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ABSTRACT

In this paper, we prove the convergency of our compatibility flood-
ing algorithm which measures the compatibility degree of service
interfaces. Our method is generic and fully automated by a proto-
type tool.
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Software systems are mostly built using existing services which
interact with each other via message exchange to fulfil a common
goal. Services are considered as black boxes accessed through their
public interfaces which present four interoperability levels [2], i.e.,
signature, interaction protocols, quality of services, and semantics.
These interfaces must be compatible in order to ensure the cor-
rect composition and reuse of loosely-coupled services. This paper
deals with the compatibility verification of service interfaces and
focuses on the interaction protocol level. Checking the compatibil-
ity of interaction protocols is a tedious and hard task, even though
it is of utmost importance to avoid run-time errors, e.g., deadlock
situations or unmatched messages.

Most of the existing approaches (see 7] for a detailed survey) re-
turn a “True” or “False” result to detect whether services are com-
patible or not. Unfortunately, for many issues a Boolean answer is
not very helpful. Firstly, in real world situations, there will seldom
be a perfect match, and when service protocols are not compati-
ble, it is useful to differentiate between services that are slightly
incompatible and those that are totally incompatible. Secondly, a
Boolean result does not give any detailed information on which
parts of service protocols are compatible or not. Thirdly, regarding
the incompatible parts of protocols, such a result typically does not
come with a mismatch list which enables us to understand and then
resolve the incompatibility issues.
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Figure 1: A Simple Medical Management System.

To overcome the aforementioned limits, a new solution aims at
quantifying the compatibility degree of service interfaces. This is-
sue has been addressed by a few recent works (see Section [3] for
related work). However, most of them are based upon description
models of service interfaces, e.g., business protocols [15]], which
do not consider value-passing coming with exchanged messages
and internal behaviours (7 transitions). Internal behaviours in in-
terface models are very important because some services can be
compatible from an observable point of view, but their execution
will behave erroneously if these behaviours are not taken into ac-
count [[16]. Moreover, existing approaches, such as [26], measure
interface compatibility using a simple (i.e., not iterative) traversal
of protocols, and the results lack the preciseness essential for de-
tecting subtle protocol mismatches. Lastly, a unique compatibility
notion is always considered to check the services, and this makes
the approaches useful only for specific application areas, e.g., ser-
vice choreography [[11] or service adaptation [[15].

As an example, we refer to the symbolic transition systemsﬂ in
Fig.[I] describing an on-line medical management system which
handles patient appointments within a healthcare institution, either
with general practitioners or with specialist doctors. The Client
first logs on to a server by sending her user name and password
(login!). Then, she asks for an appointment with a general practi-
tioner (reqDoc!) and receives an appointment identifier. We present
three services for the medical server, which all seem to match the
Client service, yet all fail in subtle ways: MedServer0 can only re-
ceive user name and password separately, whereas Client wants to
send them together; MedServer1 has a type mismatch on the usr pa-
rameter; and with MedServer2, communication can deadlock (if it
silently proceeds to state s6, for example after a timeout). Hence

'We. shall introduce symbolic transition systems more formally in
Section
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none of the MedServers is compatible with Client. We shall, how-
ever, later see that, using our quantitative techniques, there is a clear
preference for MedServer1 in which the incompatibilities are much
easier mended than in the other two.

In our previous work [[17,|19], we proposed an algorithm for quan-
tifying the compatibility degree of interacting services. We com-
pute a numerical measure in the interval [0..1], where 0 means no
compatibility and 1 means perfect compatibility. We describe ser-
vice interfaces using a formal model, taking into account interac-
tion protocols, i.e., messages and their application order, but also
value-passing and internal actions. We propose a generic frame-
work where the compatibility degree of service interfaces can be
automatically measured according to different compatibility no-
tions. We illustrate our approach using bidirectional and unidi-
rectional compatibility notions, namely unspecified receptions 27|
and unidirectional complementarity; additional notions can easily
be added to our framework. The compatibility is computed in two
steps. First, we compute a set of static compatibility degrees where
the execution order of messages is not taken into account. Then, we
propose a new flooding algorithm to compute the compatibility de-
gree of interaction protocols using the static compatibility results.
We assume that the compatibility flooding includes backward and
forward compatibility propagation among service protocols. The
computation process also returns the mismatch list indicating the
interoperability issues, and a global compatibility degree for two
interaction protocols. Our solution is fully automated by a proto-
type tool Comparator [5] we have implemented.

