Partial Higher-Dimensional Automata

Uli Fahrenberg Axel Legay

Inria Rennes, France

X November 2015

Motivation

Motivation

a and b are independent

 $\{a,b,c\}$ independent

b "inside" a

b "inside" a

a looping; b priority

- Motivation
- Partial Higher-Dimensional Automata
- Bisimilarity via Open Maps
- 4 Unfoldings
- Conclusion
- **6** Bonus

Higher-dimensional automata

A precubical set:

- a graded set $X = \{X_n\}_{n \in \mathbb{N}}$
- in each dimension n, 2n face maps $\delta_k^0, \delta_k^1: X_n \to X_{n-1}$ $(k=1,\ldots,n)$

Bisimilarity via Open Maps

• the precubical identity: $\delta_k^{\nu} \delta_{\ell}^{\mu} = \delta_{\ell-1}^{\mu} \delta_k^{\nu}$ for all $k < \ell$

A higher-dimensional automaton: a pointed precubical set (precubical set with initial state)

Higher-dimensional automata

HDA as a model for concurrency:

- points $x \in X_0$: states
- edges $a \in X_1$: transitions (labeled with events)
- *n*-squares $\alpha \in X_n$ ($n \ge 2$): independency relations (concurrently executing events)

van Glabbeek (TCS 2006): Up to history-preserving bisimilarity, HDA generalize "the main models of concurrency proposed in the literature"

Partial HDA

A partial precubical set (PPS):

- a graded set $X = \{X_n\}_{n \in \mathbb{N}}$
- in each dimension n, partial face maps $\delta_{\nu}^{0}, \delta_{\nu}^{1}: X_{n} \rightharpoonup X_{n-1}$ $(k=1,\ldots,n)$
- the precubical identity: $\delta_k^{\nu} \delta_{\ell}^{\mu} = \delta_{\ell-1}^{\mu} \delta_k^{\nu}$ for all $k < \ell$ whenever defined

A partial higher-dimensional automaton: a pointed partial precubical set

A labeled PHDA over alphabet Σ :

- n-cubes labeled with elements of Σ^n
- compatible with boundaries

Partial HDA

A partial precubical set (PPS):

- a graded set $X = \{X_n\}_{n \in \mathbb{N}}$
- in each dimension n, partial face maps $\delta_{\nu}^{0}, \delta_{\nu}^{1}: X_{n} \rightharpoonup X_{n-1}$ $(k=1,\ldots,n)$
- the precubical identity: $\delta_k^{\nu} \delta_{\ell}^{\mu} = \delta_{\ell-1}^{\mu} \delta_k^{\nu}$ for all $k < \ell$ whenever defined

A partial higher-dimensional automaton: a pointed partial precubical set

A labeled PHDA over alphabet Σ :

- n-cubes labeled with elements of Σ^n
- compatible with boundaries

pointed comma category $* \rightarrow PPS \rightarrow I\Sigma$

Higher-dimensional paths

• a computation in a PHDA: a cube path: sequence x_1, \ldots, x_n of cubes connected by face maps, i.e. s.t. $x_i = \delta_k^0 x_{i+1}$ or $x_{i+1} = \delta_k^1 x_i$

- $x_i = \delta_k^0 x_{i+1}$: start of a new concurrent event
- $x_{i+1} = \delta_k^1 x_i$: end of a concurrent event
- a path object: a cube path with no extra relations
- HDP → PHDA: subcategory of pointed path objects and path extensions (not full)

Higher-dimensional paths

• a computation in a PHDA: a cube path: sequence x_1, \ldots, x_n of cubes connected by face maps, i.e. s.t. $x_i = \delta_k^0 x_{i+1}$ or $x_{i+1} = \delta_k^1 x_i$

- $x_i = \delta_k^0 x_{i+1}$: start of a new concurrent event
- $x_{i+1} = \delta_{\nu}^1 x_i$: end of a concurrent event
- a path object: a cube path with no extra relations
- HDP → PHDA: subcategory of pointed path objects and path extensions (not full)
- (replacing cube paths with carrier sequences, i.e. $x_i = (\delta^0)^+ x_{i+1}$ or $x_{i+1} = (\delta^1)^+ x_i$, should not change much)

