*-Continuous Kleene ω -Algebras for Energy Problems

Uli Fahrenberg

Inria Rennes, France

FICS 2015

2 Greatest Fixed Points via *-Continuous Kleene ω -Algebras

Kleene Algebras

- idempotent semiring $S = (S, \lor, \cdot, \bot, 1)$
- with an operation $*: S \rightarrow S$ which computes least fixed points:
- for all $x, y \in S$:
 - yx^* is the least fixed point of $z = zx \lor y$,
 - x^*y is the least fixed point of $z = xz \lor y$,

with respect to the natural order $x \leq y$ iff $x \lor y = y$

Consequence (for y = 1):
x^{*} is the l.f.p. of z = zx ∨ 1 and of z = xz ∨ 1

*-Continuous Kleene Algebras

- Kleene algebra $S = (S, \lor, \cdot, ^*, \bot, 1)$
- in which all infinite suprema $\bigvee \{x^n \mid n \ge 0\}$ exist,
- and such that for all $x, y, z \in S$, $yx^*z = \bigvee_{n \ge 0} yx^n z$

• Consequence (for
$$x = z = 1$$
): $x^* = \bigvee_{n \ge 0} x^n$

- L.f.p. properties of * also follow
- Consequence: loop abstraction

Continuous Kleene Algebras

- Kleene algebra $S = (S, \lor, \cdot, ^*, \bot, 1)$
- in which all suprema $\bigvee X$, $X \subseteq S$ exist,
- and such that for all $X \subseteq S$, $y, z \in S$, $y(\bigvee X)z = \bigvee yXz$
- All continuous Kleene algebras are *-continuous, but not vice-versa
 - Example: regular languages over some $\boldsymbol{\Sigma}$
- [Kozen 1990 (MFCS)]: not all Kleene algebras are *-continuous
 - Counterexample is necessarily infinite

Matrix Semirings

- S semiring, $n \ge 1$
 - $S^{n \times n}$: semiring of $n \times n$ -matrices over S
 - (with matrix addition and multiplication)
 - If S is a *-continuous Kleene algebra, then so is $S^{n \times n}$
 - with $M_{i,j}^* = \bigvee_{m \ge 0} \bigvee_{1 \le k_1, \dots, k_m \le n} M_{i,k_1} M_{k_1,k_2} \cdots M_{k_m,j}$

• and for
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,
$$M^* = \begin{bmatrix} (a \lor bd^*c)^* & (a \lor bd^*c)^*bd^* \\ (d \lor ca^*b)^*ca^* & (d \lor ca^*b)^* \end{bmatrix}$$

(recursively)

Finite Runs in Weighted Automata

- S *-continuous Kleene algebra, $n\geq 1$
 - a weighted automaton over S (with n states): $A = (\alpha, M, \kappa)$
 - $\alpha \in \{\perp, 1\}^n$ initial vector, $\kappa \in \{\perp, 1\}^n$ accepting vector, $M \in S^{n \times n}$ transition matrix
 - finite behavior of A: $|A| = \alpha M^* \kappa$
 - Theorem:

 $|A| = \bigvee \left\{ w_0 \cdots w_n \mid s_i \xrightarrow{w_0} \cdots \xrightarrow{w_n} s_j \text{ accepting path in } S \right\}$

$$(s_i \stackrel{w_0}{\longrightarrow} \cdots \stackrel{w_n}{\longrightarrow} s_j$$
 accepting if $\alpha_i = \kappa_j = 1)$

Idempotent Semiring-Semimodule Pairs

- idempotent semiring $S = (S, \lor, \cdot, \bot, 1)$
- commutative idempotent monoid $V = (V, \lor, \bot)$
- left S-action S imes V o V, $(s, v) \mapsto sv$
- such that for all $s, s' \in S$, $v \in V$:

$$\begin{array}{ll} (s \lor s')v = sv \lor s'v & s(v \lor v') = sv \lor sv' \\ (ss')v = s(s'v) & \bot s = \bot \\ s \bot = \bot & 1v = v \end{array}$$