This paper improves previous preliminary approaches [[17, [19] as
follows. We give the mathematical definitions of our heuristics
used for computing the compatibility of two service interfaces. We
prove, using Banach’s fixed point theorem, that the flooding-based
computation always converges. A Web application is also imple-
mented and provided online for using our prototype tool. We present
several experiments to better evaluate our prototype tool. We dis-
cuss and evaluate the new approach w.r.t. many features. Finally,
we thoroughly revise related work. In particular, we classify the
state-of-the-art w.r.t. several existing schools working on heuristics-
based approaches.

Our quantification of protocol compatibility brings more advan-
tages than the Boolean approaches, because it returns a detailed
measure but also a list of mismatches that can be useful for many
service applications, such as automatic service ranking, service dis-
covery, composition, or adaptation. In the case of service adap-
tation [12] for instance, if a set of services are incompatible, the
detailed measure and the mismatch list help to understand which
parts of these services do not match. Thus, the mismatches can be
worked out using adaptation techniques, and service composition
can be achieved in spite of existing mismatches. Lastly, we con-
sider forward and backward exploration of protocols in our flood-
ing algorithm. This enables us to detect full compatibility, i.e.,
“true” result in the case of model checking, and incompatibility,
i.e., “false” result otherwise (see Section[3.3).

In the remainder of this paper, section [I] defines the used compat-
ibility notions. Section [I] defines some compatibility notions. In
Section [2] we present our approach for quantifying service com-
patibility. Sections gives the convergency proof and discusses the
main characteristics of our algorithm. Sectionfd]introduces our pro-
totype tool and some experimental results. Section[5]compares our
approach with related work.

1. SERVICE COMPATIBILITY

Service compatibility is achieved if services can correctly inter-
act with each other, i.e., synchronisations over observable actions
which are exchanged between services. Checking for correct ser-

vice interaction needs to verify if service protocols satisfy a cri-
terion, i.e., compatibility notion. In this article, we compute the
compatibility for two services and we distinguish two classes of no-
tions, bidirectional (++) and unidirectional (—), depending on the
direction of the compatibility checking. We particularly illustrate
our approach with one bidirectional notion, namely unspecified re-
ceptions (UR for short), and with one unidirectional notion, namely
unidirectional complementarity (UC for short)E] In the case of uni-
directional compatibility checking, one of the two services plays a
particular role because its requirements (messages) must all be sat-
isfied by the partner service. This class can be useful for checking,
e.g., a client/server model. In this setting, a server service must be
able to receive and answer all requests from a client, but this server
can also handle other requests from other clients.

Before defining UR and UC, we give below some preliminary con-
cepts on which those compatibility notions rely. These concepts
are detailed and formally presented in [7].

DEFINITION 1. A Symbolic Transition System, or STS, is a tu-
ple (A, S, I, F,T) where: A is an alphabet which corresponds to
the set of labels associated to transitions, S is a set of states, I € S
is the initial state, F' C S is a nonempty set of final states, and
T C S\ F x A XS is the transition relation.

A label is either the (internal) 7 action or a tuple (m, d, pl) where
m is the message name, d is the communication direction (either an
emission ! or areception ?7), and pl is either a list of typed data terms
if the label corresponds to an emission, or a list of typed variables
if the label is a reception. Here, services interact with each other
based on a synchronous and binary communication model. The
operational semantics of this model is formalised in [7]E]

Static Compatibility. We focus here on two comparisons indepen-
dently on the order of exchanged messages, i.e., behaviour: (i) Pa-
rameter compatibility requires that the parameter list expected to
be received matches (same types in the same order) the parameter
list coming with the sent message. (ii) Label compatibility requires
labels to have opposite directions, same names, and compatible pa-
rameters, e.g., labels search?p1:t1 and search! p2:t1 are compatible
where p1 and p2 are the parameter names and t1 and t2 are their
respective types.

Reachable States. These are the set of all global states that in-
teracting protocols can reach, in zero or more steps, from a cur-
rent global state (s1, s2). Protocols can move into reachable states
through either synchronisations on compatible labels or indepen-
dent evolutions, i.e., T transitions.

Deadlock-Freeness. This enables us to check successful system
termination, i.e., the services can always interact (through synchro-
nisations on compatible labels) with each other or evolute inde-
pendently (through 7 transitions) starting from a global initial state
until reaching final states. All the traversed global states belong to
the set of deadlock-free states (referred to as DF).