Open-maps bisimilarity

• PHDA morphism $f: X \to Y$ open if right-lifting w.r.t. HDP:

- PHDA X, Y bisimilar if span $X \leftarrow Z \rightarrow Y$ of open maps
- Theorem: PHDA X, Y bisimilar iff \exists PHDA $R \subseteq X \times Y$ s.t. \forall reachable $x \in X$, $y \in Y$ with $(x, y) \in R$:
 - $\forall x' = \delta_k^1 x : \exists y' = \delta_k^1 y : (x', y') \in R$
 - $\forall y' = \delta_k^1 y : \exists x' = \delta_k^1 x : (x', y') \in R$
 - $\forall x = \delta_k^0 x' : \exists y = \delta_k^0 y' : (x', y') \in R$
 - $\forall y = \delta_{\nu}^{0} y' : \exists x = \delta_{\nu}^{0} x' : (x', y') \in R$

Open-maps bisimilarity

• PHDA morphism $f: X \to Y$ open if right-lifting w.r.t. HDP:

- PHDA X, Y bisimilar if span $X \leftarrow Z \rightarrow Y$ of open maps
- Theorem: PHDA X. Y bisimilar iff \exists PHDA $R \subseteq X \times Y$ s.t. \forall reachable $x \in X$, $y \in Y$ with $(x, y) \in R$:
 - $\forall x' = \delta_k^1 x : \exists y' = \delta_k^1 y : (x', y') \in R$ $\forall y' = \delta_k^1 y : \exists x' = \delta_k^1 x : (x', y') \in R$ (finish action)
 - $\forall x = \delta^0_{k} x' : \exists y = \delta^0_{k} y' : (x', y') \in R$ (start action)
 - $\forall y = \delta_{\mu}^{0} y' : \exists x = \delta_{\mu}^{0} x' : (x', y') \in R$

Wrong definition of open-maps bisimilarity using HDA

• HDA morphism $f: X \to Y$ open-s if right-lifting w.r.t. HDP-strict:

$$P \xrightarrow{p} X$$

$$g \downarrow \qquad \qquad \downarrow f$$

$$Q \xrightarrow{q} Y$$

- HDA X, Y bisimilar-s if span $X \leftarrow Z \rightarrow Y$ of open-s maps
- Theorem: HDA X, Y bisimilar-s iff \exists PHDA $R \subseteq X \times Y$ s.t. \forall reachable $x \in X$, $y \in Y$ with $(x, y) \in R$:
 - $\forall k : (\delta_{\iota}^{1} x, \delta_{\iota}^{1} y) \in R$ (finish action)
 - $\forall x = \delta^0_{\mu} x' : \exists y = \delta^0_{\mu} y' : (x', y') \in R$ (start action)
 - $\forall v = \delta_{k}^{0} v' : \exists x = \delta_{k}^{0} x' : (x', y') \in R$
 - $\forall k : (\delta_L^{0} x, \delta_L^{0} y) \in R$ (hereditarity with lower boundaries)

Open-maps bisimilarity

bisimilar

Open-maps bisimilarity

Homotopy of computations

cube paths $x_1, \ldots, x_n, y_1, \ldots, y_n$ p-adjacent $\binom{p}{\sim}$ if $x_i = y_i$ for $i \neq p$, and

- x_p and y_p are distinct lower faces of x_{p+1} , or
- x_p and y_p are distinct upper faces of x_{p-1} , or
- x_{p-1} , x_{p+1} are lower and upper faces of x_p , and y_p is an upper face of x_{p-1} and a lower face of x_{p+1} , or vice versa

homotopy ∼: reflexive, transitive closure of adjacency

Unfoldings

The unfolding of a PHDA:

- unfolding up to homotopy, AKA universal covering
- unfolding of PHDA X is \tilde{X} , set of homotopy classes of cube paths in Χ
- with suitable face maps:
 - $\tilde{\delta}_{\iota}^{1}[x_{1},\ldots,x_{m}]=[x_{1},\ldots,x_{m},\delta_{\iota}^{1}x_{m}]$ if $\delta_{\iota}^{1}x_{m}$ exists; otherwise undefined
 - $\tilde{\delta}_{\nu}^{0}[x_{1},\ldots,x_{m}] = \{(y_{1},\ldots,y_{p}) \mid y_{p} = \delta_{\nu}^{0}x_{m},(y_{1},\ldots,y_{p},x_{m}) \sim$ (x_1, \ldots, x_m) provided this set is non-empty; else undefined
- and a projection $\pi_X : \tilde{X} \to X$

