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Kleene Algebras

idempotent semiring S = (S ,∨, ·,⊥, 1)

with an operation ∗ : S → S which computes least fixed points:

for all x , y ∈ S :

yx∗ is the least fixed point of z = zx ∨ y ,
x∗y is the least fixed point of z = xz ∨ y ,

with respect to the natural order x ≤ y iff x ∨ y = y

Consequence (for y = 1):

x∗ is the l.f.p. of z = zx ∨ 1 and of z = xz ∨ 1
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∗-Continuous Kleene Algebras

Kleene algebra S = (S ,∨, ·,∗ ,⊥, 1)

in which all infinite suprema
∨
{xn | n ≥ 0} exist,

and such that for all x , y , z ∈ S , xy∗z =
∨
n≥0

xynz

Consequence (for x = z = 1): x∗ =
∨
n≥0

xn

L.f.p. properties of ∗ also follow

Consequence: loop abstraction

x

y

z

local: xy∗z global:
∨
n≥0

xynz
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Continuous Kleene Algebras

Kleene algebra S = (S ,∨, ·,∗ ,⊥, 1)

in which all suprema
∨
X , X ⊆ S exist,

and such that for all X ⊆ S , y , z ∈ S , y
(∨

X
)
z =

∨
yXz

All continuous Kleene algebras are ∗-continuous, but not
vice-versa

Example: regular languages over some Σ

[Kozen 1990 (MFCS)]: not all Kleene algebras are ∗-continuous

Counterexample is necessarily infinite
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Matrix Semirings

S semiring, n ≥ 1

Sn×n: semiring of n × n-matrices over S

(with matrix addition and multiplication)

If S is a ∗-continuous Kleene algebra, then so is Sn×n

with M∗i ,j =
∨
m≥0

∨
1≤k1,...,km≤n

Mi ,k1Mk1,k2 · · ·Mkm,j

and for M =

[
a b
c d

]
,

M∗ =

[
(a ∨ bd∗c)∗ (a ∨ bd∗c)∗bd∗

(d ∨ ca∗b)∗ca∗ (d ∨ ca∗b)∗

]
(recursively)
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Finite Runs in Weighted Automata

S ∗-continuous Kleene algebra, n ≥ 1

a weighted automaton over S (with n states): A = (α,M, κ)

α ∈ {⊥, 1}n initial vector, κ ∈ {⊥, 1}n accepting vector,
M ∈ Sn×n transition matrix

finite behavior of A: |A| = αM∗κ

Theorem:

|A| =
∨{

w0 · · ·wn

∣∣ si w0−→ · · · wn−→ sj accepting path in S
}

(si
w0−→ · · · wn−→ sj accepting if αi = κj = 1)
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Idempotent Semiring-Semimodule Pairs

idempotent semiring S = (S ,∨, ·,⊥, 1)

commutative idempotent monoid V = (V ,∨,⊥)

left S-action S × V → V , (s, v) 7→ sv

such that for all s, s ′ ∈ S , v ∈ V :

(s ∨ s ′)v = sv ∨ s ′v s(v ∨ v ′) = sv ∨ sv ′

(ss ′)v = s(s ′v) ⊥s = ⊥
s⊥ = ⊥ 1v = v
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Continuous Kleene ω-Algebras

idempotent semiring-semimodule pair (S ,V )

where S is a continuous Kleene algebra,

V is a complete lattice,

and the S-action on V preserves all suprema in either
argument,

with an infinite product
∏

: Sω → V such that:

For all x0, x1, . . . ∈ S ,
∏

xn = x0
∏

xn+1.
Let x0, x1, . . . ∈ S and 0 = n0 ≤ n1 ≤ · · · a sequence
which increases without a bound. Let yk = xnk · · · xnk+1−1
for all k ≥ 0. Then

∏
xn =

∏
yk .

