# \*-Continuous Kleene $\omega$ -Algebras Theory and Applications (no Tools)

Zoltán Ésik Uli Fahrenberg Axel Legay Karin Quaas

Inria Rennes, France

U Szeged, Hungary

U Leipzig, Germany

WATA 2016

# \*-Continuous Kleene $\omega$ -Algebras Theory and Applications (no Tools)

Zoltán Ésik Uli Fahrenberg Axel Legay Karin Quaas

Inria Rennes, France

U Szeged, Hungary

U Leipzig, Germany

WATA 2016

## <u>H</u>istory

- WATA 2012: Büchi conditions for generalized energy automata
- ATVA 2013: Kleene algebras and semimodules for energy problems
- DLT 2015: \*-continuous Kleene ω-algebras
- FICS 2015: \*-continuous Kleene ω-algebras for energy problems

### History

- FORMATS 2008: Infinite runs in weighted timed automata with energy constraints
- HSCC 2010: Timed automata with observers under energy constraints
- WATA 2012: Büchi conditions for generalized energy automata
- ATVA 2013: Kleene algebras and semimodules for energy problems
- DLT 2015: \*-continuous Kleene ω-algebras
- FICS 2015: \*-continuous Kleene  $\omega$ -algebras for energy problems

Least Fixed Points via \*-Continuous Kleene Algebras

2 Greatest Fixed Points via \*-Continuous Kleene  $\omega$ -Algebras

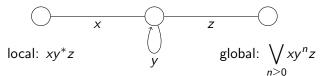
Second Energy Automata

4 Conclusion

## \*-Continuous Kleene Algebras

- idempotent semiring  $S = (S, \vee, \cdot, \perp, 1)$
- in which all infinite suprema  $x^* := \bigvee \{x^n \mid n \ge 0\}$  exist,
- and such that for all  $x, y, z \in S$ ,  $xy^*z = \bigvee_{n>0} xy^nz$

Consequence: loop abstraction:



## Continuous Kleene Algebras

- Kleene algebra  $S = (S, \vee, \cdot, *, \perp, 1)$
- in which all suprema  $\bigvee X, X \subseteq S$  exist,
- and such that for all  $X \subseteq S$ ,  $y, z \in S$ ,  $y(\bigvee X)z = \bigvee yXz$
- All continuous Kleene algebras are \*-continuous, but not vice-versa
  - Example: regular languages over some  $\Sigma$

# Matrix Semirings

## S semiring, $n \ge 1$

- $S^{n \times n}$ : semiring of  $n \times n$ -matrices over S
- (with matrix addition and multiplication)
- If S is a \*-continuous Kleene algebra, then so is  $S^{n \times n}$

• with 
$$M_{i,j}^* = \bigvee_{m \geq 0} \bigvee_{1 \leq k_1, \dots, k_m \leq n} M_{i,k_1} M_{k_1,k_2} \cdots M_{k_m,j}$$

• and for 
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, 
$$M^* = \begin{bmatrix} (a \lor bd^*c)^* & (a \lor bd^*c)^*bd^* \\ (d \lor ca^*b)^*ca^* & (d \lor ca^*b)^* \end{bmatrix}$$
 (recursively)

Uli Fahrenberg

# Finite Runs in Weighted Automata

S \*-continuous Kleene algebra,  $n \geq 1$ 

- a weighted automaton over S (with n states):  $A = (\alpha, M, \kappa)$
- $\alpha \in \{\bot, 1\}^n$  initial vector,  $\kappa \in \{\bot, 1\}^n$  accepting vector,  $M \in S^{n \times n}$  transition matrix
- finite behavior of A:  $|A| = \alpha M^* \kappa$
- Theorem:

$$|A| = \bigvee \left\{ w_0 \cdots w_n \mid s_i \xrightarrow{w_0} \cdots \xrightarrow{w_n} s_j \text{ accepting path in } S \right\}$$
  