Unfoldings

Properties:

- unfoldings are (partial) higher-dimensional trees
- if X is a higher-dimensional tree, then $\pi_X: \tilde{X} \to X$ is an isomorphism
- projections $\pi_X : \tilde{X} \to X$ are open maps
- hence: PHDA X, Y are bisimilar iff \tilde{X} and \tilde{Y} are bisimilar

History-preserving bisimilarity

Let $* \xrightarrow{i} X \xrightarrow{\lambda} !\Sigma, * \xrightarrow{j} Y \xrightarrow{\mu} !\Sigma$ be labeled PHDA.

Theorem

X and Y are bisimilar iff \exists relation R between pointed cube paths in X and Y for which $((i),(j)) \in R$, and such that for all $(\rho,\sigma) \in R$,

- $\lambda(\rho) \sim \mu(\sigma)$,
- $\forall \rho \leadsto \rho' : \exists \sigma \leadsto \sigma' : (\rho', \sigma') \in R$,
- $\forall \sigma \leadsto \sigma' : \exists \rho \leadsto \rho' : (\rho', \sigma') \in R$,
- $\forall \rho \sim \rho' : \exists \sigma \sim \sigma' : (\rho', \sigma') \in R$,
- $\forall \sigma \sim \sigma' : \exists \rho \sim \rho' : (\rho', \sigma') \in R$.

Definition

X and Y are history-preserving bisimilar iff \exists relation R between pointed cube paths in X and Y for which $((i),(j)) \in R$, and such that $\forall (\rho,\sigma) \in R$,

- $\bullet \ \lambda(\rho) = \mu(\sigma),$
- $\forall \rho \leadsto \rho' : \exists \sigma \leadsto \sigma' : (\rho', \sigma') \in R$,
- $\forall \sigma \leadsto \sigma' : \exists \rho \leadsto \rho' : (\rho', \sigma') \in R$,
- $\forall \rho \stackrel{P}{\sim} \rho' : \exists \sigma \stackrel{P}{\sim} \sigma' : (\rho', \sigma') \in R$,
- $\forall \sigma \stackrel{P}{\sim} \sigma' : \exists \rho \stackrel{P}{\sim} \rho' : (\rho', \sigma') \in R.$

Conclusion

- Our bisimilarity is strictly weaker than history-preserving bisimilarity, but not weaker than split bisimilarity.
- Its relation with ST-bisimilarity is unclear.
- But contrary to the others, our bisimilarity has a simple precubical definition (no paths!)
- and a simple game characterization,
- hence it is decidable in polynomial time (for finite PHDA).

Bisimilarity via Open Maps

Some next steps

- Coalgebraic characterization?
- Implementation?
- How is the geometry of PHDA?
 - Do Lisbeth's (et.al.) results on carrier sequences still hold?
 - Homotopy vs. dihomotopy
 - What is the geometric realization of a PHDA?

- concatenation of cube paths: if $\alpha = (x_1, \dots, x_n)$ and $\beta = (y_1, \dots, y_p)$ with $x_n = y_1$, then $\alpha * \beta = (x_1, \dots, x_n, y_2, \dots, y_p)$
- identities: $1_x := (x)$
- thus: small category TrC(X): objects cubes, morphisms cube paths

- concatenation of cube paths: if $\alpha = (x_1, \dots, x_n)$ and $\beta = (y_1, \dots, y_p)$ with $x_n = y_1$, then $\alpha * \beta = (x_1, \dots, x_n, y_2, \dots, y_p)$
- identities: $1_x := (x)$
- thus: small category TrC(X): objects cubes, morphisms cube paths
- let $Fc_X := F \operatorname{TrC}(X)$: the category of factorizations of $\operatorname{TrC}(X)$:
 - objects cube paths
 - morphisms commutative diagrams of extensions (γ, δ) :

Let $X \in \text{PPS}$ and $n \geq 1$. $\vec{H}_n(X) : F_{CX} \to \text{Ab}$ is the functor given by:

- on objects: $\alpha = (x_1, \dots, x_n)$ maps to $H_{n-1}(|X|; x_1^{\text{ctr}}, x_n^{\text{ctr}})$
- on morphisms: (γ, δ) : $\alpha \to \beta$ maps to Ab-homomorphism $H_{n-1}(\gamma, \delta)$ given by $H_{n-1}(\gamma, \delta)([\pi]) = [\gamma * \pi * \delta]$
- (x^{ctr} : the center point of the geometric realization $|x| \subseteq |X|$; Ab: category of Abelian groups)

Let $X \in \text{PPS}$ and $n \geq 1$. $\vec{H}_n(X) : F_{CX} \to \text{Ab}$ is the functor given by:

- on objects: $\alpha = (x_1, \dots, x_n)$ maps to $H_{n-1}(|X|; x_1^{\text{ctr}}, x_n^{\text{ctr}})$
- on morphisms: (γ, δ) : $\alpha \to \beta$ maps to Ab-homomorphism $H_{n-1}(\gamma, \delta)$ given by $H_{n-1}(\gamma, \delta)([\pi]) = [\gamma * \pi * \delta]$
- (x^{ctr} : the center point of the geometric realization $|x| \subseteq |X|$; Ab: category of Abelian groups)
- (I hope I got this right?)
- (What do you do with the initial state? This info seems to get lost?)
- (This needs work on the geometry of partial precubical sets!)

Open maps in natural homology [DGGL15]

Let $X, Y \in \text{Cat}$ and $F : X \to \text{Ab}$, $G : Y \to \text{Ab}$ functors.

- a morphism $F \to G$: a functor $\Phi : X \to Y$ and a natural transformation $\sigma : F \to G \circ \Phi$
- ([DGGL15] require σ to be a natural iso. Why?)
- $(\Phi, \sigma) : F \to G$ an open map iff
 - Φ surjective on objects
 - ullet σ a natural iso
 - $\forall x \in X : \forall g : \Phi(x) \rightarrow y' \in Y : \exists f : x \rightarrow x' \in X : \Phi(f) = g$

Open maps in PHDA vs. in natural homology

Let $f: X \to Y \in PHDA$ and $n \ge 1$.

- f induces a functor $f : Fc_X \to Fc_Y$: for $\alpha = (x_1, \dots, x_n)$ cube path, $f(\alpha) := (f(x_1), \dots, f(x_n))$
- Conjecture: f induces a morphism $(f, \sigma) : \vec{H}_n(X) \to \vec{H}_n(Y)$, where $\sigma : \vec{H}_n(X) \to \vec{H}_n(Y) \circ f$ is as follows: for $\alpha = (x_1, \dots, x_n)$, $\sigma_\alpha : H_{n-1}(|X|; x_1^{\text{ctr}}, x_n^{\text{ctr}}) \to H_{n-1}(|Y|; f(x_1)^{\text{ctr}}, f(x_n)^{\text{ctr}})$ is the homomorphism $\sigma_\alpha([\pi]) = [|f| \circ \pi]$
- Wish: If f is an open map and Y is completely reachable, then (f, σ) is an open map.

Open maps in PHDA vs. in natural homology

Let $f: X \to Y \in PHDA$ and $n \ge 1$.

- f induces a functor $f : Fc_X \to Fc_Y$: for $\alpha = (x_1, \dots, x_n)$ cube path, $f(\alpha) := (f(x_1), \dots, f(x_n))$
- Conjecture: f induces a morphism $(f, \sigma) : \vec{H}_n(X) \to \vec{H}_n(Y)$, where $\sigma : \vec{H}_n(X) \to \vec{H}_n(Y) \circ f$ is as follows: for $\alpha = (x_1, \dots, x_n)$, $\sigma_\alpha : H_{n-1}(|X|; x_1^{\text{ctr}}, x_n^{\text{ctr}}) \to H_{n-1}(|Y|; f(x_1)^{\text{ctr}}, f(x_n)^{\text{ctr}})$ is the homomorphism $\sigma_\alpha([\pi]) = [|f| \circ \pi]$
- Wish: If f is an open map and Y is completely reachable, then (f, σ) is an open map.
 - f surjective on objects: because Y completely reachable \checkmark
 - \bullet σ a natural iso: seems plausible $\ddot{-}$
 - f lifts extensions: probably not!