State Compatibility. Service interaction depends on synchroni-
sation over compatible labels and is checked on reachable global
states. For a given global state (s1, s2) of two protocols ST.S; =
(As, Si, I;, F;, T;), this state is compatible if every message [1 sent
(received) by ST'S at state s; will be received (sent, respectively)

>The reader can refer to [7] for more notions belonging to both
classes.

3In the rest of the article we will describe service interfaces only
with their corresponding STSs. Signatures will be left implicit, yet
they can be inferred from the typing of arguments in STS labels.
‘We suppose that there are no cycles of internal transitions, i.e., no
transition sequences (s1, T, S2), - - . , (Sn, T, 51) because this can be
reduced using 7 confluence techniques.



by STS> at state s (i.e., {1 matches with [ at so where {7 and I
are compatible labels) such that both protocols evolve into a com-
patible global state, and vice-versa. Otherwise, if ST'S> cannot
synchronise with ST'S1’s label [; at (s1, s2), then both protocols
must be able to reach a global state (s1, s5) in which this action will
be satisfied, i.e., 3(s5, l2, s5) € Tb such that I; and l» are compat-
ible, and vice-versa. In this case, both states (s1,s5) and (s, s%)
must also be compatible. This protocol traversal can continue until
reaching a final global state (both protocols states are final). Note
that we handle 7 actions similarly to branching equivalence [25].

Unspecified Receptions (UR). This notion is inspired from [27]
and requires that two services are compatible if (i) they are deadlock-
free, (ii) every send message at a reachable global state must be
received by the partner peer such that this condition is checked by
restriction of verification of state compatibility over uniquely the
emission transitions, and (iii) for two communicating services, the
condition (ii) must be true at their initial global state. In real-life
cases, one service must receive all requests from its partner, but
can also be ready to accept other receptions, since the service could
interoperate with other partners. Hence, there might be additional
unmatched receptions in reachable states, possibly followed by un-
matched emissions. These emissions do not give rise to an incom-
patibility issue as long as their source states are unreachable when
protocols interact with each other.

Unidirectional Complementarity (UC). We consider that two ser-
vices are compatible w.r.t. the UC notion if (i) they are deadlock-
free and (ii) starting from the initial global state, one of them (the
complementer) must eventually receive and send all messages that
its partner (complemented) expects to send and receive, respec-
tively, in the same order at all global reachable states. Hence,
the complementer service may send and receive more messages
than the complemented service. This asymmetric notion is useful
to check the successful communication in the client/server model
where a server can interact with clients with different behaviours.
In this setting, each client behaviour must be satisfied (comple-
mented) by the server.

2. QUANTIFYING COMPATIBILITY

We now show how to compute the compatibility of two service
protocols as numerical measure which belongs to the interval [0..1]
where 0 means total incompatibility and 1 means perfect compati-
bility. Our techniques rely on the compatibility definitions given in
Section[T] We compute the compatibility at several levels of service
interfaces such as states, labels, and parameters. We aim at using
all information described in service interfaces in order to get the
highest precision for the computed compatibility. The final com-
patibility degree of two interaction protocols is computed relying
on all these sources of compatibility, and following a divide-and-
conquer approach.

For purpose of clarity, we assume in the rest of this article that the

different functions defined have access to the ST'S; = (A;, Ss, Ii, F;, T3)

even if they are not explicitly passed as input parameters. However,
we make parameters explicit if they are modified. The full com-
putation process overviewed in Fig. []is iterative. Each iteration
consists first in computing three static compatibility measures (Sec-
tion 2.T)) where the order of exchanged messages is not considered.
In a second step, these static measures are used for computing the
behavioural compatibility degree for all global states (Section [2.2).
Lastly, we compute the global compatibility degree and return all
the detected mismatches (Section[3.3).

2.1 Static Compatibility

State Nature. We compare state nature using the function nat((s1, s2)).

