Timed Automata and Friends

. and What They Can (and Cannot) Do for You

Uli Fahrenberg

Inria Rennes (for now)

June 13, 2016

Introduction
Timed Automata

Invented by Rajeev Alur and David Dill (ICALP 1990 / TCS
1994)

Popularized by Kim G. Larsen, Wang Yi and many others
Robust tool support (TRL9): UpPAAL (Aalborg University,
Denmark)

in France: Cachan, Bordeaux, Grenoble

for this talk: thanks to Kim G. Larsen, Claus Thrane, Patricia
Bouyer, Nicolas Markey, and Benedikt Bollig

[~]

(]

(7]

(4]

(]

Uli Fahrenberg Timed Automata and Friends

Introduction

A Timed Automaton

press? press?

double_click!

Uli Fahrenberg Timed Automata and Friends

Introduction

Results

*]
o
o
o

Uli Fahrenberg Timed Automata and Friends

Reachability is PSPACE-complete
Emptiness is PSPACE-complete, universality is undecidable
Decidability via regions; fast algorithms via zones

Extensions: weighted timed automata; timed games

Introduction

Overview

@ Timed Automata
o Definitions
o Regions
o Zones

© Extensions: Weights and Games
o Extensions
o Weighted Timed Automata
o Timed Games

© Distributed Timed Automata
@ Networks of Timed Automata
o Distributed Timed Automata
o Existential and Universal Semantics
@ Reactive Semantics

Uli Fahrenberg Timed Automata and Friends

Timed Automata
[1o}

Timed Automata: Syntax

The set ®(C) of clock constraints ¢ over a finite set C is defined by
the grammar

pu=xk|x—yx<ik| oA
(x,ye CokeZxe{<,<,>,>}).

| A\

Definition
A timed automaton is a tuple (L, ¢y, C, X, /, E) consisting of a finite
set L of locations, an initial location ¢y € L, a finite set C of clocks,

a finite set ¥ of actions, a location invariants mapping
|:L— ®(C),and aset EC L x®(C)x X x2° x L of edges.

Uli Fahrenberg Timed Automata and Friends

Timed Automata
oe

Timed Automata: Semantics

Definition

The operational semantics of a timed automaton

A= (L, ¢y, C,x, I, E) is the transition system

[A]l = (S,5,XUR>o, T = Ts U T4) given as follows:

S={(v)e LxR;) |viEI1(0)} so = (£, vo)

To={(t,v) > (V)] 3 ¢arl)cE:
v):¢,v':v[r<—0]}

Ta={(t,v) <5 (6,v+d) | Vd €[0,d]: v+d EI(6)}

°ove]Rgo: clock valuation
@ operations on clock valuations:
0 ifxer

vIr < 009 = {v(x) if x¢&r

Uli Fahrenberg Timed Automata and Friends

(v+d)(x) =v(x)+d

Timed Automata
©0000

Regions: Example

delay | delay

Uli Fahrenberg Timed Automata and Friends

Timed Automata
0@000

Regions: Definition

o Let A= (L, 4y, C,%, I, E) be a timed automaton

o For each x € C, let M, be the maximal constant which x is
compared to in A

Clock valuations v, v/ : C — Rx>q are region equivalent, denoted
vy if

o [v(x)] = |V/(x)] or v(x),V/(x) > My, for all x € C, and

o (v(x)) =0iff (V/(x)) =0, for all x € C, and

o (v(x)) < (v(y)) iff (V/(x)) < (V/(y)) for all x,y € C.

o |v(x)]: integer part; (v(x)): fractional part
o Extend to states by (¢,v) = (¢,V')iff £ =/¢"and v =V

Uli Fahrenberg Timed Automata and Friends

Timed Automata
00®00

Regions: Reachability

o Let A= (L, 4y, C,X, I, E) be a timed automaton

& js a time-abstracted bisimulation: for all (¢1,v1) = (L2, v2):

o for all (01, v1) —%> (€}, V) there is (£2,v2) > (£, V4) such
that (01, v]) = (5. v3);

o for all (¢1,v1) =2 (£}, v}) there is (L2, va) — (£, v4) such
that (£, v]) = (¢, v5);

and vice versa.