Open maps in PHDA vs. in natural homology

Let $f: X \to Y \in PHDA$ and $n \ge 1$.

- f induces a functor $f : Fc_X \to Fc_Y$: for $\alpha = (x_1, \dots, x_n)$ cube path, $f(\alpha) := (f(x_1), \dots, f(x_n))$
- Conjecture: f induces a morphism $(f, \sigma) : \vec{H}_n(X) \to \vec{H}_n(Y)$, where $\sigma : \vec{H}_n(X) \to \vec{H}_n(Y) \circ f$ is as follows: for $\alpha = (x_1, \dots, x_n)$, $\sigma_\alpha : H_{n-1}(|X|; x_1^{\text{ctr}}, x_n^{\text{ctr}}) \to H_{n-1}(|Y|; f(x_1)^{\text{ctr}}, f(x_n)^{\text{ctr}})$ is the homomorphism $\sigma_\alpha([\pi]) = [|f| \circ \pi]$
- Wish: If f is an open map and Y is completely reachable, then (f, σ) is an open map.
 - f surjective on objects: because Y completely reachable \checkmark
 - \bullet σ a natural iso: seems plausible $\ddot{-}$
 - f lifts extensions: probably not!
 - f lifts future extensions $(1, \delta)$, but not past extensions $(\gamma, 1)$

"Conclusion"

Motivation

- PHDA morphisms induce morphisms in natural homology
- but PHDA open maps do not induce open maps in natural homology?
- fix PHDA open maps? $f: X \to Y$ open iff \forall reachable $x_1 \in X$:
 - $\forall y_2 \in Y$ with $f(x_1) = \delta_k^0 y_2$, $\exists x_2 \in X : x_1 = \delta_k^0 x_2, y_2 = f(x_2)$
 - $\forall y_2 \in Y$ with $y_2 = \delta_k^1 f(x_1)$, $\exists x_2 \in X : x_2 = \delta_k^1 x_1, y_2 = f(x_2)$

"Conclusion"

Motivation

- PHDA morphisms induce morphisms in natural homology
- but PHDA open maps do not induce open maps in natural homology?
- fix PHDA open maps? $f: X \to Y$ h-open iff \forall reachable $x_1 \in X$:
 - $\forall y_2 \in Y$ with $f(x_1) = \delta_k^0 y_2$, $\exists x_2 \in X : x_1 = \delta_k^0 x_2, y_2 = f(x_2)$
 - $\forall y_2 \in Y$ with $y_2 = \delta_k^1 f(x_1)$, $\exists x_2 \in X : x_2 = \delta_k^1 x_1, y_2 = f(x_2)$
 - $\forall y_2 \in Y$ with $f(x_1) = \delta_k^1 y_2$, $\exists x_2 \in X : x_1 = \delta_k^1 x_2, y_2 = f(x_2)$
 - $\forall y_2 \in Y$ with $y_2 = \delta_k^0 f(x_1)$, $\exists x_2 \in X : x_2 = \delta_k^0 x_1, y_2 = f(x_2)$

"Conclusion"

- PHDA morphisms induce morphisms in natural homology
- but PHDA open maps do not induce open maps in natural homology?
- fix PHDA open maps? $f: X \to Y$ open iff \forall reachable $x_1 \in X$:
 - $\forall y_2 \in Y$ with $f(x_1) = \delta_k^0 y_2$, $\exists x_2 \in X : x_1 = \delta_k^0 x_2, y_2 = f(x_2)$
 - $\forall y_2 \in Y$ with $y_2 = \delta_k^1 f(x_1)$, $\exists x_2 \in X : x_2 = \delta_k^1 x_1, y_2 = f(x_2)$
 - $\forall y_2 \in Y$ with $f(x_1) = \delta_k^1 y_2$, $\exists x_2 \in X : x_1 = \delta_k^1 x_2, y_2 = f(x_2)$
 - $\forall y_2 \in Y$ with $y_2 = \delta_k^0 f(x_1)$, $\exists x_2 \in X : x_2 = \delta_k^0 x_1, y_2 = f(x_2)$
- but what is the path category? what is the relation to (h)hp-bisimilarity? is this useful?
- fix natural homology??