A *-Continuous Kleene ω -Algebra for Real-Time Energy Problems

David Cachera Uli Fahrenberg Axel Legay

Inria / Irisa / ENS Rennes, France

MALTHY 2015

Outline

1 Least Fixed Points via *-Continuous Kleene Algebras

Q Greatest Fixed Points via *-Continuous Kleene ω-Algebras

3 Real-Time Energy Automata

Kleene Algebras

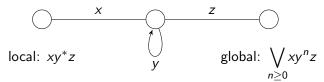
- idempotent semiring $S = (S, \lor, \cdot, \bot, 1)$
- with an operation $*: S \rightarrow S$ which computes least fixed points:
- for all $x, y \in S$:
 - yx^* is the least fixed point of $z = zx \lor y$,
 - x^*y is the least fixed point of $z = xz \lor y$,

with respect to the natural order $x \leq y$ iff $x \lor y = y$

Consequence (for y = 1):
x^{*} is the l.f.p. of z = zx ∨ 1 and of z = xz ∨ 1

*-Continuous Kleene Algebras

- Kleene algebra $S = (S, \lor, \cdot, ^*, \bot, 1)$
- in which all infinite suprema $\bigvee \{x^n \mid n \ge 0\}$ exist,
- and such that for all $x, y, z \in S$, $xy^*z = \bigvee_{n \ge 0} xy^n z$
- Consequence (for x = z = 1): $x^* = \bigvee_{n \ge 0} x^n$
- L.f.p. properties of * also follow
- Consequence: loop abstraction



Continuous Kleene Algebras

- Kleene algebra $S = (S, \lor, \cdot, ^*, \bot, 1)$
- in which all suprema $\bigvee X$, $X \subseteq S$ exist,
- and such that for all $X \subseteq S$, $y, z \in S$, $y(\bigvee X)z = \bigvee yXz$
- All continuous Kleene algebras are *-continuous, but not vice-versa
 - Example: regular languages over some Σ
- [Kozen 1990 (MFCS)]: not all Kleene algebras are *-continuous
 - Counterexample is necessarily infinite

Matrix Semirings

- S semiring, $n \ge 1$
 - $S^{n \times n}$: semiring of $n \times n$ -matrices over S
 - (with matrix addition and multiplication)
 - If S is a *-continuous Kleene algebra, then so is $S^{n \times n}$
 - with $M_{i,j}^* = \bigvee_{m \ge 0} \bigvee_{1 \le k_1, \dots, k_m \le n} M_{i,k_1} M_{k_1,k_2} \cdots M_{k_m,j}$

• and for
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,
$$M^* = \begin{bmatrix} (a \lor bd^*c)^* & (a \lor bd^*c)^*bd^* \\ (d \lor ca^*b)^*ca^* & (d \lor ca^*b)^* \end{bmatrix}$$

(recursively)

Finite Runs in Weighted Automata

- S *-continuous Kleene algebra, $n\geq 1$
 - a weighted automaton over S (with n states): $A = (\alpha, M, \kappa)$
 - $\alpha \in \{\perp, 1\}^n$ initial vector, $\kappa \in \{\perp, 1\}^n$ accepting vector, $M \in S^{n \times n}$ transition matrix
 - finite behavior of A: $|A| = \alpha M^* \kappa$
 - Theorem:

 $|A| = \bigvee \left\{ w_0 \cdots w_n \mid s_i \xrightarrow{w_0} \cdots \xrightarrow{w_n} s_j \text{ accepting path in } S \right\}$

$$(s_i \xrightarrow{w_0} \cdots \xrightarrow{w_n} s_j \text{ accepting if } \alpha_i = \kappa_j = 1)$$

Idempotent Semiring-Semimodule Pairs

- idempotent semiring $S = (S, \lor, \cdot, \bot, 1)$
- commutative idempotent monoid $V = (V, \lor, \bot)$
- left S-action S imes V o V, $(s, v) \mapsto sv$
- such that for all $s, s' \in S$, $v \in V$:

$$\begin{array}{ll} (s \lor s')v = sv \lor s'v & s(v \lor v') = sv \lor sv' \\ (ss')v = s(s'v) & \bot s = \bot \\ s \bot = \bot & 1v = v \end{array}$$