For all X0,X1, . . . ⊆ S ,∏
(
∨

Xn) =
∨
{
∏

xn | xn ∈ Xn, n ≥ 0}.
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Matrix Semiring-Semimodule Pairs

(S ,V ) semiring-semimodule pair, n ≥ 1

(Sn×n,V n) is again a semiring-semimodule pair

(the action is matrix-vector product)

If (S ,V ) is a continuous Kleene ω-algebra, then so is
(Sn×n,V n)

with Mω
i =

∨
1≤k1,k2,...≤n

Mi ,k1Mk1,k2 · · ·

and for M =

[
a b
c d

]
,

Mω =

[
(a ∨ bd∗c)ω ∨ (a ∨ bd∗c)∗bdω

(d ∨ ca∗b)ω ∨ (d ∨ ca∗b)∗caω

]
(recursively)
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Infinite Runs in Weighted Automata

(S ,V ) continuous Kleene ω-algebra
(α,M, κ) weighted automaton over S

Reorder S = {1, . . . , n} so that κ = (1, . . . , 1,⊥, . . . ,⊥)

i.e. the first k ≤ n states are accepting

Büchi behavior of A: write M =

[
a b
c d

]
, with a ∈ Sk×k , then

‖A‖ = α

[
(a + bd∗c)ω

d∗c(a + bd∗c)ω

]
Theorem:

‖A‖ =
∨{∏

wn

∣∣ si w0−→ w1−→ · · · Büchi path in S
}

(si
w0−→ w1−→ · · · Büchi path if αi = 1 and some sj with j ≤ k is

visited infinitely often)

David Cachera, Uli Fahrenberg, Axel Legay Real-Time Energy Problems



∗-Continuous Kleene Algebras ∗-Continuous Kleene ω-Algebras Real-Time Energy Automata Conclusion

Problem

continuous Kleene algebras continuous Kleene ω-algebras

∗-continuous Kleene algebras ???

[Ésik, F., Legay 2015 (DLT)]
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Problem

continuous Kleene algebras continuous Kleene ω-algebras

∗-continuous Kleene algebras ∗-continuous Kleene ω-algebras

[Ésik, F., Legay 2015 (DLT)]
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Generalized ∗-Continuous Kleene Algebras [EFL’15]

semiring-semimodule pair (S ,V )

where S is a ∗-continuous Kleene algebra

such that for all x , y ∈ S , v ∈ V , xy∗v =
∨
n≥0

xynv
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∗-Continuous Kleene ω-Algebras [EFL’15]

generalized ∗-continuous Kleene algebra (S ,V )

with an infinite product
∏

: Sω → V such that:

For all x0, x1, . . . ∈ S ,
∏

xn = x0
∏

xn+1.
Let x0, x1, . . . ∈ S and 0 = n0 ≤ n1 ≤ · · · a sequence
which increases without a bound. Let yk = xnk · · · xnk+1−1
for all k ≥ 0. Then

∏
xn =

∏
yk .

For all x0, x1, . . . , y , z ∈ S ,∏
(xn(y ∨ z)) =

∨
x ′0,x

′
1,...∈{y ,z}

∏
xnx
′
n.

For all x , y0, y1, . . . ∈ S ,
∏

x∗yn =
∨

k0,k1,...≥0

∏
xknyn.
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Matrix Semiring-Semimodule Pairs, Revisited [EFL’15]

(S ,V ) ∗-continuous Kleene ω-algebra, n ≥ 1

(Sn×n,V n) is a generalized ∗-continuous Kleene algebra

with an operation ω : Sn×n → V n given by

Mω
i =

∨
1≤k1,k2,...≤n

Mi ,k1Mk1,k2 · · ·

(not a general infinite product)

and for M =

[
a b
c d

]
,

Mω =

[
(a ∨ bd∗c)ω ∨ (a ∨ bd∗c)∗bdω

(d ∨ ca∗b)ω ∨ (d ∨ ca∗b)∗caω

]
(recursively)
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Example
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Example
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Real-Time Energy Automata

A Real-Time Energy Automaton (S , s0,F ,T , r):

finite set S of states,

initial state s0 ∈ S ,

accepting states F ⊆ S ,

transitions T ⊆ S ×R≤0 ×R≥0 × S

s
p−−→
b

s ′; p price, b bound

Semantics:

configurations (s, x , t) ∈ C = S ×R≥0 ×R≥0
x energy value; t available time

(s, x , t) (s ′, x ′, t ′) iff d = t − t ′ ≥ 0 and ∃ (s, p, b, s ′) ∈ T
such that

x + d r(s) ≥ b and
x ′ = x + d r(s) + p
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Problems

Let A = (S , s0,F ,T , r) be a computable real-time energy
automaton and x0, t, y ∈ [0,∞] computable numbers.

