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Abstract Probabilistic Automata Refinement Difference Distances

Probabilistic Automata

P = (S ,A, L,AP ,V , s0)

states S , s0 initial state,

L : S × A× Dist(S)→ {⊥,>} is a two-valued transition
function,

A is a set of actions,

AP is a set of atomic propositions, V : S → 2AP ,
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Abstract Probabilistic Automata

N = (S ,A, L,AP ,V , S0)

states S , S0 ⊆ S initial states,

L : S × A× C(S)→ {⊥, ?,>} is a three-valued transition
function,

A is a set of actions,

AP is a set of atomic propositions, V : S → 22
AP

,
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µ ∈ Sat(φ) ⇐⇒ (µ(s1) + µ(s2) ≥ 0.7) ∧ (µ(s3) + µ(s4) ≥ 0.2)
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Satisfaction / Refinement

Let N1 = (S1,A, L1,AP,V1, S
1
0 ) and N2 = (S2,A, L2,AP,V2,S

2
0 )

be APA. A relation R ⊆ S1 × S2 is a refinement relation if and only
if, for all (s1, s2) ∈ R, we have V1(s1) ⊆ V2(s2) and

∀a ∈ A, ∀φ2 ∈ C (S2), if L2(s2, a, φ2) = >, then
∃φ1 ∈ C (S1) : L1(s1, a, φ1) = > and
∀µ1 ∈ Sat(φ1), ∃µ2 ∈ Sat(φ2) such that µ1 6R µ2,

∀a ∈ A, ∀φ1 ∈ C (S1), if L1(s1, a, φ1) 6= ⊥, then ∃φ2 ∈ C (S2)
such that L2(s2, a, φ2) 6= ⊥ and ∀µ1 ∈ Sat(φ1),
∃µ2 ∈ Sat(φ2) such that µ1 6R µ2.

We say that N1 refines N2, denoted N1 � N2, if there exists a
refinement relation R such that ∀s1

0 ∈ S1
0 ,∃s2

0 ∈ S2
0 : (s1

0 , s
2
0 ) ∈ R.

Since any PA P is also an APA, we say that P satisfies N (or
equivalently P implements N), denoted P |= N, iff P � N.
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Difference

For APA N, JNK = set of all PA implementations of N

Goal: given APA N1, N2, find specification N so that
JNK = JN1K \ JN2K
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Problem: Exact Difference Does Not Exist

N1

1

2

µ ∈ Sat(φ1) ⇐⇒
(µ(1) = 1) ∨ (µ(2) = 1)

{{β}}

{{α}}

a, φ1,>

N2

A

B

µ ∈ Sat(φ2) ⇐⇒
(µ(A) = 1) ∨ (µ(B) = 1)

{{γ}}

{{α}}

a, φ2,>

JN1K \ JN2K = all PAs that can loop on valuation α with
probability 1 and finish with β

⇒ Not Regular
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Overapproximation

Assumptions:

Deterministic APA in single valuation normal form

APA N1 and N2 such that N1 6� N2

Algorithm:

1 Compute maximal refinement relation R

2 Use R to build the difference
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Overapproximation

Definition

N1 \∗ N2 = (S ,A, L,AP,V ,S0) with

S = S1 × (S2 ∪ {⊥})× (A ∪ {ε})

⊥: Satisfaction to N2 already broken previously
ε: Satisfaction to N2 broken in this step

V (s1, s2, a) = V (s1) for all s2 and a

S0 = {(s1
0 , s

2
0 , f ) : f ∈ B(s1

0 , s
2
0 )}

Property: always JN1K \ JN2K ⊆ JN1 \∗ N2K, but not always equality
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Underapproximation

for any K ∈ N, define N1 \K N2, basically like N1 \∗ N2 but
with loops K -fold unfolded

gives underapproximation: always JN1K \ JN2K ⊇ JN1 \K N2K,
but not always equality
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How Good Are the Approximations?

have approximations JN1 \K N2K ⊆ JN1K \ JN2K ⊆ JN1 \∗ N2K
for all K ∈ N
(for deterministic APA N1, N2 in single valuation normal form)

but how good are these approximations?

Use distances to answer this question
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Distances

d(s1, s2) =

max


max

{a,φ1:L1(s1,a,φ1)6=⊥}
min

{φ2:L2(s2,a,φ2)6=⊥}
λDN1,N2(φ1, φ2, d)

max
{a,φ2:L2(s2,a,φ2)=>}

min
{φ1:L1(s1,a,φ1)=>}

λDN1,N2(φ1, φ2, d)

DN1,N2(φ1, φ2, d) =

sup
µ1∈Sat(φ1)

[
inf

µ2∈Sat(φ2)

(
inf

δ:µ16δµ2

∑
(s1,s2)∈S1×S2

µ1(s1)δ(s1, s2)d(s1, s2)

)]

discounted, accumulating distance
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Properties

for all K ∈ N, JN1 \K N2K ⊆ JN1K \ JN2K ⊆ JN1 \∗ N2K
for all K ∈ N, N1 \K N2 � N1 \K+1 N2

for all P ∈ JN1K \ JN2K there is K ∈ N for which P |= N1 \K N2

the sequence (JN1 \K N2K)K∈N converges in the distance d ,
and limK→∞ d(JN1K \ JN2K, JN1 \K N2K) = 0.

d(JN1 \∗ N2K, JN1K \ JN2K) = 0
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