@ Hence reachability can be decided in the quotient [A] /=
o [A]/= is called the region automaton of A

o the number of states in [A]/= is bounded above by
||t 211 TT e c(2M + 2), hence finite

Uli Fahrenberg Timed Automata and Friends

Timed Automata
000®0

Languages of Timed Automata

o A timed automaton accepts timed words: sequences
(317 t1)7 (327 t2)7 o
o symbols with time stamps: t; < tp < ---

o timed regular languages: closed under intersection and union,
not under complement

a a a

2 . 8 . &

x<+0 N x=1

@ timed automata are not determinizable

Uli Fahrenberg Timed Automata and Friends

Timed Automata
ooooe

Untimed Languages of Timed Automata

o UL(A): untimed language of A
o all projections of timed words to X*
Theorem: UL(A) = L([A]/ =)
Hence UL(A) is regular
o Conversely, for any L regular, there is a timed automaton
A with L = UL(A).
Corollary: emptiness decidable; untimed regular model checking
decidable

(]

(7]

(7]

Uli Fahrenberg Timed Automata and Friends

Timed Automata
©00000

Zones: Definition

(~]

The region automaton is too big to be practical

(]

All tools use zones: convex unions of regions

Recall clock constraints:

(]

pu=xk|x—yxik| 1A
(x,yeCkeZxe{<,<,>2,>}).

(]

The zone of ¢: [¢p] ={v:C = Rxso|Vv [¢}
(“half octagons™)

(]

Uli Fahrenberg Timed Automata and Friends

Timed Automata
0®0000

Zones: Example

Uli Fahrenberg Timed Automata and Friends

Timed Automata
00®000

Zones: Reachability Algorithm

Input: timed automaton (L, 4y, C, %, I, E), ¢r e L
Output: true iff Sv¢ : C — R>o : (bo, vo) ~* (¢, v¥)
1: Waiting < {(fo, intersect (y,)(delay({w})))}; Passed <)
2: while Waiting # () do
3: Choose and remove (¢, v) from Waiting
if / = {¢ then
return true
if (not is_included(v, v')) for all (¢,v') € Passed then
Passed < Passed U {(¢,v)}
for all (¢,¢,a,r,¢') € E do
v/ < intersect(yy(delay(reset, (intersecty(v))))
10: if not is_empty(v’) then
11: Waiting <— Waiting U {(¢', v')}
12: return false

© e N Rs

Uli Fahrenberg Timed Automata and Friends

Timed Automata
000®00

Zones: Representation

Zone ~~ digraph = difference-bound matrix

(x1 <3
x1—x» <10
7 _ x1—x2 >4 3)

X1—X3§2

-4
o (=)
2
\ X32_5
5

Uli Fahrenberg Timed Automata and Friends

Timed Automata
0000®0

Zones: Representation

shortest-path closure shortest-path reduction

Uli Fahrenberg Timed Automata and Friends

Timed Automata
00000e

: Algorithms

@ Using closures or reductions

(]

Delay, reset, intersection, inclusion check can be done
in O(|C|?)

In practice: combined Passed-Waiting list

Each location has a list of zones (2 union)

Represented using clock decision diagrams

e 6 o o

Extract DBMs from CDD ~- perform operations on each ~
re-combine to new CDD

o Use max-plus polyhedra instead of zones? (Probably not!)

Uli Fahrenberg Timed Automata and Friends

Timed Automata
°

Timed Automata

@ Useful for modeling synchronous real-time systems

o Reachability, emptiness, LTL model checking
PSPACE-complete

o Universality undecidable

o Decidability via regions; undecidability via two-counter
machines

o Fast on-the-fly algorithms, using zones, for reachability,
liveness, and Timed CTL model checking

o Next: Extensions

Uli Fahrenberg Timed Automata and Friends

Extensions: Weights and Games
.

Extensions

@ More clock constraints, e.g. x + y > k: reachability
undecidable
o Stopwatches: reachability undecidable
o Rectangular hybrid automata: reachability undecidable
o Initialized rectangular automata: reachability decidable,
but no zone-based algorithms

— Weighted timed automata:
o Optimal reachability decidable; on-the fly zone algorithm
o Same for conditional optimal reachability for multi-weights
o Also other problems decidable, but no zones

— Timed games:
o Reachability and safety games decidable; on-the fly zone
algorithm, but slow
o Also for partial observability
o Weighted timed games: very difficult

Uli Fahrenberg Timed Automata and Friends

Extensions: Weights and Games
©000

Weighted Timed Automata

P=2

(~]

Models a plant with three modes of production

(]

Goal: incur lowest long-term cost

(]