Continuous Kleene ω -Algebras

- idempotent semiring-semimodule pair (S, V)
- where S is a continuous Kleene algebra,
- V is a complete lattice,
- and the S-action on V preserves all suprema in either argument,
- with an infinite product $\prod : S^{\omega} \to V$ such that:
 - For all $x_0, x_1, \ldots \in S$, $\prod x_n = x_0 \prod x_{n+1}$.
 - Let $x_0, x_1, \ldots \in S$ and $0 = n_0 \le n_1 \le \cdots$ a sequence which increases without a bound. Let $y_k = x_{n_k} \cdots x_{n_{k+1}-1}$ for all $k \ge 0$. Then $\prod x_n = \prod y_k$.
 - For all $X_0, X_1, \ldots \subseteq S$, $\prod (\bigvee X_n) = \bigvee \{\prod x_n \mid x_n \in X_n, n \ge 0\}.$

Matrix Semiring-Semimodule Pairs

(S, V) semiring-semimodule pair, $n \geq 1$

- $(S^{n \times n}, V^n)$ is again a semiring-semimodule pair
- (the action is matrix-vector product)
- If (S, V) is a continuous Kleene ω -algebra, then so is $(S^{n \times n}, V^n)$

• with
$$M_i^{\omega} = \bigvee_{1 \le k_1, k_2, \dots \le n} M_{i,k_1} M_{k_1,k_2} \cdots$$

• and for $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,
 $M^{\omega} = \begin{bmatrix} (a \lor bd^*c)^{\omega} \lor (a \lor bd^*c)^* bd^{\omega} \\ (d \lor ca^*b)^{\omega} \lor (d \lor ca^*b)^* ca^{\omega} \end{bmatrix}$

(recursively)

Infinite Runs in Weighted Automata

(S, V) continuous Kleene ω -algebra (α, M, κ) weighted automaton over S

- Reorder S = {1,..., n} so that κ = (1,...,1,⊥,...,⊥)
 i.e. the first k ≤ n states are accepting
- Büchi behavior of A: write $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, with $a \in S^{k \times k}$, then $\|A\| = \alpha \begin{bmatrix} (a + bd^*c)^{\omega} \\ d^*c(a + bd^*c)^{\omega} \end{bmatrix}$

• Theorem:

$$||A|| = \bigvee \big\{ \prod w_n \mid s_i \xrightarrow{w_0} \cdots \text{ Büchi path in } S \big\}$$

 $(s_i \xrightarrow{w_0} \xrightarrow{w_1} \cdots$ Büchi path if $\alpha_i = 1$ and some s_j with $j \leq k$ is visited infinitely often)

Problem

continuous Kleene algebras	continuous Kleene ω -algebras
*-continuous Kleene algebras	???

Problem

continuous Kleene algebras	continuous Kleene ω -algebras
*-continuous Kleene algebras	*-continuous Kleene ω -algebras

[Ésik, F., Legay 2015 (DLT)]

Generalized *-Continuous Kleene Algebras [EFL'15]

- semiring-semimodule pair (S, V)
- where S is a *-continuous Kleene algebra
- such that for all $x, y \in S$, $v \in V$, $xy^*v = \bigvee_{n \ge 0} xy^n v$

*-Continuous Kleene ω -Algebras [EFL'15]

- generalized *-continuous Kleene algebra (S, V)
- with an infinite product $\prod : S^{\omega} \to V$ such that:
 - For all $x_0, x_1, \ldots \in S$, $\prod x_n = x_0 \prod x_{n+1}$.
 - Let $x_0, x_1, \ldots \in S$ and $0 = n_0 \le n_1 \le \cdots$ a sequence which increases without a bound. Let $y_k = x_{n_k} \cdots x_{n_{k+1}-1}$ for all $k \ge 0$. Then $\prod x_n = \prod y_k$.
 - For all $x_0, x_1, \ldots, y, z \in S$, $\prod(x_n(y \lor z)) = \bigvee_{x'_0, x'_1, \ldots \in \{y, z\}} \prod x_n x'_n.$
 - For all $x, y_0, y_1, \ldots \in S$, $\prod x^* y_n = \bigvee_{k_0, k_1, \ldots \ge 0} \prod x^{k_n} y_n$.