*-Continuous Kleene Algebras

Continuous Kleene ω -Algebras

- idempotent semiring-semimodule pair (S, V)
- where S is a continuous Kleene algebra,
- V is a complete lattice,
- and the S-action on V preserves all suprema in either argument,
- with an infinite product $\prod : S^{\omega} \to V$ such that:
 - For all $x_0, x_1, \ldots \in S$, $\prod x_n = x_0 \prod x_{n+1}$.
 - Let $x_0, x_1, \ldots \in S$ and $0 = n_0 \le n_1 \le \cdots$ a sequence which increases without a bound. Let $y_k = x_{n_k} \cdots x_{n_{k+1}-1}$ for all $k \ge 0$. Then $\prod x_n = \prod y_k$.
 - For all $X_0, X_1, \ldots \subseteq S$, $\prod (\bigvee X_n) = \bigvee \{\prod x_n \mid x_n \in X_n, n \ge 0\}.$

Matrix Semiring-Semimodule Pairs

(S, V) semiring-semimodule pair, $n \geq 1$

- $(S^{n \times n}, V^n)$ is again a semiring-semimodule pair
- (the action is matrix-vector product)
- If (S, V) is a continuous Kleene ω -algebra, then so is $(S^{n \times n}, V^n)$

• with
$$M_i^{\omega} = \bigvee_{1 \le k_1, k_2, \dots \le n} M_{i,k_1} M_{k_1,k_2} \cdots$$

• and for $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,
 $M^{\omega} = \begin{bmatrix} (a \lor bd^*c)^{\omega} \lor (a \lor bd^*c)^* bd^{\omega} \\ (d \lor ca^*b)^{\omega} \lor (d \lor ca^*b)^* ca^{\omega} \end{bmatrix}$

(recursively)

Infinite Runs in Weighted Automata

(S, V) continuous Kleene ω -algebra (α, M, κ) weighted automaton over S

- Reorder S = {1,..., n} so that κ = (1,...,1,⊥,...,⊥)
 i.e. the first k ≤ n states are accepting
- Büchi behavior of A: write $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, with $a \in S^{k \times k}$, then $\|A\| = \alpha \begin{bmatrix} (a + bd^*c)^{\omega} \\ d^*c(a + bd^*c)^{\omega} \end{bmatrix}$

• Theorem:

$$||A|| = \bigvee \big\{ \prod w_n \mid s_i \xrightarrow{w_0} \cdots \text{ Büchi path in } S \big\}$$

 $(s_i \xrightarrow{w_0} \xrightarrow{w_1} \cdots$ Büchi path if $\alpha_i = 1$ and some s_j with $j \leq k$ is visited infinitely often)

continuous Kleene algebras	continuous Kleene ω -algebras
*-continuous Kleene algebras	???

Problem

continuous Kleene algebras	continuous Kleene ω -algebras
*-continuous Kleene algebras	*-continuous Kleene ω -algebras

[Esik, F., Legay 2015 (DLT)]

Generalized *-Continuous Kleene Algebras [EFL'15]

- semiring-semimodule pair (S, V)
- where S is a *-continuous Kleene algebra
- such that for all $x, y \in S$, $v \in V$, $xy^*v = \bigvee_{n \ge 0} xy^n v$

*-Continuous Kleene ω -Algebras [EFL'15]

- generalized *-continuous Kleene algebra (S, V)
- with an infinite product $\prod : S^{\omega} \to V$ such that:
 - For all $x_0, x_1, \ldots \in S$, $\prod x_n = x_0 \prod x_{n+1}$.
 - Let $x_0, x_1, \ldots \in S$ and $0 = n_0 \le n_1 \le \cdots$ a sequence which increases without a bound. Let $y_k = x_{n_k} \cdots x_{n_{k+1}-1}$ for all $k \ge 0$. Then $\prod x_n = \prod y_k$.
 - For all $x_0, x_1, \ldots, y, z \in S$, $\prod(x_n(y \lor z)) = \bigvee_{x'_0, x'_1, \ldots \in \{y, z\}} \prod x_n x'_n.$
 - For all $x, y_0, y_1, \ldots \in S$, $\prod x^* y_n = \bigvee_{k_0, k_1, \ldots \ge 0} \prod x^{k_n} y_n$.

