A *-Continuous Kleene ω -Algebra for Real-Time Energy Problems

David Cachera Uli Fahrenberg Axel Legay

Inria / Irisa / ENS Rennes, France

FSTTCS 2015

A *-Continuous Kleene ω -Algebra for Real-Time Energy Problems

David Cachera Uli Fahrenberg Axel Legay

Inria / Irisa / ENS Rennes, France

FSTTCS 2015

Outline

- 1 Least Fixed Points via *-Continuous Kleene Algebras
- 2 Greatest Fixed Points via *-Continuous Kleene ω -Algebras
- Real-Time Energy Automata
- 4 Conclusion

Idempotent Semirings

- algebraic structure $S = (S, \vee, \cdot, \perp, 1)$
- such that $(S, \cdot, 1)$ is a monoid: x(yz) = (xy)z and $x \cdot 1 = 1 \cdot x = x$
- (S, \lor, \bot) is a commutative monoid: $x \lor (y \lor z) = (x \lor y) \lor z$, $x \lor y = y \lor x$, and x + 0 = 0 + x = x
- \vee is idempotent: $x \vee x = x$
- the distributive laws: x(y+z) = xy + xz and (x+y)z = xz + yz
- the zero laws: $x \cdot \lor = \lor \cdot x = \lor$

Standard algebraic structure in theoretical computer science

*-Continuous Kleene Algebras

- idempotent semiring $S = (S, \vee, \cdot, \perp, 1)$
- in which all infinite suprema $x^* := \bigvee \{x^n \mid n \ge 0\}$ exist,
- and such that for all $x, y, z \in S$, $xy^*z = \bigvee xy^nz$

Consequence: loop abstraction:

Continuous Kleene Algebras

- idempotent semiring $S = (S, \vee, \cdot, \perp, 1)$
- in which all suprema $\bigvee X, X \subseteq S$ exist,
- and such that for all $X \subseteq S$, $y, z \in S$, $y(\bigvee X)z = \bigvee yXz$

All continuous Kleene algebras are *-continuous, but not vice-versa

• Example: regular languages over some Σ

Matrix Semirings

*-Continuous Kleene Algebras

S semiring, $n \ge 1$

- $S^{n \times n}$: semiring of $n \times n$ -matrices over S
- (with matrix addition and multiplication)
- If S is a *-continuous Kleene algebra, then so is $S^{n \times n}$

• with
$$M_{i,j}^* = \bigvee_{m \geq 0} \bigvee_{1 \leq k_1, \dots, k_m \leq n} M_{i,k_1} M_{k_1,k_2} \cdots M_{k_m,j}$$

• and for
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,
$$M^* = \begin{bmatrix} (a \lor bd^*c)^* & (a \lor bd^*c)^*bd^* \\ (d \lor ca^*b)^*ca^* & (d \lor ca^*b)^* \end{bmatrix}$$
 (recursively)

Finite Runs in Weighted Automata

S *-continuous Kleene algebra, $n \geq 1$

- a weighted automaton over S (with n states): $A = (\alpha, M, \kappa)$
- $\alpha \in \{\bot, 1\}^n$ initial vector, $\kappa \in \{\bot, 1\}^n$ accepting vector, $M \in S^{n \times n}$ transition matrix
- finite behavior of A: $|A| = \alpha M^* \kappa$
- Theorem:

$$|A| = \bigvee \left\{ w_0 \cdots w_n \mid s_i \xrightarrow{w_0} \cdots \xrightarrow{w_n} s_j \text{ accepting path in } S \right\}$$

$$\left(s_i \xrightarrow{w_0} \cdots \xrightarrow{w_n} s_i \text{ accepting if } \alpha_i = \kappa_i = 1 \right)$$

Idempotent Semiring-Semimodule Pairs

- idempotent semiring $S = (S, \vee, \cdot, \perp, 1)$
- commutative idempotent monoid $V = (V, \vee, \perp)$
- left S-action $S \times V \rightarrow V$, $(s, v) \mapsto sv$
- such that for all $s, s' \in S$, $v \in V$:

$$(s \lor s')v = sv \lor s'v$$
 $s(v \lor v') = sv \lor sv'$
 $(ss')v = s(s'v)$ $\bot s = \bot$
 $s\bot = \bot$ $1v = v$