Minimal cost-per-time: computable, but uses corner-point
abstraction (finer than regions)

No zone-based algorithm

Same for minimal discounted cost

(7]

Uli Fahrenberg Timed Automata and Friends

Extensions: Weights and Games
0®00

Corner-Point Abstraction: Example

x+045
l*/‘ dela)]delay delay ‘delay L
11 2 1 9
1 v 1
delay delay delay delay
0. O O S SR

0 1 2 1 2 1 2

Uli Fahrenberg Timed Automata and Friends

Extensions: Weights and Games
fe1eX Yol

Optimal Reachability

Problem

Given a weighted timed automaton A and € > 0, compute
W = inf{w(p) ‘ p accepting run in A} and an accepting run p for
which w(p) < W +e.

Theorem

| A

The optimal reachability problem for weighted timed automata with
non-negative weights is PSPACE-complete.

v

o Corollary: Time-optimal reachability for timed automata is also
PSPACE-complete

o Fast on-the-fly algorithms using weighted zones: zones with
affine cost functions

o But weighted zones may need to be split during exploration

Uli Fahrenberg Timed Automata and Friends

Extensions: Weights and Games
oooe

Conditional Optimal Reachability

Problem

Given a doubly weighted timed automaton A, M € Z, and € > 0,
compute W = inf {wl(p) ‘ p accepting run in A, wa(p) < M} and
an accepting run p for which wy(p) < M and wy(p) < W +e.

| A\

Theorem

The conditional optimal reachability problem is computable for
doubly weighted timed automata with non-negative weights.

o Can also compute Pareto frontier

o Fast on-the-fly algorithms using doubly weighted zones

Uli Fahrenberg Timed Automata and Friends

Extensions: Weights and Games

Timed Games

Uli Fahrenberg Timed Automata and Friends

Extensions: Weights and Games

Timed Games

Winning strategy:

[ifv(x)£1 D
7= {Cl fug=1 T {C2 i) 22
_Jo ifv(x) <1 _Jo ifv(x)#1
)= {Cs if v(x) > 1 7] = {C4 Fx() =1

Uli Fahrenberg Timed Automata and Friends

Extensions: Weights and Games
oeo

Reachability and Safety Games

Lemma

If the player has a winning strategy in the reachability or safety
game, then she has a memoryless winning strategy.

Theorem

| A\

The reachability and safety games for timed games are
EXPTIME-complete.

@ Same for time-optimal reachability and safety games

@ On-the-fly algorithm using zones

o Forward and backwards exploration

o Needs to compute differences of zones ~~ state space explosion

@ Use max-plus polyhedra instead of zones?

Uli Fahrenberg Timed Automata and Friends

Extensions: Weights and Games
ooe

References

o P. Bouyer, U.F., K.G. Larsen, N. Markey. Quantitative analysis
of real-time systems. Communications of the ACM,
54(9):78-87, 2011.

o U.F., K.G. Larsen, A. Legay. Model-Based Verification,
Optimization, Synthesis and Performance Evaluation of
Real-Time Systems. In Unifying Theories of Programming and
Formal Engineering Methods, LNCS 8050, Springer 2013.

o X. Allamigeon, U.F., S. Gaubert, R. Katz, A. Legay. Tropical
Fourier-Motzkin Elimination, with an Application to Real-Time
Verification. International Journal of Algebra and Computation
24(5):569-607, 2014

Uli Fahrenberg Timed Automata and Friends

Distributed Timed Automata

Distributed Timed Automata with Independently Evolving

Clocks
S. Akshay, B. Bollig, P. Gastin, M. Mukund, K.N. Kumar, Fundamenta Informaticae
130(4): 377-407, 2014

o Product of timed automata: Let Ay = (L1,63, Ci,%1, h, E1),
A2 = (L2,€g, C2, 22, /2, E2). Then
Al X Ay = (Ll X Lo, (6(1),58), G UG, E), with
1(61,52) = /1(51) A Iz(fz)
E = {((61762)7 d)a a,r, (63762)) | (617 ¢a a, ’35/1) € El}
U {((€1a£2)7 ¢7 a,r, (6176/2)) | (627 ¢7 a, r7€/2) € E2}