 $\left( s_i \xrightarrow{w_0} \cdots \xrightarrow{w_n} s_j \text{ accepting if } \alpha_i = \kappa_j = 1 \right)$ 

# Idempotent Semiring-Semimodule Pairs

- idempotent semiring  $S = (S, \vee, \cdot, \perp, 1)$
- commutative idempotent monoid  $V = (V, \vee, \perp)$
- left S-action  $S \times V \rightarrow V$ ,  $(s, v) \mapsto sv$
- such that for all  $s, s' \in S$ ,  $v \in V$ :

$$(s \lor s')v = sv \lor s'v$$
  $s(v \lor v') = sv \lor sv'$   
 $(ss')v = s(s'v)$   $\bot s = \bot$   
 $s \bot = \bot$   $1v = v$ 

## Continuous Kleene $\omega$ -Algebras

- idempotent semiring-semimodule pair (S, V)
- where S is a continuous Kleene algebra,
- V is a complete lattice.
- and the S-action on V preserves all suprema in either argument,
- with an infinite product  $\prod: S^{\omega} \to V$  such that:
  - For all  $x_0, x_1, \ldots \in S$ ,  $\prod x_n = x_0 \prod x_{n+1}$ .
  - Let  $x_0, x_1, \ldots \in S$  and  $0 = n_0 \le n_1 \le \cdots$  a sequence which increases without a bound. Let  $y_k = x_{n_k} \cdots x_{n_{k+1}-1}$ for all  $k \geq 0$ . Then  $\prod x_n = \prod y_k$ .
  - For all  $X_0, X_1, \ldots \subseteq S$ .  $\prod(\bigvee X_n) = \bigvee \{\prod x_n \mid x_n \in X_n, n > 0\}.$

# Matrix Semiring-Semimodule Pairs

(S, V) semiring-semimodule pair,  $n \ge 1$ 

- $(S^{n \times n}, V^n)$  is again a semiring-semimodule pair
- (the action is matrix-vector product)
- If (S, V) is a continuous Kleene  $\omega$ -algebra, then so is  $(S^{n\times n}, V^n)$

$$ullet$$
 with  $M_i^\omega = igvee_{1 \leq k_1, k_2, \ldots \leq n} M_{i, k_1} M_{k_1, k_2} \cdots$ 

• and for 
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, 
$$M^{\omega} = \begin{bmatrix} (a \lor bd^*c)^{\omega} \lor (a \lor bd^*c)^*bd^{\omega} \\ (d \lor ca^*b)^{\omega} \lor (d \lor ca^*b)^*ca^{\omega} \end{bmatrix}$$

(recursively)

## Infinite Runs in Weighted Automata

(S, V) continuous Kleene  $\omega$ -algebra  $(\alpha, M, \kappa)$  weighted automaton over S

- ullet Reorder  $S=\{1,\ldots,n\}$  so that  $\kappa=(1,\ldots,1,\perp,\ldots,\perp)$ 
  - i.e. the first  $k \le n$  states are accepting
- Büchi behavior of A: write  $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ , with  $a \in S^{k \times k}$ , then

$$||A|| = \alpha \begin{bmatrix} (a+bd^*c)^{\omega} \\ d^*c(a+bd^*c)^{\omega} \end{bmatrix}$$

Theorem:

$$||A|| = \bigvee \big\{ \prod w_n \mid s_i \xrightarrow{w_0} \xrightarrow{w_1} \cdots \text{ Büchi path in } S \big\}$$

 $(s_i \xrightarrow{w_0} \xrightarrow{w_1} \cdots \text{ Büchi path if } \alpha_i = 1 \text{ and some } s_j \text{ with } j \leq k \text{ is visited infinitely often})$ 

## Problem

| continuous Kleene algebras   | continuous Kleene $\omega$ -algebras |
|------------------------------|--------------------------------------|
| *-continuous Kleene algebras | ???                                  |