Matrix Semiring-Semimodule Pairs, Revisited [EFL'15]

$$(S,V)$$
 *-continuous Kleene ω -algebra, $n\geq 1$

- $(S^{n \times n}, V^n)$ is a generalized *-continuous Kleene algebra
- with an operation ${}^\omega: S^{n imes n} o V^n$ given by

$$M_i^{\omega} = \bigvee_{1 \leq k_1, k_2, \dots \leq n} M_{i, k_1} M_{k_1, k_2} \cdots$$

• and for
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,
$$M^{\omega} = \begin{bmatrix} (a \lor bd^*c)^{\omega} \lor (a \lor bd^*c)^* bd^{\omega} \\ (d \lor ca^*b)^{\omega} \lor (d \lor ca^*b)^* ca^{\omega} \end{bmatrix}$$

(recursively)

References

- Ésik, F., Legay, Quaas, ATVA 2013: Energy automata
- Ésik, F., Legay, DLT 2015: *-continuous Kleene ω -algebras
- Ésik, F., Legay, FICS 2015: *-continuous Kleene ω-algebras for energy automata
- Cachera, F., Legay, FSTTCS 2015: *-continuous Kleene ω-algebras for real-time energy problems

Outline

1 Least Fixed Points via *-Continuous Kleene Algebras

2 Greatest Fixed Points via *-Continuous Kleene ω -Algebras

Outline

Least Fixed Points via *-Continuous Kleene Algebras

2) Greatest Fixed Points via *-Continuous Kleene ω -Algebras

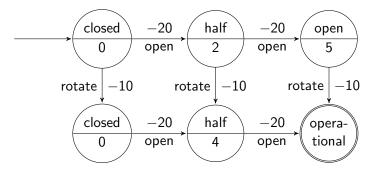
3 Real-Time Energy Automata

Conclusion

Example

David Cachera, Uli Fahrenberg, Axel Legay Real-Time Energy Problems

Example



- given initial energy and time budget
- spend time in states to regain energy
- lose energy on transitions
- decide reachability / Büchi acceptance

Real-Time Energy Automata

- A Real-Time Energy Automaton (S, s_0, F, T, r) :
 - finite set S of states,
 - initial state $s_0 \in S$,
 - accepting states $F \subseteq S$,
 - transitions $T \subseteq S \times \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \times S$ • $s \xrightarrow{p}{b} s'$; p price, b bound

Semantics:

• configurations $(s, x, t) \in C = S imes \mathbb{R}_{\geq 0} imes \mathbb{R}_{\geq 0}$

• x energy value; t available time

• $(s, x, t) \rightsquigarrow (s', x', t')$ iff $d = t - t' \ge 0$ and $\exists (s, p, b, s') \in T$ such that

•
$$x + dr(s) \ge b$$
 and
• $x' = x + dr(s) + p$

Problems

Let $A = (S, s_0, F, T, r)$ be a computable real-time energy automaton and $x_0, t, y \in [0, \infty]$ computable numbers.

State reachability:Does there exist a finite run
 $(s_0, x_0, t) \rightsquigarrow \cdots \rightsquigarrow (s, x, t')$ in A with $s \in F$?Coverability:Does there exist a finite run
 $(s_0, x_0, t) \rightsquigarrow \cdots \rightsquigarrow (s, x, t')$ in A with $s \in F$ and
 $x \ge y$?Büchi acceptance:Does there exist $s \in F$ and an infinite run
 $(s_0, x_0, t) \rightsquigarrow (s_1, x_1, t_1) \rightsquigarrow \cdots$ in A in which $s_n = s$
for infinitely many n > 0?

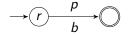
Real-Time Energy Functions

Idea: a real-time energy automaton computes a function

 $(x, t) \mapsto y$

(input energy, available time) \mapsto output energy

Atomic functions:

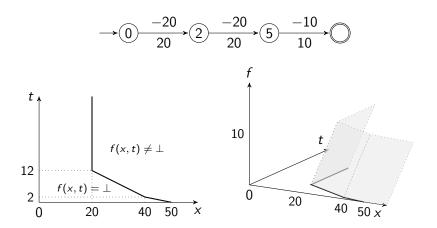


$$f(x,t) = \begin{cases} x + r t + p & \text{if } x + r t \ge b , \\ \bot & \text{otherwise} \end{cases}$$

Composition:

$$f \triangleright g(x,t) = \bigvee_{t_1+t_2=t} g(f(x,t_1),t_2)$$

Example



Operations on Real-Time Energy Functions

Composition:
$$f \triangleright g(x, t) = \bigvee_{t_1+t_2=t} g(f(x, t_1), t_2)$$

