
Timed Automata and Friends
. . . and What They Can (and Cannot) Do for You

Uli Fahrenberg

Inria Rennes (for now)

June 13, 2016

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Timed Automata

Invented by Rajeev Alur and David Dill (ICALP 1990 / TCS
1994)

Popularized by Kim G. Larsen, Wang Yi and many others

Robust tool support (TRL9): UppAal (Aalborg University,
Denmark)

in France: Cachan, Bordeaux, Grenoble

for this talk: thanks to Kim G. Larsen, Claus Thrane, Patricia
Bouyer, Nicolas Markey, and Benedikt Bollig

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

A Timed Automaton

press? press?

click!

double click!

x ← 0 x < 300

x ≤ 300

x = 300

x = 300

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Results

Reachability is PSPACE-complete

Emptiness is PSPACE-complete, universality is undecidable

Decidability via regions; fast algorithms via zones

Extensions: weighted timed automata; timed games

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Overview

1 Timed Automata
Definitions
Regions
Zones

2 Extensions: Weights and Games
Extensions
Weighted Timed Automata
Timed Games

3 Distributed Timed Automata
Networks of Timed Automata
Distributed Timed Automata
Existential and Universal Semantics
Reactive Semantics

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Timed Automata: Syntax

Definition

The set Φ(C) of clock constraints φ over a finite set C is defined by
the grammar

φ ::= x ./ k | x − y ./ k | φ1 ∧ φ2

(x , y ∈ C , k ∈ Z, ./ ∈ {≤, <,≥, >}).

Definition

A timed automaton is a tuple (L, `0,C ,Σ, I ,E) consisting of a finite
set L of locations, an initial location `0 ∈ L, a finite set C of clocks,
a finite set Σ of actions, a location invariants mapping
I : L→ Φ(C), and a set E ⊆ L× Φ(C)× Σ× 2C × L of edges.

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Timed Automata: Semantics

Definition

The operational semantics of a timed automaton
A = (L, `0,C ,Σ, I ,E) is the transition system
JAK = (S , s0,Σ ∪R≥0,T = Ts ∪ Td) given as follows:

S =
{

(`, v) ∈ L×RC
≥0

∣∣ v |= I (`)
}

s0 = (`0, v0)

Ts =
{

(`, v)
a−→ (`′, v ′)

∣∣ ∃(`, φ, a, r , `′) ∈ E :

v |= φ, v ′ = v [r ← 0]
}

Td =
{

(`, v)
d−→ (`, v + d)

∣∣ ∀d ′ ∈ [0, d] : v + d ′ |= I (`)
}

v ∈ RC
≥0: clock valuation

operations on clock valuations:

v [r ← 0](x) =

{
0 if x ∈ r

v(x) if x /∈ r
(v + d)(x) = v(x) + d

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Regions: Example

0
0

1

1

2

2

clock y

clock x

`1 `2

y < 1

x ← 0

0

1

2

0 0 1 1 1 2 1 2 1 2

delay delay delay

delay

x←0

x←0

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Regions: Definition

Let A = (L, `0,C ,Σ, I ,E) be a timed automaton

For each x ∈ C , let Mx be the maximal constant which x is
compared to in A

Definition

Clock valuations v , v ′ : C → R≥0 are region equivalent, denoted
v ∼= v ′, if

bv(x)c = bv ′(x)c or v(x), v ′(x) > Mx , for all x ∈ C , and

〈v(x)〉 = 0 iff 〈v ′(x)〉 = 0, for all x ∈ C , and

〈v(x)〉 ≤ 〈v(y)〉 iff 〈v ′(x)〉 ≤ 〈v ′(y)〉 for all x , y ∈ C .

bv(x)c: integer part; 〈v(x)〉: fractional part

Extend to states by (`, v) ∼= (`′, v ′) iff ` = `′ and v ∼= v ′

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Regions: Reachability

Let A = (L, `0,C ,Σ, I ,E) be a timed automaton

Theorem
∼= is a time-abstracted bisimulation: for all (`1, v1) ∼= (`2, v2):

for all (`1, v1)
d−→ (`′1, v

′
1) there is (`2, v2)

d ′
−→ (`′2, v

′
2) such

that (`′1, v
′
1) ∼= (`′2, v

′
2);

for all (`1, v1)
a−→ (`′1, v

′
1) there is (`2, v2)

a−→ (`′2, v
′
2) such

that (`′1, v
′
1) ∼= (`′2, v

′
2);

and vice versa.

