## Partial Higher-Dimensional Automata

Uli Fahrenberg Axel Legay

Inria Rennes, France

CALCO June 2015







a and b are independent









 $\{a,b,c\}$  independent





b "inside" a











b "inside" a



a looping; b priority



- Partial Higher-Dimensional Automata
- Bisimilarity via Open Maps
- 4 Unfoldings
- Conclusion

## Higher-dimensional automata

#### A precubical set:

- a graded set  $X = \{X_n\}_{n \in \mathbb{N}}$
- in each dimension n, 2n face maps  $\delta_k^0, \delta_k^1: X_n \to X_{n-1}$   $(k=1,\ldots,n)$
- the precubical identity:  $\delta_k^{\nu}\delta_\ell^{\mu}=\delta_{\ell-1}^{\mu}\delta_k^{\nu}$  for all  $k<\ell$



A higher-dimensional automaton: a pointed precubical set (precubical set with initial state)

## Higher-dimensional automata

HDA as a model for concurrency:

- points  $x \in X_0$ : states
- edges  $a \in X_1$ : transitions (labeled with events)
- *n*-squares  $\alpha \in X_n$  ( $n \ge 2$ ): independency relations (concurrently executing events)

van Glabbeek (TCS 2006): Up to history-preserving bisimilarity, HDA generalize "the main models of concurrency proposed in the literature"

#### Partial HDA





A partial precubical set (PPS):

- a graded set  $X = \{X_n\}_{n \in \mathbb{N}}$
- in each dimension n, partial face maps  $\delta_{\nu}^{0}, \delta_{\nu}^{1}: X_{n} \rightharpoonup X_{n-1}$  $(k=1,\ldots,n)$
- the precubical identity:  $\delta_k^{\nu} \delta_{\ell}^{\mu} = \delta_{\ell-1}^{\mu} \delta_k^{\nu}$  for all  $k < \ell$  whenever defined

A partial higher-dimensional automaton: a pointed partial precubical set

A labeled PHDA over alphabet  $\Sigma$ :

- n-cubes labeled with elements of  $\Sigma^n$
- compatible with boundaries

#### Partial HDA





A partial precubical set (PPS):

- a graded set  $X = \{X_n\}_{n \in \mathbb{N}}$
- in each dimension n, partial face maps  $\delta_k^0, \delta_k^1: X_n \rightharpoonup X_{n-1}$   $(k=1,\ldots,n)$
- the precubical identity:  $\delta_k^{\nu}\delta_\ell^{\mu}=\delta_{\ell-1}^{\mu}\delta_k^{\nu}$  for all  $k<\ell$  whenever defined

A partial higher-dimensional automaton: a pointed partial precubical set

A labeled PHDA over alphabet  $\Sigma$ :

- n-cubes labeled with elements of  $\Sigma^n$
- compatible with boundaries

pointed comma category  $* \rightarrow \mathsf{PPS} \rightarrow \mathsf{IS}$ 

## Higher-dimensional paths

• a computation in a PHDA: a cube path: sequence  $x_1, \ldots, x_n$  of cubes connected by face maps, i.e. s.t.  $x_i = \delta_k^0 x_{i+1}$  or  $x_{i+1} = \delta_k^1 x_i$ 



- $x_i = \delta_k^0 x_{i+1}$ : start of a new concurrent event
- $x_{i+1} = \delta_k^1 x_i$ : end of a concurrent event
- a path object: a cube path with no extra relations
- HDP 

  → HDA: subcategory of pointed path objects and path extensions (not full)

• PHDA morphism  $f: X \to Y$  open if right-lifting w.r.t. HDP:



- PHDA X, Y bisimilar if span  $X \leftarrow Z \rightarrow Y$  of open maps
- Theorem: PHDA X. Y bisimilar iff  $\exists$  PHDA  $R \subseteq X \times Y$  s.t.  $\forall$ reachable  $x \in X$ ,  $y \in Y$  with  $(x, y) \in R$ :
  - $\forall x' = \delta_k^1 x : \exists y' = \delta_k^1 y : (x', y') \in R$
  - $\forall y' = \delta_{\mu}^{1} y : \exists x' = \delta_{\mu}^{1} x : (x', y') \in R$
  - $\forall x = \delta^0_{k} x' : \exists y = \delta^0_{k} y' : (x', y') \in R$
  - $\forall y = \delta_{\mu}^{0} y' : \exists x = \delta_{\mu}^{0} x' : (x', y') \in R$

• PHDA morphism  $f: X \to Y$  open if right-lifting w.r.t. HDP:



- PHDA X, Y bisimilar if span  $X \leftarrow Z \rightarrow Y$  of open maps
- Theorem: PHDA X. Y bisimilar iff  $\exists$  PHDA  $R \subseteq X \times Y$  s.t.  $\forall$ reachable  $x \in X$ ,  $y \in Y$  with  $(x, y) \in R$ :
  - $\forall x' = \delta_k^1 x : \exists y' = \delta_k^1 y : (x', y') \in R$   $\forall y' = \delta_k^1 y : \exists x' = \delta_k^1 x : (x', y') \in R$