Introduced in work by Bloom and Ésik

Continuous Kleene ω -Algebras

- ullet idempotent semiring-semimodule pair (S, V)
- where S is a continuous Kleene algebra,
- V is a complete lattice,
- and the S-action on V preserves all suprema in either argument,
- with an infinite product $\prod : S^{\omega} \to V$ such that:
 - For all $x_0, x_1, ... \in S$, $\prod x_n = x_0 \prod x_{n+1}$.
 - Let $x_0, x_1, \ldots \in S$ and $0 = n_0 \le n_1 \le \cdots$ a sequence which increases without a bound. Let $y_k = x_{n_k} \cdots x_{n_{k+1}-1}$ for all $k \ge 0$. Then $\prod x_n = \prod y_k$.
 - For all $X_0, X_1, \ldots \subseteq S$, $\prod (\bigvee X_n) = \bigvee \{\prod x_n \mid x_n \in X_n, n \ge 0\}.$

Matrix Semiring-Semimodule Pairs

(S, V) semiring-semimodule pair, $n \ge 1$

- $(S^{n \times n}, V^n)$ is again a semiring-semimodule pair
- (the action is matrix-vector product)
- If (S, V) is a continuous Kleene ω -algebra, then so is $(S^{n \times n}, V^n)$

$$ullet$$
 with $M_i^\omega = igvee_{1 \leq k_1, k_2, \ldots \leq n} M_{i, k_1} M_{k_1, k_2} \cdots$

• and for
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,
$$M^{\omega} = \begin{bmatrix} (a \lor bd^*c)^{\omega} \lor (a \lor bd^*c)^*bd^{\omega} \\ (d \lor ca^*b)^{\omega} \lor (d \lor ca^*b)^*ca^{\omega} \end{bmatrix}$$

(recursively)

Infinite Runs in Weighted Automata

(S,V) continuous Kleene ω -algebra (α,M,κ) weighted automaton over S

- ullet Reorder $S=\{1,\ldots,n\}$ so that $\kappa=(1,\ldots,1,\perp,\ldots,\perp)$
 - i.e. the first $k \le n$ states are accepting
- Büchi behavior of A: write $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, with $a \in S^{k \times k}$, then

$$||A|| = \alpha \begin{bmatrix} (a + bd^*c)^{\omega} \\ d^*c(a + bd^*c)^{\omega} \end{bmatrix}$$

Theorem:

$$||A|| = \bigvee \big\{ \prod w_n \mid s_i \xrightarrow{w_0} \xrightarrow{w_1} \cdots \text{ Büchi path in } S \big\}$$

 $(s_i \xrightarrow{w_0} \xrightarrow{w_1} \cdots$ Büchi path if $\alpha_i = 1$ and some s_j with $j \leq k$ is visited infinitely often)

Problem

continuous Kleene algebras	continuous Kleene ω -algebras
*-continuous Kleene algebras	???

Problem

continuous Kleene algebras	continuous Kleene ω -algebras
*-continuous Kleene algebras	*-continuous Kleene ω -algebras
,	

[Ésik, F., Legay 2015 (DLT)]

Generalized *-Continuous Kleene Algebras [EFL'15]

- semiring-semimodule pair (S, V)
- where S is a *-continuous Kleene algebra
- such that for all $x, y \in S$, $v \in V$, $xy^*v = \bigvee_{n \in S} xy^nv$

*-Continuous Kleene ω -Algebras [EFL'15]

- generalized *-continuous Kleene algebra (S, V)
- with an infinite product $\prod : S^{\omega} \to V$ such that:
 - For all $x_0, x_1, \ldots \in S$, $\prod x_n = x_0 \prod x_{n+1}$.
 - Let $x_0, x_1, \ldots \in S$ and $0 = n_0 \le n_1 \le \cdots$ a sequence which increases without a bound. Let $y_k = x_{n_k} \cdots x_{n_{k+1}-1}$ for all $k \ge 0$. Then $\prod x_n = \prod y_k$.
 - For all $x_0, x_1, \ldots, y, z \in S$, $\prod (x_n(y \vee z)) = \bigvee_{x'_0, x'_1, \ldots \in \{y, z\}} \prod x_n x'_n.$
 - For all $x, y_0, y_1, ... \in S$, $\prod x^* y_n = \bigvee_{k_0, k_1, ... > 0} \prod x^{k_n} y_n$.