Hence reachability can be decided in the quotient JAK/∼=
JAK/∼= is called the region automaton of A

the number of states in JAK/∼= is bounded above by
|C |! · 2|C | ·

∏
x∈C (2Mx + 2), hence finite

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Languages of Timed Automata

A timed automaton accepts timed words: sequences
(a1, t1), (a2, t2), . . .

symbols with time stamps: t1 ≤ t2 ≤ · · ·
timed regular languages: closed under intersection and union,
not under complement

a a a

a

x ← 0

a

x = 1

timed automata are not determinizable

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Untimed Languages of Timed Automata

UL(A): untimed language of A

all projections of timed words to Σ∗

Theorem: UL(A) = L(JAK/ ∼=)

Hence UL(A) is regular

Conversely, for any L regular, there is a timed automaton
A with L = UL(A).

Corollary: emptiness decidable; untimed regular model checking
decidable

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Zones: Definition

The region automaton is too big to be practical

All tools use zones: convex unions of regions

Recall clock constraints:

φ ::= x ./ k | x − y ./ k | φ1 ∧ φ2

(x , y ∈ C , k ∈ Z, ./ ∈ {≤, <,≥, >}).

The zone of φ: JφK = {v : C → R≥0 | v |= φ}
(“half octagons”)

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Zones: Example

`0

`1 `2

`3

`f

x ← 0 y ← 0

y > 1 x > 1

x ≤ 1 ∧ y ≤ 1

`0 :

`1 : `2 :

`3 : ∪

`f : ∪

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Zones: Reachability Algorithm

Input: timed automaton (L, `0,C ,Σ, I ,E), `f ∈ L
Output: true iff ∃vf : C → R≥0 : (`0, v0) ∗ (`f , vf)
1: Waiting← {(`0, intersectI (`0)(delay({v0})))}; Passed← ∅
2: while Waiting 6= ∅ do
3: Choose and remove (`, v) from Waiting
4: if ` = `f then
5: return true
6: if (not is included(v , v ′)) for all (`, v ′) ∈ Passed then
7: Passed← Passed ∪ {(`, v)}
8: for all (`, φ, a, r , `′) ∈ E do
9: v ′ ← intersectI (`′)(delay(resetr (intersectφ(v))))

10: if not is empty(v ′) then
11: Waiting←Waiting ∪ {(`′, v ′)}
12: return false

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Zones: Representation

Zone digraph ∼= difference-bound matrix

Z =



x1 ≤ 3

x1 − x2 ≤ 10

x1 − x2 ≥ 4

x1 − x3 ≤ 2

x3 − x2 ≤ 2

x3 ≥ −5
x0

x1 x2

x3

5

3 2

10

-4

2

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Zones: Representation

x0

x1 x2

x3

5

3 2

10

-4

2

x0

x1 x2

x3

3 7

5

3 2

4

-4

-2
-1

-2
2

1

shortest-path closure

x0

x1 x2

x3

33 2

-4

2

shortest-path reduction

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Zones: Algorithms

Using closures or reductions

Delay, reset, intersection, inclusion check can be done
in O(|C |3)

In practice: combined Passed-Waiting list

Each location has a list of zones (∼= union)

Represented using clock decision diagrams

Extract DBMs from CDD perform operations on each
re-combine to new CDD

Use max-plus polyhedra instead of zones? (Probably not!)

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Timed Automata

Useful for modeling synchronous real-time systems

Reachability, emptiness, LTL model checking
PSPACE-complete

Universality undecidable

Decidability via regions; undecidability via two-counter
machines

Fast on-the-fly algorithms, using zones, for reachability,
liveness, and Timed CTL model checking

Next: Extensions

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Extensions

More clock constraints, e.g. x + y ./ k: reachability
undecidable
Stopwatches: reachability undecidable
Rectangular hybrid automata: reachability undecidable

Initialized rectangular automata: reachability decidable,
but no zone-based algorithms

→ Weighted timed automata:
Optimal reachability decidable; on-the fly zone algorithm
Same for conditional optimal reachability for multi-weights
Also other problems decidable, but no zones

→ Timed games:
Reachability and safety games decidable; on-the fly zone
algorithm, but slow
Also for partial observability
Weighted timed games: very difficult

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Weighted Timed Automata

R = 2

x ≤ 3

high

R = 5

x ≤ 3

medium

R = 9

lowx = 3 x ← 0

deg

x = 3

deg

y ≥ 2 x , y ← 0

att P = 2

y ≥ 2 x , y ← 0

att P = 1

Models a plant with three modes of production

Goal: incur lowest long-term cost

Minimal cost-per-time: computable, but uses corner-point
abstraction (finer than regions)