It returns 1 if states s; and sz have the same nature, i.e., both are
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Figure 2: Compatibility Measuring Process.

either initial, final or none of the two. Otherwise, nat((s1, s2)) = 0
returns 0:

Parameters. The compatibility degree of two lists of parame-
ters exchanged with messages p%ll and pl2 depends on three auxil-
iary measures, namely: (i) the compatibility of parameter number,
(ii) the compatibility of parameter order, and (ii1) the compatibility
of parameter type. These measures must be set to 1 if pl; Upls = &
(both lists are empty) and O if ply N plo = @ (i.e., both parame-
ter lists do not share any type), respectively. Otherwise, they are
computed as follows:

abs(|pli| — |pl2|)
max(|pll, [pl2|)
_ |unorderedTypes(ply, pl2)|

number(ply,pla) =1 —

l1,pla) =1
order(pla, pl2) |sharedTypes(pli, pl2)|

_ |unsharedT'ypes(pli, pl2)|
Ipli[ + [pl2]

ype(ply, pla) =1

Here, the function unorderedI'ypes returns the set of parameter

types existing in ply and pla—i.e., shared types—but which are
not in the same order in both lists. The function unsharedTypes
returns the set of parameter types existing in only one list.

The function par-comp then computes the parameter compatibil-
ity as the average of the measures returned by the three previous
functions:

par-comp(ply, pla) =
number(pli, pl2) + order(ply, pl2) + type(pl1, pl2)
3

Labels. We measure label compatibility as follows. Given a pair
of labels (I1,1l2) € A1 x Az with I; = (m,, d;, pl;), the function
lab-comp(l1,12) returns 0 if I; and I3 have the same direction, and
otherwise computes the average of the semantic compatibility of

message names'|and par-comp(pli, pl2):

lab-comp(l1,12) =
0 if di = das
sem-comp(m1, ma) + par-comp(pli, plz)
2

otherwise

2.2 Behavioural Compatibility

We now present our metrics to compute the behavioural compati-
bility for two service protocols, ST'S; = (A, Ss, Ii, F;, T;), using

“We assume that message names match if they are synonyms ac-
cording to the Wordnet similarity package [20].



the static measures previously introduced in Section[2.1} The intu-
ition underlying these metrics relies on the compatibility definitions
given in Section[I}

We describe a flooding algorithm which performs an iterative mea-
suring of behavioural compatibility for every global state in S; x
Sa. This algorithm incrementally propagates the compatibility be-
tween neighbouring states using backward and forward processing.
Considering forward processing we propagate measures and mis-
matches effects from initial to final states and the backtracking does
the inverse from the final to initial states. Hence, we can deduce
the perfect compatibility or not from the initial global state. Such a
propagation relies on the intuition that two states are compatible if
their backward and forward neighbouring states are compatible.

The flooding algorithm returns a matrix CM'EM DE] Each of its en-
tries CM@N_, p[s1, s2] stands for the compatibility measure of global
state (s1, s2) at the k" iteration. The parameter CN refers to the
considered compatibility notion, which is checked using either an
unidirectional (D = —), i.e., there is one service requirement
which must be fulfilled by its partner, or a bidirectional (D = <),
i.e., both services requirements must be fulfilled by each other, pro-
tocol traversal.

We start from an initial compatibility matrix CM%N, p Where all
states are supposed to be perfectly compatible, i.e., V(s1,s2) €
S1x 82, CM¢y pls1, s2] = 1. Inorder to compute CM’EMD [s1, s2],
we define two functions, obs-compg\, p and state-compgN p de-
tailed as follows. The first function, observational compatibility,
computes the compatibility of outgoing and incoming observable
transitions. The second function, state compatibility, propagates
the compatibility from the forward and backward neighbouring states
to (s1, s2), taking into account 7 transitions and observational com-
patibility. The compatibility propagation is also parametrised ac-
cording to D. In this article, we only present the forward compati-
bility, as the backward compatibility is handled in a similar way.

Before defining obs-comp?M p» We present a few functions neces-
sary to its computation. Given a state s € S and a transition re-
lation 7', we define the set of emissions, receptions, and forward
transitions from s as follows:

E(s,T)={teT|t= (s (m!,pl),s)}

R(s,T)={teT|t=(s,(m,7,pl),s)}

Fw(s,T) = E(s,T)UR(s,T)

We let tau(s, T) = {t € T | t = (s,7,5")} denote the set of
T-transitions emanating from a state s. We define the function

sumEN, p((s1,s2),T1,T>) as the sum of the best compatibility de-
gree of forward neighbours of state s; and those of state s2:

sumgy,p((s1,82), Th, To) =
max  (lab-comp(ly,12) - CMEL (81, s5])
(s1,l1,87)€T1 (s2,12,55)€T2 '

if [Fw(s1,T1)| # 0 and |(Fw(s2,T2)| # 0

0 otherwise

2.2.1 Observational Compatibility

We are now able to define the function obs—comp’é,\,’ p according to
the UR and UC notions presented in Section [T}

SWe recall that there can exist several compatibility notions CN in
the same class D.

