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Timed Automata

Invented by Rajeev Alur and David Dill (ICALP 1990 / TCS
1994)

Popularized by Kim G. Larsen, Wang Yi and many others

Robust tool support (TRL9): UppAal (Aalborg University,
Denmark)

in France: Cachan, Bordeaux, Grenoble

for this talk: thanks to Kim G. Larsen, Claus Thrane, Patricia
Bouyer, Nicolas Markey, and Benedikt Bollig
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A Timed Automaton

press? press?

click!

double click!

x ← 0 x < 300

x ≤ 300

x = 300

x = 300
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Results

Reachability is PSPACE-complete

Emptiness is PSPACE-complete, universality is undecidable

Decidability via regions; fast algorithms via zones

Extensions: weighted timed automata; timed games
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Timed Automata: Syntax

Definition

The set Φ(C ) of clock constraints φ over a finite set C is defined by
the grammar

φ ::= x ./ k | x − y ./ k | φ1 ∧ φ2

(x , y ∈ C , k ∈ Z, ./ ∈ {≤, <,≥, >}).

Definition

A timed automaton is a tuple (L, `0,C ,Σ, I ,E ) consisting of a finite
set L of locations, an initial location `0 ∈ L, a finite set C of clocks,
a finite set Σ of actions, a location invariants mapping
I : L→ Φ(C ), and a set E ⊆ L× Φ(C )× Σ× 2C × L of edges.
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Timed Automata: Semantics

Definition

The operational semantics of a timed automaton
A = (L, `0,C ,Σ, I ,E ) is the transition system
JAK = (S , s0,Σ ∪R≥0,T = Ts ∪ Td) given as follows:

S =
{

(`, v) ∈ L×RC
≥0

∣∣ v |= I (`)
}

s0 = (`0, v0)

Ts =
{

(`, v)
a−→ (`′, v ′)

∣∣ ∃(`, φ, a, r , `′) ∈ E :

v |= φ, v ′ = v [r ← 0]
}

Td =
{

(`, v)
d−→ (`, v + d)

∣∣ ∀d ′ ∈ [0, d ] : v + d ′ |= I (`)
}

v ∈ RC
≥0: clock valuation

operations on clock valuations:

v [r ← 0](x) =

{
0 if x ∈ r

v(x) if x /∈ r
(v + d)(x) = v(x) + d
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Regions: Example

0
0

1

1

2

2

clock y

clock x

`1 `2

y < 1

x ← 0

0

1

2

0 0 1 1 1 2 1 2 1 2

delay delay delay

delay

x←0

x←0
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Regions: Definition

Let A = (L, `0,C ,Σ, I ,E ) be a timed automaton

For each x ∈ C , let Mx be the maximal constant which x is
compared to in A

Definition

Clock valuations v , v ′ : C → R≥0 are region equivalent, denoted
v ∼= v ′, if

bv(x)c = bv ′(x)c or v(x), v ′(x) > Mx , for all x ∈ C , and

〈v(x)〉 = 0 iff 〈v ′(x)〉 = 0, for all x ∈ C , and

〈v(x)〉 ≤ 〈v(y)〉 iff 〈v ′(x)〉 ≤ 〈v ′(y)〉 for all x , y ∈ C .

bv(x)c: integer part; 〈v(x)〉: fractional part

Extend to states by (`, v) ∼= (`′, v ′) iff ` = `′ and v ∼= v ′
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Regions: Reachability

Let A = (L, `0,C ,Σ, I ,E ) be a timed automaton

Theorem
∼= is a time-abstracted bisimulation: for all (`1, v1) ∼= (`2, v2):

for all (`1, v1)
d−→ (`′1, v

′
1) there is (`2, v2)

d ′
−→ (`′2, v

′
2) such

that (`′1, v
′
1) ∼= (`′2, v

′
2);

for all (`1, v1)
a−→ (`′1, v

′
1) there is (`2, v2)

a−→ (`′2, v
′
2) such

that (`′1, v
′
1) ∼= (`′2, v

′
2);

and vice versa.