No zone-based algorithm

Same for minimal discounted cost

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Corner-Point Abstraction: Example

0
0

1

1

2

2

y

x

`1 `2

y < 1

x ← 0

P = 5
R = 3 R = 1

0

1 1

2

0 0 1 0 1 2 1 2 1 2

0

1 1

2

0 0 1 0 1 1 1 2 1 2

x←0

+5

x←
0

+5

+5x←0

delay

0

delay

0

delay

+3

delay

0

delay0

delay

+3

delay

0

delay

0

delay

0

delay0

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Optimal Reachability

Problem

Given a weighted timed automaton A and ε > 0, compute
W = inf{w(ρ)

∣∣ ρ accepting run in A} and an accepting run ρ for
which w(ρ) <W + ε.

Theorem

The optimal reachability problem for weighted timed automata with
non-negative weights is PSPACE-complete.

Corollary: Time-optimal reachability for timed automata is also
PSPACE-complete

Fast on-the-fly algorithms using weighted zones: zones with
affine cost functions

But weighted zones may need to be split during exploration

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Conditional Optimal Reachability

Problem

Given a doubly weighted timed automaton A, M ∈ Z, and ε > 0,
compute W = inf

{
w1(ρ)

∣∣ ρ accepting run in A,w2(ρ) ≤ M} and
an accepting run ρ for which w2(ρ) ≤ M and w1(ρ) <W + ε.

Theorem

The conditional optimal reachability problem is computable for
doubly weighted timed automata with non-negative weights.

Can also compute Pareto frontier

Fast on-the-fly algorithms using doubly weighted zones

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Timed Games

`1 `2 `3 `4

`5 `6

x ≤ 1

c1

x < 1
u3 c3

x > 1 u1 x ≥ 2 c2

x < 1, u2, x ← 0

x ≤ 1, c4

Winning strategy:

σ(`1, v) =

{
δ if v(x) 6= 1

c1 if v(x) = 1
σ(`2, v) =

{
δ if v(x) < 2

c2 if v(x) ≥ 2

σ(`3, v) =

{
δ if v(x) < 1

c3 if v(x) ≥ 1
σ(`4, v) =

{
δ if v(x) 6= 1

c4 if x(x) = 1

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Timed Games

`1 `2 `3 `4

`5 `6

x ≤ 1

c1

x < 1
u3 c3

x > 1 u1 x ≥ 2 c2

x < 1, u2, x ← 0

x ≤ 1, c4

Winning strategy:

σ(`1, v) =

{
δ if v(x) 6= 1

c1 if v(x) = 1
σ(`2, v) =

{
δ if v(x) < 2

c2 if v(x) ≥ 2

σ(`3, v) =

{
δ if v(x) < 1

c3 if v(x) ≥ 1
σ(`4, v) =

{
δ if v(x) 6= 1

c4 if x(x) = 1

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Reachability and Safety Games

Lemma

If the player has a winning strategy in the reachability or safety
game, then she has a memoryless winning strategy.

Theorem

The reachability and safety games for timed games are
EXPTIME-complete.

Same for time-optimal reachability and safety games

On-the-fly algorithm using zones

Forward and backwards exploration

Needs to compute differences of zones state space explosion

Use max-plus polyhedra instead of zones?

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

References

P. Bouyer, U.F., K.G. Larsen, N. Markey. Quantitative analysis
of real-time systems. Communications of the ACM,
54(9):78-87, 2011.

U.F., K.G. Larsen, A. Legay. Model-Based Verification,
Optimization, Synthesis and Performance Evaluation of
Real-Time Systems. In Unifying Theories of Programming and
Formal Engineering Methods, LNCS 8050, Springer 2013.

X. Allamigeon, U.F., S. Gaubert, R. Katz, A. Legay. Tropical
Fourier-Motzkin Elimination, with an Application to Real-Time
Verification. International Journal of Algebra and Computation
24(5):569-607, 2014

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Distributed Timed Automata with Independently Evolving
Clocks
S. Akshay, B. Bollig, P. Gastin, M. Mukund, K.N. Kumar, Fundamenta Informaticae
130(4): 377-407, 2014

Product of timed automata: Let A1 = (L1, `
1
0,C1,Σ1, I1,E1),

A2 = (L2, `
2
0,C2,Σ2, I2,E2). Then

A1 × A2 = (L1 × L2, (`
1
0, `

2
0),C1 t C2, I ,E), with

I (`1, `2) = I1(`1) ∧ I2(`2)