@ Can be combined with different types of action synchronization

@ Popular specification formalism e.g. in UPPAAL

o Clocks are synchronized

Uli Fahrenberg Timed Automata and Friends

Distributed Timed Automata
®00

Distributed Timed Automata

o Network A= (A1,...,Ap) of timed
automata a

o Together with local time rates

Tly---sTn -]Rzo —]Rzo
o all 7; continuous, strictly increasing,
diverging, with 7;(0) =0 global time

@ Clocks in C; can appear in constraints in all A;, but can only
be reset in A;
oie EECLix®(CGU---UGC,) x X x2% x L
o (precise formalization in the paper is slightly different)

o 7; = id for all i: standard product of timed automata

o Paper considers only untimed languages, for different types of
clock synchronization constraints

Uli Fahrenberg Timed Automata and Friends

Distributed Timed Automata
oeo

Example

o

_)© yil © XiO @

)
O

b
@ x>1 ~ 0<x<l1

y<1

Leync = {€, a, aa, b, ab, ba, aba, baa, aab}

(]

x slower than y: L = {e, a, aa}

(7]

x faster than y:

L = {e, a, aa, b, ab, ba, aba, baa, aab, abab, baab}
L3 = ¢, a, aa, b, ab, ba, aba, baa, aab, abab, baab}
Ly = {e, a, aa}

(]

(]

Uli Fahrenberg Timed Automata and Friends

Distributed Timed Automata
ooe

Non-Regular Behavior

y
ax=1x+20 b,y=1,y+0 b/
@ *& b
x<1 y<1 !/
of
o m(t)~2t—5 -
o L = Pref(bab®ab*ab®a...) f'i

b/

clobal time

Uli Fahrenberg Timed Automata and Friends

Distributed Timed Automata
®00

Existential Semantics

(*]

A= (A1,...,An) network of timed automata

For 7 = (71,...,7n) local time rates:

L(A, 7) := untimed language of A given T

L3(A) = U, L(A7)

Theorem: L3(A) is regular and can be obtained via a modified
region construction

(4]

(]

(]

o Corollary: emptiness and regular model checking are decidable
for the existential semantics

Uli Fahrenberg Timed Automata and Friends

Distributed Timed Automata
o] 1o}

Universal Semantics

o Ly(A) =1, L(AT)
@ Theorem: emptiness and universality undecidable

o Corollary: regular model checking undecidable

Uli Fahrenberg Timed Automata and Friends

Distributed Timed Automata

Bounded Clock Drift

o Restrict to two timed automata: A (Al, A2), 7 = (11, 72)
o For k> 1: Rratgk:{T|Vt>O
o For d > 0: RYiff=d — {7 |Vt >0:|r(t) — m(t)] <

L Ta

LAY = LETC(A) = UL(A), hence regular
For k > 1, emptiness and universality of L?tik(A) undecidable
For d > 0, emptiness and universality of Ldviffgd(A) undecidable
Nothing known about LZ*<¥(A) and L&<7(A)

Uli Fahrenberg Timed Automata and Friends

®© 6 o o

Distributed Timed Automata

Reactive Semantics

0<X<1,0<y<1® x<1<y

:
a /5—2\
0<x<1,0<y<1 /) y<1<x

o Problem: Ly(A) = {ab}, but either through s; or s,
depending on future local time rates

o Need to “know" future local time rates when deciding whether
to go to s or 5,

@ Solution: reactive semantics Lyeact(A): “choose future local
time rates only when it's time”

o (Formalization using games on region automaton;
complicated)
0 Lieact(A) is regular

Uli Fahrenberg Timed Automata and Friends

Distributed Timed Automata
°

Distributed Timed Automata with Independent Clocks

@ Clocks within a component evolve in sync; clocks in different
components are independent

Untimed semantics: Lieact € Ly C UL C L35

Useful: bounds on clock drift: Rt=k Rdiff<d

Ly, LK and LY seem difficult to work with

Lieact and L3 are regular

rat<k diff<d rat<k diff<d
Lreact ' Lreact y L5| , and LEI

e 6 6 o o

Nothing known about

Useful as a starting point for distributed hybrid systems
We also care about timed semantics

For hybrid systems, we're beyond undecidability

e 6 o6 o

But zones are nice!

Uli Fahrenberg Timed Automata and Friends

	Timed Automata
	Definitions
	Regions
	Zones

	Extensions: Weights and Games
	Extensions
	Weighted Timed Automata
	Timed Games

	Distributed Timed Automata
	Networks of Timed Automata
	Distributed Timed Automata
	Existential and Universal Semantics
	Reactive Semantics