Hence reachability can be decided in the quotient JAK/∼=
JAK/∼= is called the region automaton of A

the number of states in JAK/∼= is bounded above by
|C |! · 2|C | ·

∏
x∈C (2Mx + 2), hence finite
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Languages of Timed Automata

A timed automaton accepts timed words: sequences
(a1, t1), (a2, t2), . . .

symbols with time stamps: t1 ≤ t2 ≤ · · ·
timed regular languages: closed under intersection and union,
not under complement

a a a

a

x ← 0

a

x = 1

timed automata are not determinizable
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Untimed Languages of Timed Automata

UL(A): untimed language of A

all projections of timed words to Σ∗

Theorem: UL(A) = L(JAK/ ∼=)

Hence UL(A) is regular

Conversely, for any L regular, there is a timed automaton
A with L = UL(A).

Corollary: emptiness decidable; untimed regular model checking
decidable
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Zones: Definition

The region automaton is too big to be practical

All tools use zones: convex unions of regions

Recall clock constraints:

φ ::= x ./ k | x − y ./ k | φ1 ∧ φ2

(x , y ∈ C , k ∈ Z, ./ ∈ {≤, <,≥, >}).

The zone of φ: JφK = {v : C → R≥0 | v |= φ}
(“half octagons”)

Uli Fahrenberg Timed Automata and Friends



Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Zones: Example

`0

`1 `2

`3

`f

x ← 0 y ← 0

y > 1 x > 1

x ≤ 1 ∧ y ≤ 1

`0 :

`1 : `2 :

`3 : ∪

`f : ∪
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Zones: Reachability Algorithm

Input: timed automaton (L, `0,C ,Σ, I ,E ), `f ∈ L
Output: true iff ∃vf : C → R≥0 : (`0, v0) ∗ (`f , vf )
1: Waiting← {(`0, intersectI (`0)(delay({v0})))}; Passed← ∅
2: while Waiting 6= ∅ do
3: Choose and remove (`, v) from Waiting
4: if ` = `f then
5: return true
6: if (not is included(v , v ′)) for all (`, v ′) ∈ Passed then
7: Passed← Passed ∪ {(`, v)}
8: for all (`, φ, a, r , `′) ∈ E do
9: v ′ ← intersectI (`′)(delay(resetr (intersectφ(v))))

10: if not is empty(v ′) then
11: Waiting←Waiting ∪ {(`′, v ′)}
12: return false
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Zones: Representation

Zone  digraph ∼= difference-bound matrix

Z =



x1 ≤ 3

x1 − x2 ≤ 10

x1 − x2 ≥ 4

x1 − x3 ≤ 2

x3 − x2 ≤ 2

x3 ≥ −5
x0

x1 x2

x3

5

3 2

10

-4

2
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Zones: Representation

x0

x1 x2

x3

5

3 2

10

-4

2

x0

x1 x2

x3

3 7

5

3 2

4

-4

-2
-1

-2
2

1

shortest-path closure

x0

x1 x2

x3

33 2

-4

2

shortest-path reduction
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Zones: Algorithms

Using closures or reductions

Delay, reset, intersection, inclusion check can be done
in O(|C |3)

In practice: combined Passed-Waiting list

Each location has a list of zones (∼= union)

Represented using clock decision diagrams

Extract DBMs from CDD  perform operations on each  
re-combine to new CDD

Use max-plus polyhedra instead of zones? (Probably not!)
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Timed Automata

Useful for modeling synchronous real-time systems

Reachability, emptiness, LTL model checking
PSPACE-complete

Universality undecidable

Decidability via regions; undecidability via two-counter
machines

Fast on-the-fly algorithms, using zones, for reachability,
liveness, and Timed CTL model checking

Next: Extensions
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Extensions

More clock constraints, e.g. x + y ./ k: reachability
undecidable
Stopwatches: reachability undecidable
Rectangular hybrid automata: reachability undecidable

Initialized rectangular automata: reachability decidable,
but no zone-based algorithms

→ Weighted timed automata:
Optimal reachability decidable; on-the fly zone algorithm
Same for conditional optimal reachability for multi-weights
Also other problems decidable, but no zones

→ Timed games:
Reachability and safety games decidable; on-the fly zone
algorithm, but slow
Also for partial observability
Weighted timed games: very difficult
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Weighted Timed Automata