E = {((`1, `2), φ, a, r , (`′1, `2)) | (`1, φ, a, r , `
′
1) ∈ E1}

∪ {((`1, `2), φ, a, r , (`1, `
′
2)) | (`2, φ, a, r , `

′
2) ∈ E2}

Can be combined with different types of action synchronization

Popular specification formalism e.g. in UppAal

Clocks are synchronized

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Distributed Timed Automata

Network A = (A1, . . . ,An) of timed
automata

Together with local time rates
τ1, . . . , τn : R≥0 → R≥0

all τi continuous, strictly increasing,
diverging, with τi (0) = 0

Clocks in Ci can appear in constraints in all Aj , but can only
be reset in Ai

i.e. Ei ⊆ Li × Φ(C1 t · · · t Cn)× Σ× 2Ci × Li
(precise formalization in the paper is slightly different)

τi = id for all i : standard product of timed automata

Paper considers only untimed languages, for different types of
clock synchronization constraints

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Example

y ≤ 1

a

y ≤ 1

a

x ← 0

b

x ≥ 1

b

0 < x < 1

Lsync = {ε, a, aa, b, ab, ba, aba, baa, aab}
x slower than y : L = {ε, a, aa}
x faster than y :
L = {ε, a, aa, b, ab, ba, aba, baa, aab, abab, baab}
L∃ = {ε, a, aa, b, ab, ba, aba, baa, aab, abab, baab}
L∀ = {ε, a, aa}

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Non-Regular Behavior

x ≤ 1

a, x = 1, x ← 0

y ≤ 1

b, y = 1, y ← 0

τ2(t) ≈ 2t − .5
L = Pref(bab2ab4ab8a . . .)

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Existential Semantics

A = (A1, . . . ,An) network of timed automata

For τ = (τ1, . . . , τn) local time rates:
L(A, τ) := untimed language of A given τ

L∃(A) =
⋃
τ L(A, τ)

Theorem: L∃(A) is regular and can be obtained via a modified
region construction

Corollary: emptiness and regular model checking are decidable
for the existential semantics

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Universal Semantics

L∀(A) =
⋂
τ L(A, τ)

Theorem: emptiness and universality undecidable

Corollary: regular model checking undecidable

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Bounded Clock Drift

Restrict to two timed automata: A = (A1,A2), τ = (τ1, τ2)

For k ≥ 1: R rat≤k =
{
τ | ∀t > 0 :

1

k
≤ τ1(t)

τ2(t)
≤ k

}
For d ≥ 0: Rdiff≤d = {τ | ∀t > 0 : |τ1(t)− τ2(t)| ≤ d}

Lrat≤1
∀ (A) = Ldiff≤0

∀ (A) = UL(A), hence regular

For k > 1, emptiness and universality of Lrat≤k
∀ (A) undecidable

For d > 0, emptiness and universality of Ldiff≤d
∀ (A) undecidable

Nothing known about Lrat≤k
∃ (A) and Ldiff≤d

∃ (A)

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Reactive Semantics

s0

s1

s2

s3

a

0 < x < 1, 0 < y < 1

a

0 < x < 1, 0 < y < 1

b

x ≤ 1 ≤ y

b

y ≤ 1 ≤ x

Problem: L∀(A) = {ab}, but either through s1 or s2,
depending on future local time rates

Need to “know” future local time rates when deciding whether
to go to s1 or s2

Solution: reactive semantics Lreact(A): “choose future local
time rates only when it’s time”

(Formalization using games on region automaton;
complicated)

Lreact(A) is regular

Uli Fahrenberg Timed Automata and Friends

Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Distributed Timed Automata with Independent Clocks

Clocks within a component evolve in sync; clocks in different
components are independent

Untimed semantics: Lreact ⊆ L∀ ⊆ UL ⊆ L∃

Useful: bounds on clock drift: R rat≤k , Rdiff≤d

L∀, Lrat≤k
∀ and Ldiff≤d

∀ seem difficult to work with

Lreact and L∃ are regular

Nothing known about Lrat≤k
react , Ldiff≤d

react , Lrat≤k
∃ , and Ldiff≤d

∃

Useful as a starting point for distributed hybrid systems

We also care about timed semantics

For hybrid systems, we’re beyond undecidability

But zones are nice!

Uli Fahrenberg Timed Automata and Friends

	Timed Automata
	Definitions
	Regions
	Zones

	Extensions: Weights and Games
	Extensions
	Weighted Timed Automata
	Timed Games

	Distributed Timed Automata
	Networks of Timed Automata
	Distributed Timed Automata
	Existential and Universal Semantics
	Reactive Semantics