State reachability: Does there exist a finite run
(s0, x0, t) · · · (s, x , t ′) in A with s ∈ F?

Coverability: Does there exist a finite run
(s0, x0, t) · · · (s, x , t ′) in A with s ∈ F and
x ≥ y?

Büchi acceptance: Does there exist s ∈ F and an infinite run
(s0, x0, t) (s1, x1, t1) · · · in A in which sn = s
for infinitely many n ≥ 0?
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Real-Time Energy Functions

Idea: a real-time energy automaton computes a function

(x , t) 7→ y

(input energy, available time) 7→ output energy

Atomic functions:

r
p

b

f (x , t) =

{
x + r t + p if x + r t ≥ b ,

⊥ otherwise

Composition:

f . g(x , t) =
∨

t1+t2=t

g(f (x , t1), t2)
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Example
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Operations on Real-Time Energy Functions

Composition: f . g(x , t) =
∨

t1+t2=t

g(f (x , t1), t2)

Maximum: f ∨ g(x , t) = max(f (x , t), g(x , t))

Star: f ∗(x , t) =
∨
n≥0

f n(x , t)

Definition

E : set of functions generated by atomic functions under ∨ and ..

Lemma

For every f ∈ E there exists N ≥ 0 so that f ∗ =
∨N

n=0 f
n.

Corollary

E is locally closed, hence a ∗-continuous Kleene algebra.
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Reachability & Coverability

Let A = (α,M, κ) be a computable real-time energy automaton.

(Recall: α ∈ {⊥, 1}n initial vector, κ ∈ {⊥, 1}n accepting
vector, M ∈ Sn×n transition matrix)

Compute |A| = αM∗κ.

Let x0, t, y ∈ [0,∞] computable numbers.

Theorem

There exists a finite run (s0, x0, t) · · · (s, x , t ′) in A with
s ∈ F iff |A|(x0, t) > ⊥.

Theorem

There exists a finite run (s0, x0, t) · · · (s, x , t ′) in A with
s ∈ F and x ≥ y iff |A|(x0, t) ≥ y.
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Büchi Acceptance

B = {ff, tt}: the Boolean lattice, ff < tt

V: set of monotonic functions [0,∞]× [0,∞]→ B
infinite product Eω → V:

∏
n≥0 fn(x , t) = tt iff

∃ t0, t1, . . . ∈ [0,∞] :
∑∞

n=0 tn = t and ∀ n ≥ 0,
fn(tn) ◦ · · · ◦ f0(t0)(x) 6= ⊥
U : subset of V generated by infinite products of E-functions: a
left E-semimodule

Theorem

(E ,U) forms a ∗-continuous Kleene ω-algebra.
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Büchi Acceptance

Let A = (α,M, κ) be a computable real-time energy automaton.

Write M =

[
a b
c d

]
, with a ∈ Sk×k , and compute

‖A‖ = α

[
(a + bd∗c)ω

d∗c(a + bd∗c)ω

]
Let x0, t, y ∈ [0,∞] computable numbers.

Theorem

There exists s ∈ F and an infinite run (s0, x0, t) (s1, x1, t1) · · ·
in A in which sn = s for infinitely many n ≥ 0 iff ‖A‖(x0, t) = tt.

Functions in E are computable piecewise linear, hence |A| and
‖A‖ are computable

(probably in EXPTIME)

David Cachera, Uli Fahrenberg, Axel Legay Real-Time Energy Problems



∗-Continuous Kleene Algebras ∗-Continuous Kleene ω-Algebras Real-Time Energy Automata Conclusion

Istead of a Conclusion
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