R = 2

x ≤ 3

high

R = 5

x ≤ 3

medium

R = 9

lowx = 3 x ← 0

deg

x = 3

deg

y ≥ 2 x , y ← 0

att P = 2

y ≥ 2 x , y ← 0

att P = 1

Models a plant with three modes of production

Goal: incur lowest long-term cost

Minimal cost-per-time: computable, but uses corner-point
abstraction (finer than regions)

No zone-based algorithm

Same for minimal discounted cost
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Corner-Point Abstraction: Example

0
0

1

1

2

2

y

x

`1 `2

y < 1

x ← 0

P = 5
R = 3 R = 1

0

1 1

2

0 0 1 0 1 2 1 2 1 2

0

1 1

2

0 0 1 0 1 1 1 2 1 2

x←0

+5

x←
0

+5

+5x←0

delay

0

delay

0

delay

+3

delay

0

delay0

delay

+3

delay

0

delay

0

delay

0

delay0

Uli Fahrenberg Timed Automata and Friends



Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Optimal Reachability

Problem

Given a weighted timed automaton A and ε > 0, compute
W = inf{w(ρ)

∣∣ ρ accepting run in A} and an accepting run ρ for
which w(ρ) <W + ε.

Theorem

The optimal reachability problem for weighted timed automata with
non-negative weights is PSPACE-complete.

Corollary: Time-optimal reachability for timed automata is also
PSPACE-complete

Fast on-the-fly algorithms using weighted zones: zones with
affine cost functions

But weighted zones may need to be split during exploration
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Conditional Optimal Reachability

Problem

Given a doubly weighted timed automaton A, M ∈ Z, and ε > 0,
compute W = inf

{
w1(ρ)

∣∣ ρ accepting run in A,w2(ρ) ≤ M} and
an accepting run ρ for which w2(ρ) ≤ M and w1(ρ) <W + ε.

Theorem

The conditional optimal reachability problem is computable for
doubly weighted timed automata with non-negative weights.

Can also compute Pareto frontier

Fast on-the-fly algorithms using doubly weighted zones
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Timed Games

`1 `2 `3 `4

`5 `6

x ≤ 1

c1

x < 1
u3 c3

x > 1 u1 x ≥ 2 c2

x < 1, u2, x ← 0

x ≤ 1, c4

Winning strategy:

σ(`1, v) =

{
δ if v(x) 6= 1

c1 if v(x) = 1
σ(`2, v) =

{
δ if v(x) < 2

c2 if v(x) ≥ 2

σ(`3, v) =

{
δ if v(x) < 1

c3 if v(x) ≥ 1
σ(`4, v) =

{
δ if v(x) 6= 1

c4 if x(x) = 1
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Timed Games

`1 `2 `3 `4

`5 `6

x ≤ 1

c1

x < 1
u3 c3

x > 1 u1 x ≥ 2 c2

x < 1, u2, x ← 0

x ≤ 1, c4

Winning strategy:

σ(`1, v) =

{
δ if v(x) 6= 1

c1 if v(x) = 1
σ(`2, v) =

{
δ if v(x) < 2

c2 if v(x) ≥ 2

σ(`3, v) =

{
δ if v(x) < 1

c3 if v(x) ≥ 1
σ(`4, v) =

{
δ if v(x) 6= 1

c4 if x(x) = 1

Uli Fahrenberg Timed Automata and Friends



Introduction Timed Automata Extensions: Weights and Games Distributed Timed Automata

Reachability and Safety Games

Lemma

If the player has a winning strategy in the reachability or safety
game, then she has a memoryless winning strategy.

Theorem

The reachability and safety games for timed games are
EXPTIME-complete.

Same for time-optimal reachability and safety games

On-the-fly algorithm using zones

Forward and backwards exploration

Needs to compute differences of zones  state space explosion

Use max-plus polyhedra instead of zones?
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Distributed Timed Automata with Independently Evolving
Clocks
S. Akshay, B. Bollig, P. Gastin, M. Mukund, K.N. Kumar, Fundamenta Informaticae
130(4): 377-407, 2014

Product of timed automata: Let A1 = (L1, `
1
0,C1,Σ1, I1,E1),

A2 = (L2, `
2
0,C2,Σ2, I2,E2). Then

A1 × A2 = (L1 × L2, (`
1
0, `

2
0),C1 t C2, I ,E ), with

I (`1, `2) = I1(`1) ∧ I2(`2)