Matrix Semiring-Semimodule Pairs, Revisited [EFL'15]

$$(S,V)$$
 *-continuous Kleene ω -algebra, $n\geq 1$

- $(S^{n \times n}, V^n)$ is a generalized *-continuous Kleene algebra
- with an operation ${}^\omega: S^{n imes n} o V^n$ given by

$$M_i^{\omega} = \bigvee_{1 \leq k_1, k_2, \dots \leq n} M_{i, k_1} M_{k_1, k_2} \cdots$$

• and for
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,
$$M^{\omega} = \begin{bmatrix} (a \lor bd^*c)^{\omega} \lor (a \lor bd^*c)^* bd^{\omega} \\ (d \lor ca^*b)^{\omega} \lor (d \lor ca^*b)^* ca^{\omega} \end{bmatrix}$$

(recursively)

Energy Automata

Energy function:

- partial function $f: \mathbb{R}_{\geq 0} \hookrightarrow \mathbb{R}_{\geq 0}$
- which is defined on some closed interval [*I_f*,∞[or on some open interval]*I_f*,∞[,
- and such that for all $x \leq y$ for which f is defined,

$$f(y)-f(x)\geq y-x$$

Energy automaton: finite automaton labeled with energy functions

$$x \mapsto 2x - 2; x \ge 1$$

$$x \mapsto x + 2; x \ge 2$$

$$x \mapsto x - 1; x > 1$$

$$x \mapsto x + 3; x > 1$$

$$x \mapsto x + 1; x \ge 0$$

Energy Automata, Semantically

- Start with initial energy x_0 and update at transitions according to label function
- If label function undefined on input, transition is disabled

Reachability: Given x_0 , does there exist an accepting (finite) run with initial energy x_0 ?

Büchi: Given x_0 , does there exist a Büchi (infinite) run with initial energy x_0 ?

Energy Automata, Algebraically

- Let L = [0,∞]⊥: extended nonnegative real numbers plus bottom
 - (a complete lattice)
- Extended energy function: function $f: L \rightarrow L$
- with $f(\perp) = \perp$, and $f(\infty) = \infty$ unless $f(x) = \perp$ for all $x \in L$,
- and $f(y) f(x) \ge y x$ for all $x \le y$.
- Set *E* of such functions is an idempotent semiring with operations ∨ (pointwise max) and ∘ (composition)
- in fact, a *-continuous Kleene algebra
 - $f^{*}(x) = x$ if $f(x) \le x$; $f^{*}(x) = \infty$ if f(x) > x
 - not a continuous Kleene algebra
- ⇒ There exists an accepting (finite) run from initial energy x_0 iff $|A|(x_0) \neq \bot$

Energy Automata, Algebraically, 2.

- Let $\mathbf{2} = \{\mathbf{f}, \mathbf{tt}\}$: the Boolean lattice
- Let $\mathcal V$ be the set of monotone and $\top\text{-continuous}$ functions $L\to \mathbf 2$
 - $f: L \to \mathbf{2}$ \top -continuous if $f(x) \equiv \mathbf{f}$ or for all $X \subseteq L$ with $\bigvee X = \infty$, also $\bigvee f(X) = \mathbf{t}$.
- $\bullet~(\mathcal{E},\mathcal{V})$ is an idempotent semiring-semimodule pair
- Define $\prod : \mathcal{E}^{\omega} \to \mathcal{V}$ by

 $(\prod f_n)(x) = \mathbf{tt} \text{ iff } \forall n \ge 0 : f_n(f_{n-1}(\cdots(x)\cdots)) \neq \bot$

- Lemma: $\prod f_n$ is indeed \top -continuous for all $f_0, f_1, \ldots \in \mathcal{E}$
- Theorem: $(\mathcal{V}, \mathcal{E})$ is a *-continuous Kleene ω -algebra
 - not a continuous Kleene ω -algebra

 \implies There exists a Büchi run from initial energy x_0 iff $||A||(x_0) \neq \mathbf{f}$

Conclusion

- *-continuous Kleene ω-algebras: a useful generalization of continuous Kleene ω-algebras
 - (like *-continuous Kleene algebras are a useful generalization of continuous Kleene algebras)
- can be used to solve general one-dimensional energy problems

Future / ongoing work:

- application to real-time energy problems (with D. Cachera; submitted)
- application to VASS? (with M. Droste & K. Quaas)