## Problem

| continuous Kleene algebras   | continuous Kleene $\omega$ -algebras   |
|------------------------------|----------------------------------------|
| *-continuous Kleene algebras | *-continuous Kleene $\omega$ -algebras |
| [=    =                      |                                        |

[Esik, F., Legay 2015 (DLT)]

# Generalized \*-Continuous Kleene Algebras [EFL'15]

- semiring-semimodule pair (S, V)
- where S is a \*-continuous Kleene algebra
- such that for all  $x, y \in S$ ,  $v \in V$ ,  $xy^*v = \bigvee xy^nv$

# \*-Continuous Kleene $\omega$ -Algebras [EFL'15]

- generalized \*-continuous Kleene algebra (S, V)
- with an infinite product  $\prod : S^{\omega} \to V$  such that:
  - For all  $x_0, x_1, \ldots \in S$ ,  $\prod x_n = x_0 \prod x_{n+1}$ .
  - Let  $x_0, x_1, \ldots \in S$  and  $0 = n_0 \le n_1 \le \cdots$  a sequence which increases without a bound. Let  $y_k = x_{n_k} \cdots x_{n_{k+1}-1}$  for all  $k \ge 0$ . Then  $\prod x_n = \prod y_k$ .
  - For all  $x_0, x_1, \ldots, y, z \in S$ ,  $\prod (x_n(y \vee z)) = \bigvee_{x'_0, x'_1, \ldots \in \{y, z\}} \prod x_n x'_n.$
  - For all  $x, y_0, y_1, \ldots \in S$ ,  $\prod x^* y_n = \bigvee_{k_0, k_1, \ldots \geq 0} \prod x^{k_n} y_n$ .

# Matrix Semiring-Semimodule Pairs, Revisited [EFL'15]

(S,V) \*-continuous Kleene  $\omega$ -algebra,  $n\geq 1$ 

- $(S^{n \times n}, V^n)$  is a generalized \*-continuous Kleene algebra
- with an operation  $\omega: S^{n \times n} \to V^n$  given by

$$M_i^{\omega} = \bigvee_{1 \leq k_1, k_2, \dots \leq n} M_{i, k_1} M_{k_1, k_2} \cdots$$

(not a general infinite product)

• and for 
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, 
$$M^{\omega} = \begin{bmatrix} (a \lor bd^*c)^{\omega} \lor (a \lor bd^*c)^*bd^{\omega} \\ (d \lor ca^*b)^{\omega} \lor (d \lor ca^*b)^*ca^{\omega} \end{bmatrix}$$

(recursively)

## Free Continuous Kleene $\omega$ -Algebras

Let A be a set.

#### Theorem (old)

The language semiring  $P(A^*)$  is the free continuous Kleene algebra on A.

#### $\mathsf{Theorem}$

 $(P(A^*), P(A^{\infty}))$  is the free continuous Kleene  $\omega$ -algebra on A.

#### Theorem

 $(P(A^*), P(A^{\omega}))$  is the free continuous Kleene  $\omega$ -algebra on A satisfying  $1^{\omega} = \bot$ .

## Free Finitary \*-Continuous Kleene $\omega$ -Algebras

Let A be a set.

#### Theorem (old)

The regular language semiring  $R(A^*)$  is the free \*-continuous Kleene algebra on A.

#### **Theorem**

 $(R(A^*), R'(A^{\infty}))$  is the free finitary \*-continuous Kleene  $\omega$ -algebra on A.

#### Theorem

 $(R(A^*), R'(A^{\omega}))$  is the free finitary \*-continuous Kleene  $\omega$ -algebra satisfying  $1^{\omega} = \bot$  on A.

