Pomset Languages of Higher-Dimensional Automata

Uli Fahrenberg

École polytechnique, Palaiseau, France

November 15, 2016

Motivation

- The theory of regular languages is nice and beautiful. It's also fundamental for much of what we do.
- For non-interleaving models ("true concurrency"), no such theory
- It seems that this is mostly due to the choice of model: Petri nets are messy!
- Closest to what I want: [Fanchon-Morin 2002/2009]
- Here: regular pomset languages of higher-dimensional automata

Before we begin

Warning

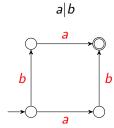
Much of this is work in progress.

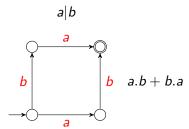
Acknowledgement

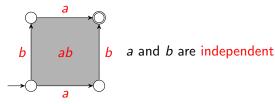
I have started this work together with the late Zoltán Ésik when I visited him in Szeged in February 2016.

- Higher-dimensional automata
- 2 Languages of HDA
- 3 Examples
- Properties
- 5 Higher-dimensional regular and rational languages

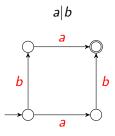
Higher-dimensional automata

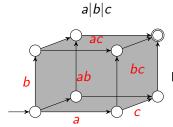




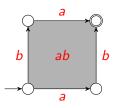


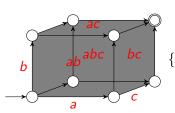
Higher-dimensional automata





pairwise independent

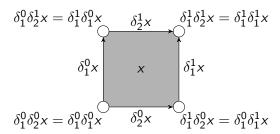




 $\{a, b, c\}$ independent

A precubical set:

- a graded set $X = \{X_n\}_{n \in \mathbb{N}}$
- in each dimension n, 2n face maps $\delta_k^0, \delta_k^1: X_n \to X_{n-1}$ $(k=1,\ldots,n)$
- the precubical identity: $\delta_k^{\nu} \delta_{\ell}^{\mu} = \delta_{\ell-1}^{\mu} \delta_k^{\nu}$ for all $k < \ell$



HDA

A (finite) higher-dimensional automaton (X, I, F, ℓ) :

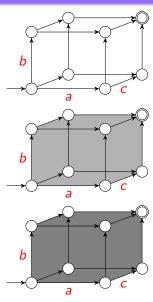
- a finite precubical set X
- with initial and final states $I, F \subseteq X_0$
- ullet and labeling $\ell: X_1 o \Sigma$
 - such that for all $x \in X_2$ and i = 1, 2, $\ell(\delta_i^0 x) = \ell(\delta_i^1 x)$
- [van Glabbeek-Pratt 1991]

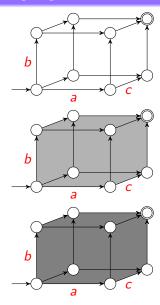
HDA as a model for concurrency:

- points $x \in X_0$: states
- edges $a \in X_1$: transitions (labeled with events)
- *n*-squares $\alpha \in X_n$ ($n \ge 2$): independency relations (concurrently executing events)

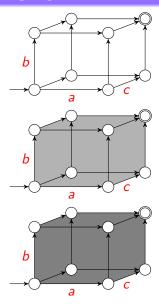
van Glabbeek 2006 (TCS): Up to history-preserving bisimilarity, HDA "generalize the main models of concurrency proposed in the literature"

Languages of HDA



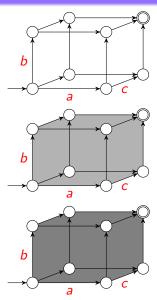


 $L_1 = \{abc, acb, bac, bca, cab, cba\}$



$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

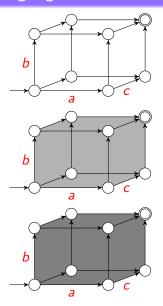
$$L_3 = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \dots \right\}$$



$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$\begin{split} L_2 = \left\{ \begin{pmatrix} a \\ b \rightarrow c \end{pmatrix}, \begin{pmatrix} a \\ c \rightarrow b \end{pmatrix}, \begin{pmatrix} b \\ a \rightarrow c \end{pmatrix}, \\ \begin{pmatrix} b \\ c \rightarrow a \end{pmatrix}, \begin{pmatrix} c \\ a \rightarrow b \end{pmatrix}, \begin{pmatrix} c \\ b \rightarrow a \end{pmatrix}, \ldots \right\} \end{split}$$

$$L_3 = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \dots \right\}$$



$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

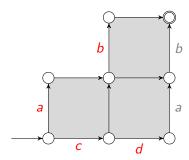
$$L_{2} = \left\{ \begin{pmatrix} a \\ b \to c \end{pmatrix}, \begin{pmatrix} a \\ c \to b \end{pmatrix}, \begin{pmatrix} b \\ a \to c \end{pmatrix}, \\ \begin{pmatrix} b \\ c \to a \end{pmatrix}, \begin{pmatrix} c \\ a \to b \end{pmatrix}, \begin{pmatrix} c \\ b \to a \end{pmatrix} \right\} \cup L_{1}$$

sets of pomsets

$$L_3 = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right\} \cup L_2$$

```
A (finite) pomset ("partially ordered multiset") (P, \leq, \ell):
```

- a finite partially ordered set (P, \leq)
- with labeling $\ell: P \to \Sigma$
- (AKA labeled partial order)
- [Lamport 1978]

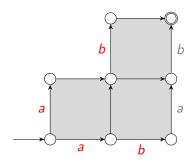


$$\begin{pmatrix} a \rightarrow b \\ c \rightarrow d \end{pmatrix}$$

- (not series-parallel!)
- gluing product of pomsets:

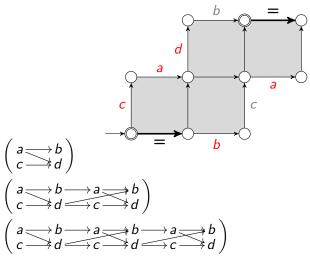
$$\begin{pmatrix} a \\ c \end{pmatrix} \stackrel{(a)}{\smile} \begin{pmatrix} a \\ d \end{pmatrix} \stackrel{(d)}{\smile} \begin{pmatrix} b \\ d \end{pmatrix} = \begin{pmatrix} a \\ c \longrightarrow d \end{pmatrix} \stackrel{(d)}{\smile} \begin{pmatrix} b \\ d \end{pmatrix} = \begin{pmatrix} a \longrightarrow b \\ c \longrightarrow d \end{pmatrix}$$

• (new ternary operation which generates all pomsets)



$$\begin{pmatrix} a \rightarrow b \\ a \rightarrow b \end{pmatrix}$$

A loop



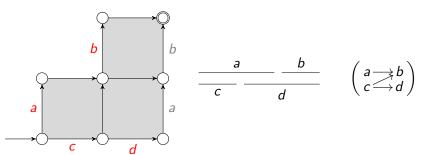
. . .

```
No, only (labeled) interval orders
```

- Poset (P, \leq) is an interval order iff it does not contain (\Longrightarrow)
 - (iff it is "2+2-free")
- iff it has an interval representation:
 - a set $I = \{[I_i, r_i]\}$ of real intervals
 - with order $[I_i, r_i] \leq [I_j, r_j]$ iff $r_i \leq I_j$
 - and an order isomorphism $(P, \leq) \leftrightarrow (I, \preceq)$
- [Fishburn 1970]

No, only (labeled) interval orders

- Poset (P, \leq) is an interval order iff it does not contain (\Longrightarrow)
 - (iff it is "2+2-free")
- iff it has an interval representation:
 - a set $I = \{[I_i, r_i]\}$ of real intervals
 - with order $[I_i, r_i] \leq [I_i, r_i]$ iff $r_i \leq I_i$
 - and an order isomorphism $(P, \leq) \leftrightarrow (I, \preceq)$



- An ST-trace: $a_{\kappa}^+ b_{\kappa}^+ a_{\kappa}^+ a^- a^- b^-$ [van Glabbeek 1990]
- as intervals:
- Lemma: ST-traces up to the equivalence generated by $a^+b^+\sim b^+a^+$ and $a^-b^-\sim b^-a^-$ are in bijection with interval orders.

Gluing product of interval orders

Properties

- For $P = (P, \leq, \ell)$ and $P' = (P, \leq', \ell)$ pomsets with the same underlying set, write $P \succeq P'$ if $\forall x, y \in P : x \leq y \Longrightarrow x \leq' y$
 - the subsumption order [Gischer 1988]
 - P has fewer dependencies than P'
- ullet Let ${\mathcal I}$ be the set of labeled interval orders.
- For $L \subseteq \mathcal{I}$, let $\bigcup L = \{Q \in \mathcal{I} \mid \exists P \in L : P \succeq Q\}$
- Say that $L \subseteq \mathcal{I}$ is subsumption-closed if $\downarrow L = L$
- Theorem: For any HDA X, $L(X) \subseteq \mathcal{I}$ is subsumption closed.

The following works only without auto-concurrency (for now):

- Let $HReg \subseteq 2^{\mathcal{I}}$ denote the class of languages of HDA.
- Theorem: HReg is closed under ∪.
- For $L_1, L_2 \subseteq \mathcal{I}$ and R a multiset, define the gluing product $L_1 \stackrel{R}{\sim} L_2 = \bigcup \{P \stackrel{R}{\sim} Q \mid P \in L_1, Q \in L_2\}.$
- Theorem: HReg is closed under gluing product.
- For $L \subseteq \mathcal{I}$ and R a multiset, define the gluing star $L^{R*} = \{\epsilon\} \cup L \cup L^{R} \cup L \cup L^{R} \cup L^{R} \cup \dots$
- Theorem: HReg is closed under gluing star.
- Let $\mathsf{HRat} \subseteq 2^{\mathcal{I}}$ be the class generated by \emptyset , $\{\epsilon\}$ and $\downarrow\{R\}$ for all multisets R, closed under \cup , gluing product, and gluing star.
- Conjecture: HRat = HReg.

Algebraic characterization:

- Let T denote the set of multisets over Σ.
- Conjecture: HReg is the free \mathcal{T} -indexed Kleene algebra and the free T-indexed *-continuous Kleene algebra.
- Theorem: $L \in \mathsf{HReg} \Longrightarrow L \cap \Sigma^*$ regular.
 - but not the other way: take

$$L = \bigcup \left\{ \left(\begin{array}{c} a \\ b \end{array} \right)^n \cdot (ab + ba)^n \mid n \ge 0 \right\}$$

- Conjecture: HReg is closed under complement.
 - via new notion of deterministic and complete HDA
 - here forbidding auto-concurrency seems to be necessary!
- Conjecture: If HDA X and Y are ST-bisimilar, then L(X) = L(Y).

- Prove conjectures!
- Parallel composition of HDA: probably $L(X||Y) = L(X) \otimes L(Y)$
 - \otimes parallel product of pomsets [Gischer 1988]
 - Definition: $L_1 \otimes L_2 = \{P \otimes Q \mid P \in L_1, Q \in L_2\} \cap \mathcal{I}$
- Weighted HDA?
- Real-time HDA?