Matrix Semiring-Semimodule Pairs, Revisited [EFL'15]

(S, V) *-continuous Kleene ω -algebra, $n \geq 1$

- $(S^{n \times n}, V^n)$ is a generalized *-continuous Kleene algebra
- with an operation $\omega: S^{n \times n} \to V^n$ given by

$$M_i^{\omega} = \bigvee_{1 \leq k_1, k_2, \dots \leq n} M_{i, k_1} M_{k_1, k_2} \cdots$$

- (not a general infinite product)
- and for $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,

$$M^{\omega} = \begin{vmatrix} (a \lor bd^*c)^{\omega} \lor (a \lor bd^*c)^*bd^{\omega} \\ (d \lor ca^*b)^{\omega} \lor (d \lor ca^*b)^*ca^{\omega} \end{vmatrix}$$

(recursively)

*-Continuous Kleene Algebras

References

*-Continuous Kleene Algebras

- Ésik, F., Legay, Quaas, ATVA 2013: Energy automata
- Ésik, F., Legay, DLT 2015: *-continuous Kleene ω -algebras
- Ésik, F., Legay, FICS 2015: *-continuous Kleene ω -algebras for energy automata
- this paper: *-continuous Kleene ω -algebras for real-time energy problems

Real-Time Energy Automata

Outline

- 1 Least Fixed Points via *-Continuous Kleene Algebras
- 2 Greatest Fixed Points via *-Continuous Kleene ω -Algebras
- Real-Time Energy Automata
- 4 Conclusion

Outline

- Least Fixed Points via *-Continuous Kleene Algebras
- 2 Greatest Fixed Points via *-Continuous Kleene ω -Algebras
- Real-Time Energy Automata
- 4 Conclusion

Example

Example

- given initial energy and time budget
- spend time in states to regain energy
- lose energy on transitions
- decide reachability / Büchi acceptance

Real-Time Energy Automata

A Real-Time Energy Automaton (S, s_0, F, T, r) :

- finite set S of states,
- initial state $s_0 \in S$, accepting states $F \subseteq S$,
- rates $r: \mathcal{S} \to \mathbb{R}_{\geq 0}$
- transitions $T \subseteq S \times \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \times S$
 - $s \xrightarrow{p} s'$; p price, b bound

Real-Time Energy Automata: Semantics

- configurations $(s, x, t) \in C = S \times \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}$
 - x energy value; t available time
- $(s,x,t) \rightsquigarrow (s',x',t')$ iff $d:=t-t'\geq 0$ and there is $(s, p, b, s') \in T$ such that
 - $x + d r(s) \ge b$ and
 - x' = x + d r(s) + p

Problems

*-Continuous Kleene Algebras

Let $A = (S, s_0, F, T, r)$ be a computable real-time energy automaton and $x_0, t, y \in [0, \infty]$ computable numbers.

Problem (State reachability)

Does there exist a finite run $(s_0, x_0, t) \rightsquigarrow \cdots \rightsquigarrow (s, x, t')$ in A with $s \in F$?

Problem (Coverability)

Does there exist a finite run $(s_0, x_0, t) \rightsquigarrow \cdots \rightsquigarrow (s, x, t')$ in A with $s \in F$ and x > y?

Problem (Büchi acceptance)

Does there exist an infinite run $(s_0, x_0, t) \rightsquigarrow (s_1, x_1, t_1) \rightsquigarrow \cdots$ in A with $s_n \in F$ for infinitely many n > 0?

