined”

f (⊥) = ⊥, f (∞) =∞
total order: ⊥ < x <∞
for x1 ≤ x2: f (x2)− f (x1) ≥ x2 − x1

“derivative f ′ ≥ 1”

so f (x) = ⊥ implies f (x ′) = ⊥ for all x ′ ≤ x : f is defined on
a left-closed interval

Energy automaton:

finite automaton with transitions labeled with energy functions

transitions “transform energy” input 7→ output

f (x) = ⊥ for an f -labeled transition: transition is not enabled
for input x
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Energy Automata, Examples
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a simple energy function a simple energy automaton

x 7→ x + 2; x ≥ 2x 7→ x + 3; x > 1

x 7→ 2x − 2; x ≥ 1

x 7→ x − 1; x > 1x 7→ x + 1; x ≥ 0
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Energy Function Semiring

Interest: reachability and Büchi acceptance

Given a set F of accept states and x0 ∈ R≥0: does there exist
a run with initial energy x0 which reaches F? does there exist
one which visits F infinitely often?

Operations on energy functions: max and ◦
f1

f2

g1

g2

becomes max(g1 ◦ f1, g2 ◦ f2)

The set E of energy functions with operations max and ◦ is a
semiring, with 0 = λx .⊥, 1 = λx .x

without “f ′ ≥ 1” condition, only “near-semiring”

idempotent, positively ordered, complete
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Loops for Reachability

Star: f ∗ = supn≥0 f
n

for loops which can be taken an arbitrary number of times

f ∗(x) =

{
x if f (x) ≤ x

∞ if f (x) > x

Theorem: Always, gf ∗h = supn≥0 gf
nh

i.e. E is a star-continuous Kleene algebra

Corollary: Let M be the (transposed) transition matrix of an
energy automaton

i.e. Mji is the transition label from state si to state sj .

Compute M∗ = supn≥0 M
n

Then sj is reachable from si with initial energy x0 iff M∗ji (x0) 6= ⊥.
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Loops for Infinite Runs

Omega: “ f ω = limn→∞ f n ”

for loops which are taken infinitely often

f ω(x) =

{
⊥ if f (x) < x or x = ⊥
> if f (x) ≥ x and x 6= ⊥

important: two-valued; V: energy functions into {⊥,>}

Theorem: (E ,V) is a Conway semiring-semimodule pair

Corollary: Let M be the (transposed) transition matrix of an
energy automaton

i.e. Mji is the transition label from state si to state sj .

Compute “ Mω = limn→∞Mn ”
Then there is an infinite run from si with initial energy x0 iff
Mω

i (x0) 6= ⊥.
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Some Technical Details for Reachability

(Applying work by S. Bloom, Z. Ésik, W. Kuich and others)

For a matrix M =

[
a b
c d

]
, with a ∈ Ek×k and d ∈ Em×m (and

k + m = n), let

M∗ =

[
(a ∨ bd∗c)∗ (a ∨ bd∗c)∗bd∗

(d ∨ ca∗b)∗ca∗ (d ∨ ca∗b)∗

]
∈ En×n

Lemma: M∗ does not depend on k and m, and
always NM∗P = supn NMP.

can also use (generalized) Floyd-Warshall algorithm to
compute M∗; generally faster

Theorem: For any E-automaton (S ,M) with S = {1, . . . , n},
F = {1, . . . , k}, k ≤ n, s0 ≤ n, and x0 ∈ R≥0,
Reach(s0, x0,F ) = tt iff tF

≤kM∗I s0(x0) 6= ⊥.
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Some Technical Details for Büchi Acceptance

(Extending work by S. Bloom, Z. Ésik, W. Kuich and others)

For a matrix M =

[
a b
c d

]
, with a ∈ Ek×k and d ∈ Em×m (and

k + m = n), let

Mω =
t

[
(a ∨ bd∗c)ω ∨ dωc(a ∨ bd∗c)∗

(d ∨ ca∗b)ω ∨ aωb(d ∨ ca∗b)∗

]
∈ E1×n

Mωk =
t

[
(a ∨ bd∗c)ω

(a ∨ bd∗c)ωbd∗

]
∈ E1×n

Theorem: For any E-automaton (S ,M) with S = {1, . . . , n},
F = {1, . . . , k}, k ≤ n, s0 ≤ n, and x0 ∈ R≥0,
Büchi(s0, x0,F ) = tt iff Mωk I s0(x0) 6= ⊥.
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Conclusion

Energy problems can be solved using the theory of
semiring-weighted automata and semiring-semimodule pairs

for reachability, use star; for Büchi, use omega

Extensions to multi-dimension or games: semiring techniques
do not seem to apply

but techniques from well-structured transition systems do
for multi-dimensional games, undecidability is quickly
reached

Extension to energy automata with discrete inputs?

modeling discrete control problems
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What is the minimum amount of battery required, and which
control actions do I need to apply, for the satellite to always be
able to send and receive messages?