E = {((`1, `2), φ, a, r , (`′1, `2)) | (`1, φ, a, r , `
′
1) ∈ E1}

∪ {((`1, `2), φ, a, r , (`1, `
′
2)) | (`2, φ, a, r , `

′
2) ∈ E2}

Can be combined with different types of action synchronization

Popular specification formalism e.g. in UppAal

Clocks are synchronized
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Distributed Timed Automata

Network A = (A1, . . . ,An) of timed
automata

Together with local time rates
τ1, . . . , τn : R≥0 → R≥0

all τi continuous, strictly increasing,
diverging, with τi (0) = 0

Clocks in Ci can appear in constraints in all Aj , but can only
be reset in Ai

i.e. Ei ⊆ Li × Φ(C1 t · · · t Cn)× Σ× 2Ci × Li
(precise formalization in the paper is slightly different)

τi = id for all i : standard product of timed automata

Paper considers only untimed languages, for different types of
clock synchronization constraints
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Example

y ≤ 1

a

y ≤ 1

a

x ← 0

b

x ≥ 1

b

0 < x < 1

Lsync = {ε, a, aa, b, ab, ba, aba, baa, aab}
x slower than y : L = {ε, a, aa}
x faster than y :
L = {ε, a, aa, b, ab, ba, aba, baa, aab, abab, baab}
L∃ = {ε, a, aa, b, ab, ba, aba, baa, aab, abab, baab}
L∀ = {ε, a, aa}
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Non-Regular Behavior

x ≤ 1

a, x = 1, x ← 0

y ≤ 1

b, y = 1, y ← 0

τ2(t) ≈ 2t − .5
L = Pref(bab2ab4ab8a . . . )
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Existential Semantics

A = (A1, . . . ,An) network of timed automata

For τ = (τ1, . . . , τn) local time rates:
L(A, τ) := untimed language of A given τ

L∃(A) =
⋃
τ L(A, τ)

Theorem: L∃(A) is regular and can be obtained via a modified
region construction

Corollary: emptiness and regular model checking are decidable
for the existential semantics
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Universal Semantics

L∀(A) =
⋂
τ L(A, τ)

Theorem: emptiness and universality undecidable

Corollary: regular model checking undecidable
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Bounded Clock Drift

Restrict to two timed automata: A = (A1,A2), τ = (τ1, τ2)

For k ≥ 1: R rat≤k =
{
τ | ∀t > 0 :

1

k
≤ τ1(t)

τ2(t)
≤ k

}
For d ≥ 0: Rdiff≤d = {τ | ∀t > 0 : |τ1(t)− τ2(t)| ≤ d}

Lrat≤1
∀ (A) = Ldiff≤0

∀ (A) = UL(A), hence regular

For k > 1, emptiness and universality of Lrat≤k
∀ (A) undecidable

For d > 0, emptiness and universality of Ldiff≤d
∀ (A) undecidable

Nothing known about Lrat≤k
∃ (A) and Ldiff≤d

∃ (A)
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Reactive Semantics

s0

s1

s2

s3

a

0 < x < 1, 0 < y < 1

a

0 < x < 1, 0 < y < 1

b

x ≤ 1 ≤ y

b

y ≤ 1 ≤ x

Problem: L∀(A) = {ab}, but either through s1 or s2,
depending on future local time rates

Need to “know” future local time rates when deciding whether
to go to s1 or s2

Solution: reactive semantics Lreact(A): “choose future local
time rates only when it’s time”

(Formalization using games on region automaton;
complicated)

Lreact(A) is regular
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Distributed Timed Automata with Independent Clocks

Clocks within a component evolve in sync; clocks in different
components are independent

Untimed semantics: Lreact ⊆ L∀ ⊆ UL ⊆ L∃

Useful: bounds on clock drift: R rat≤k , Rdiff≤d

L∀, Lrat≤k
∀ and Ldiff≤d

∀ seem difficult to work with

Lreact and L∃ are regular

Nothing known about Lrat≤k
react , Ldiff≤d

react , Lrat≤k
∃ , and Ldiff≤d

∃

Useful as a starting point for distributed hybrid systems

We also care about timed semantics

For hybrid systems, we’re beyond undecidability

But zones are nice!
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