Real-Time Energy Functions

Idea: a real-time energy automaton computes a function

$$(x,t)\mapsto y$$

(input energy, available time) \mapsto output energy

Atomic functions:

$$\rightarrow r$$
 \xrightarrow{p} \xrightarrow{p}

$$f(x,t) = \begin{cases} x + rt + p & \text{if } x + rt \ge b, \\ \bot & \text{otherwise} \end{cases}$$

Composition:

$$f \triangleright g(x,t) = \bigvee_{t_1+t_2=t} g(f(x,t_1),t_2)$$

Example

Operations on Real-Time Energy Functions

Composition:
$$f \triangleright g(x,t) = \bigvee_{t_1 \mid t_2 = t} g(f(x,t_1),t_2)$$

Maximum:
$$f \lor g(x,t) = \max(f(x,t),g(x,t))$$

Star:
$$f^*(x,t) = \bigvee_{n>0} f^n(x,t)$$

Definition

 \mathcal{E} : set of functions generated by atomic functions under \vee and \triangleright .

The BFLM lemma

For every $f \in \mathcal{E}$ there exists $N \geq 0$ so that $f^* = \bigvee_{n=0}^{N} f^n$.

Corollary

 \mathcal{E} is locally closed, hence a *-continuous Kleene algebra.

Reachability & Coverability

Let $A = (\alpha, M, \kappa)$ be a computable real-time energy automaton.

• (Recall: $\alpha \in \{\bot, 1\}^n$ initial vector, $\kappa \in \{\bot, 1\}^n$ accepting vector, $M \in S^{n \times n}$ transition matrix)

Compute $|A| = \alpha M^* \kappa$.

Let $x_0, t, y \in [0, \infty]$ computable numbers.

Theorem

*-Continuous Kleene Algebras

There exists a finite run $(s_0, x_0, t) \rightsquigarrow \cdots \rightsquigarrow (s, x, t')$ in A with $s \in F \text{ iff } |A|(x_0, t) > \bot.$

Theorem

There exists a finite run $(s_0, x_0, t) \rightsquigarrow \cdots \rightsquigarrow (s, x, t')$ in A with $s \in F$ and x > y iff $|A|(x_0, t) > y$.

Büchi Acceptance

*-Continuous Kleene Algebras

- $\mathbb{B} = \{\mathbf{ff}, \mathbf{tt}\}$: the Boolean lattice, $\mathbf{ff} < \mathbf{tt}$
- \mathcal{V} : set of monotonic functions $[0,\infty]\times[0,\infty]\to\mathbb{B}$
- infinite product $\mathcal{E}^{\omega} \to \mathcal{V}$: $\prod_{n \ge 0} f_n(x, t) = \mathbf{tt}$ iff $\exists t_0, t_1, \ldots \in [0, \infty] : \sum_{n=0}^{\infty} t_n = t \text{ and } \forall n \geq 0,$ $f_n(t_n) \circ \cdots \circ f_0(t_0)(x) \neq \bot$
- ullet \mathcal{U} : subset of \mathcal{V} generated by infinite products of \mathcal{E} -functions: a left E-semimodule

Theorem

 $(\mathcal{E},\mathcal{U})$ forms a *-continuous Kleene ω -algebra.

Büchi Acceptance

Let $A = (\alpha, M, \kappa)$ be a computable real-time energy automaton.

Write
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, with $a \in S^{k \times k}$, and compute
$$\|A\| = \alpha \begin{bmatrix} (a+bd^*c)^{\omega} \\ d^*c(a+bd^*c)^{\omega} \end{bmatrix}$$

Let $x_0, t, y \in [0, \infty]$ computable numbers.

Theorem

There exists $s \in F$ and an infinite run $(s_0, x_0, t) \rightsquigarrow (s_1, x_1, t_1) \rightsquigarrow \cdots$ in A in which $s_n = s$ for infinitely many $n \ge 0$ iff $||A||(x_0, t) = \mathbf{t}t$.

- Functions in $\mathcal E$ are computable piecewise linear, hence |A| and ||A|| are computable
- (probably in EXPTIME)

- real-time energy automata: useful model which encorporates time and energy
- state reachability, coverability, Büchi acceptance decidable
- (In EXPTIME?)
- using and extending techniques from semirings and Kleene algebra
- *-continuous Kleene algebras permit loop abstraction for finite runs
- *-continuous Kleene ω -algebras permit loop abstraction for infinite runs
- local-to-global principle
- extend to more general models
- combine with abstract interpretation