(finish action)

•  $\forall x = \delta^0_{k} x' : \exists y = \delta^0_{k} y' : (x', y') \in R$ 

(start action) •  $\forall y = \delta_{\mu}^{0} y' : \exists x = \delta_{\mu}^{0} x' : (x', y') \in R$ 





bisimilar





Bisimilarity via Open Maps

cube paths  $x_1, \ldots, x_n, y_1, \ldots, y_n$  p-adjacent  $\binom{p}{\sim}$  if  $x_i = y_i$  for  $i \neq p$ , and

- $x_p$  and  $y_p$  are distinct lower faces of  $x_{p+1}$ , or
- $x_p$  and  $y_p$  are distinct upper faces of  $x_{p-1}$ , or
- $x_{p-1}$ ,  $x_{p+1}$  are lower and upper faces of  $x_p$ , and  $y_p$  is an upper face of  $x_{p-1}$  and a lower face of  $x_{p+1}$ , or vice versa

homotopy ∼: reflexive, transitive closure of adjacency

## **Unfoldings**

#### The unfolding of a PHDA:

- unfolding up to homotopy, AKA universal covering
- unfolding of PHDA X is  $\tilde{X}$ , set of homotopy classes of cube paths in X
- with suitable face maps:
  - $\tilde{\delta}_k^1[x_1,\ldots,x_m]=[x_1,\ldots,x_m,\delta_k^1x_m]$  if  $\delta_k^1x_m$  exists; otherwise undefined
  - $\tilde{\delta}_{k}^{0}[x_{1},\ldots,x_{m}] = \{(y_{1},\ldots,y_{p}) \mid y_{p} = \delta_{k}^{0}x_{m}, (y_{1},\ldots,y_{p},x_{m}) \sim (x_{1},\ldots,x_{m})\}$  provided this set is non-empty; else undefined
- and a projection  $\pi_X: \tilde{X} \to X$

## Unfoldings

#### Properties:

- unfoldings are (partial) higher-dimensional trees
- if X is a higher-dimensional tree, then  $\pi_X: \tilde{X} \to X$  is an isomorphism
- ullet projections  $\pi_X: ilde{X} o X$  are open maps
- hence: PHDA X, Y are bisimilar iff  $\tilde{X}$  and  $\tilde{Y}$  are bisimilar

# History-preserving bisimilarity

Let  $* \xrightarrow{i} X \xrightarrow{\lambda} !\Sigma. * \xrightarrow{j} Y \xrightarrow{\mu} !\Sigma$  be labeled PHDA.

#### Theorem

X and Y are bisimilar iff ∃ relation R between pointed cube paths in X and Y for which  $((i),(j)) \in R$ , and such that for all  $(\rho, \sigma) \in R$ ,

- $\lambda(\rho) \sim \mu(\sigma)$ ,
- $\forall \rho \leadsto \rho' : \exists \sigma \leadsto \sigma' : (\rho', \sigma') \in R$ ,
- $\forall \sigma \leadsto \sigma' : \exists \rho \leadsto \rho' : (\rho', \sigma') \in R$ ,
- $\forall \rho \sim \rho' : \exists \sigma \sim \sigma' : (\rho', \sigma') \in R$ ,
- $\forall \sigma \sim \sigma' : \exists \rho \sim \rho' : (\rho', \sigma') \in R$ .

#### Definition

X and Y are history-preserving bisimilar iff  $\exists$  relation R between pointed cube paths in X and Y for which  $((i),(j)) \in R$ , and such that  $\forall (\rho, \sigma) \in R$ 

- $\lambda(\rho) = \mu(\sigma)$ ,
- $\forall \rho \leadsto \rho' : \exists \sigma \leadsto \sigma' : (\rho', \sigma') \in R$ ,
- $\forall \sigma \leadsto \sigma' : \exists \rho \leadsto \rho' : (\rho', \sigma') \in R$ ,
- $\forall \rho \stackrel{p}{\sim} \rho' : \exists \sigma \stackrel{p}{\sim} \sigma' : (\rho', \sigma') \in R$ ,
- $\forall \sigma \stackrel{p}{\sim} \sigma' : \exists \rho \stackrel{p}{\sim} \rho' : (\rho', \sigma') \in R$ .

#### Conclusion

- Our bisimilarity is strictly weaker than history-preserving bisimilarity, but not weaker than split bisimilarity.
- Its relation with ST-bisimilarity is unclear.
- But contrary to the others, our bisimilarity has a simple precubical definition (no paths!)
- and a simple game characterization,
- hence it is decidable in polynomial time (for finite PHDA).
- Coalgebraic characterization?
- Implementation?