- finitary:  $\omega$ -product only defined for finitary sequences
- $R'(A^{\omega})$ : finite unions of finitary infinite products
- know nothing about the non-finitary case

Least Fixed Points via \*-Continuous Kleene Algebras

2 Greatest Fixed Points via \*-Continuous Kleene  $\omega$ -Algebras

Secondary States
Sec

Conclusion



## **Energy Automata**

#### Energy function:

- partial function  $f: \mathbb{R}_{\geq 0} \hookrightarrow \mathbb{R}_{\geq 0}$
- which is defined on some closed interval  $[I_f, \infty]$  or on some open interval  $[l_f, \infty[$ .
- and such that for all  $x \leq y$  for which f is defined,

$$f(y) - f(x) \ge y - x$$

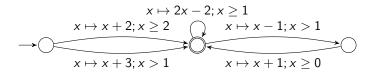
Energy automaton: finite automaton labeled with energy functions

$$x \mapsto 2x - 2; x \ge 1$$

$$x \mapsto x + 2; x \ge 2 \qquad x \mapsto x - 1; x > 1$$

$$x \mapsto x + 3; x > 1 \qquad x \mapsto x + 1; x \ge 0$$

# Energy Automata, Semantically



- Start with initial energy  $x_0$  and update at transitions according to label function
- If label function undefined on input, transition is disabled

**Reachability:** Given  $x_0$ , does there exist an accepting (finite) run with initial energy  $x_0$ ?

**Büchi:** Given  $x_0$ , does there exist a Büchi (infinite) run with initial energy  $x_0$ ?

# Energy Automata, Algebraically

- Let  $L = [0, \infty]_{\perp}$ : extended nonnegative real numbers plus bottom
  - (a complete lattice)
- Extended energy function: function  $f: L \to L$
- with  $f(\bot) = \bot$ , and  $f(\infty) = \infty$  unless  $f(x) = \bot$  for all  $x \in L$ ,
- and  $f(y) f(x) \ge y x$  for all  $x \le y$ .
- Set ℰ of such functions is an idempotent semiring with operations ∨ (pointwise max) and ∘ (composition)
- in fact, a \*-continuous Kleene algebra
  - $f^*(x) = x$  if  $f(x) \le x$ ;  $f^*(x) = \infty$  if f(x) > x
  - not a continuous Kleene algebra

#### Theorem (Reachability)

There exists an accepting (finite) run from initial energy  $x_0$  iff  $|A|(x_0) \neq \bot$ .

Energy Automata

# Energy Automata, Algebraically, 2.

- Let  $2 = \{ff, tt\}$ : the Boolean lattice
- Let  $\mathcal{V}$  be the set of monotone and T-continuous functions  $1\rightarrow 2$ 
  - $f: L \to \mathbf{2}$  T-continuous if  $f(x) \equiv \mathbf{ff}$  or for all  $X \subseteq L$  with  $\bigvee X = \infty$ , also  $\bigvee f(X) = \mathbf{tt}$ .
- $\bullet$   $(\mathcal{E}, \mathcal{V})$  is an idempotent semiring-semimodule pair
- Define  $\Pi: \mathcal{E}^{\omega} \to \mathcal{V}$  by

$$(\prod f_n)(x) = \mathbf{tt} \text{ iff } \forall n \geq 0 : f_n(f_{n-1}(\cdots(x)\cdots)) \neq \bot$$

- Lemma:  $\prod f_n$  is indeed  $\top$ -continuous for all  $f_0, f_1, \ldots \in \mathcal{E}$
- Theorem:  $(\mathcal{V}, \mathcal{E})$  is a \*-continuous Kleene  $\omega$ -algebra
  - not a continuous Kleene  $\omega$ -algebra

#### $\mathsf{Theorem}$

Büchi There exists a Büchi run from initial energy  $x_0$  iff  $||A||(x_0) \neq \mathbf{ff}.$ 

#### Conclusion

- \*-continuous Kleene  $\omega$ -algebras: a useful generalization of continuous Kleene  $\omega$ -algebras
  - (like \*-continuous Kleene algebras are a useful generalization of continuous Kleene algebras)
- can be used to solve general one-dimensional energy problems

#### Other work:

- real-time energy problems (FSTTCS 2015)
- higher-dimensional energy problems?
- hybrid systems?
- non-idempotent case?

5 From Timed Energy Problems to Energy Automata