Maximum: $f \lor g(x, t) = \max(f(x, t), g(x, t))$
Star: $f^*(x, t) = \bigvee_{n \ge 0} f^n(x, t)$

Definition

 $\mathcal{E}\colon$ set of functions generated by atomic functions under \lor and $\triangleright.$

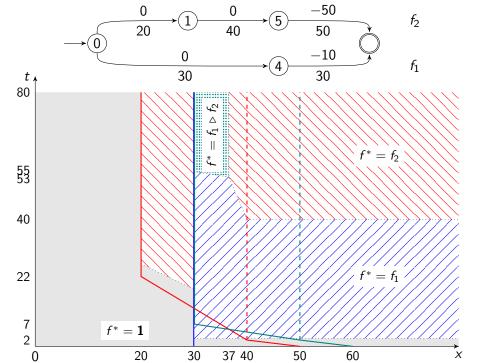
Lemma

For every
$$f \in \mathcal{E}$$
 there exists $N \ge 0$ so that $f^* = \bigvee_{n=0}^{N} f^n$.

Corollary

 ${\mathcal E}$ is locally closed, hence a *-continuous Kleene algebra.

David Cachera, Uli Fahrenberg, Axel Legay Real-Time Energy Problems



Reachability & Coverability

Let $A = (\alpha, M, \kappa)$ be a computable real-time energy automaton.

(Recall: α ∈ {⊥,1}ⁿ initial vector, κ ∈ {⊥,1}ⁿ accepting vector, M ∈ S^{n×n} transition matrix)

Compute $|A| = \alpha M^* \kappa$.

Let $x_0, t, y \in [0, \infty]$ computable numbers.

Theorem

There exists a finite run $(s_0, x_0, t) \rightsquigarrow \cdots \rightsquigarrow (s, x, t')$ in A with $s \in F$ iff $|A|(x_0, t) > \bot$.

Theorem

There exists a finite run $(s_0, x_0, t) \rightsquigarrow \cdots \rightsquigarrow (s, x, t')$ in A with $s \in F$ and $x \ge y$ iff $|A|(x_0, t) \ge y$.

Büchi Acceptance

- $\mathbb{B} = \{ \mathbf{f}, \mathbf{t} \}$: the Boolean lattice, $\mathbf{f} < \mathbf{t}$
- \mathcal{V} : set of monotonic functions $[0,\infty] \times [0,\infty] \to \mathbb{B}$
- infinite product $\mathcal{E}^{\omega} \to \mathcal{V}$: $\prod_{n\geq 0} f_n(x, t) = \mathbf{t}$ iff $\exists t_0, t_1, \ldots \in [0, \infty] : \sum_{n=0}^{\infty} t_n = t$ and $\forall n \geq 0$, $f_n(t_n) \circ \cdots \circ f_0(t_0)(x) \neq \bot$
- \mathcal{U} : subset of \mathcal{V} generated by infinite products of \mathcal{E} -functions: a left \mathcal{E} -semimodule

Theorem

 $(\mathcal{E}, \mathcal{U})$ forms a *-continuous Kleene ω -algebra.

Büchi Acceptance

Let $A = (\alpha, M, \kappa)$ be a computable real-time energy automaton.

Write
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, with $a \in S^{k \times k}$, and compute
 $\|A\| = \alpha \begin{bmatrix} (a + bd^*c)^{\omega} \\ d^*c(a + bd^*c)^{\omega} \end{bmatrix}$

Let $x_0, t, y \in [0, \infty]$ computable numbers.

Theorem

There exists $s \in F$ and an infinite run $(s_0, x_0, t) \rightsquigarrow (s_1, x_1, t_1) \rightsquigarrow \cdots$ in A in which $s_n = s$ for infinitely many $n \ge 0$ iff $||A||(x_0, t) = \mathbf{t}$.

- Functions in ${\mathcal E}$ are computable piecewise linear, hence |A| and $\|A\|$ are computable
- (probably in EXPTIME)

Istead of a Conclusion

Uli Fahrenberg, PhD in maths 2005, 64 publications, looking for a job

- higher-dimensional automata
- weighted timed automata
- energy problems
- quantitative verification
- interface and specification theories
- algebraic methods
- teaching
- project administration