Unspecified Receptions. For a global state (s1, s2), obs—comp’fm 5
returns 1 if there are no emissions from the states and they are dead-
lock free, and otherwise recursively measures the best compatibil-
ity of emissions with receptions, taking the compatibility of the
states reached into account:

DEFINITION 2. Given a global state (s1, s2), the observational
compatibility is computed w.r.t. the UR compatibility notion as fol-

lows:
obs—compz,“_> ((s1,82)) =

1 ifE(sl,T1)UE(52,T2):®and(81752)€DF
0 if (s1,52) ¢ DF

mrmorE T (swmbe o (51, 52), Blsi, ), R(s2, )
+ sumgr o ((s2,81), E(s2, T2), R(s1, Tl))) otherwise

Unidirectional Complementarity. We compute how well one state
Ser (in the complementer protocol) complements the state seq (in
the complemented protocol). The comparison returns 1 if there is a
subset of outgoing observable transitions in Fw(ser, Ter) such that
their respective labels are perfectly compatible with those of tran-
sitions in Fw(scq,Teq). Additionally, these transitions must lead
into compatible states. If there is a deadlock, then this function re-
turns 0. Otherwise, obs-compc _, ((Ser, Sea)) measures the best
compatibility of every transition label in Fw(Se,, Ter) With those
in Fw(sed, Tea), leading to the neighbouring states which have the
highest compatibility degree:

DEFINITION 3. For a global state (Ser, Sea), the observational
compatibility is computed w.r.t. the UC compatibility notion as fol-
lows, for Tey = Fw(Sed, Tea) and Thp = Fw(ser, Ter):

obs-comp’f,cﬁ ((ser, sed)) =

1 ifsumflC,—»((SEdv 58T)7 édvTe,T) = |FW(Sed, Ted)|
and (Sed, Ser) € DF

0 if (Sed, Ser) ¢ DF

sumbc,%((sedaser>1TédﬂTé7v)

otherwise
max(|T],[IT,,.1)

2.2.2 Directed Propagation

We introduce the function fw-propagg\, p Which propagates the

compatibility depending on the class to which CN belongs, i.e.

D € {«+»,—}. As far as 7 transitions are concerned, this func-

tion handles also internal behaviours based upon either a <+ or —

propagation.

Bidirectional Compatibility. Here, compatibility is computed from
both services’ point of view. That is, for a given global state (s1, s2),
we compute the compatibility of the forward neighbours of s; with

those of sz and vice-versa. For each 7 transition, fw-propagléN -

must be checked on the target state, and observable transitions go-

ing out of (s1, s2) are compared using obs—compéN,H:

DEFINITION 4. Given a global state (s1,s1):

defw-propagly ., (s1,52)+dfw-propagly ., (s2,51)

k
fw-propag¢y ., (s1,82) = 5
k
d-fw-propagcy ., (s1,82) =

S ey, 7ayemy MPropasty o (51,52)
[tau(sy,T1)]
iftau(s1,T1) # 0 and |Fw(s1,T1)| =0
S ey, 7al ey MPOPASEy, o (51552)Fobs-comply, , (51,52)
|tau(sq,Th)]+1

otherwise
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Figure 3: STSs of online store system (left) and associated com-
patibility matrix.

Unidirectional Compatibility. To compute fw-propagty _, ((s1, s2)),
from the point of view of sz as the complemented state, we first
follow any 7-transitions from s, and if there are no such transi-
tionsﬂ then we follow any 7-transitions from sp. Measuring the
compatibility after every T-transition enables us to check whether
this protocol is able to fulfil its partner requirements at the target
state:

DEFINITION 5. Given a global state (s1, s2):
k
fw-propagey _, ((s1,52)) =

sy \rsh)eTy .IW-pmpag'?,\,,ﬁ ((sh ,52)))-&-017:-60111/7’8%% ((s1,52))
[tau(s1,T1)[+1

if tau(s1,T1) # @
(S rrot ey propasly _, (51,550 Fobs-compby , (s1.52))
[rau(s2,T2)]+1

otherwise

2.2.3  State Compatibility

We measure the compatibility of a global state as the weighted av-
erage of three measures, namely, forward and backward compati-
bility and state nature:

k
state-comp ¢y p(s1,52) =

w1 fw-propag | p (s1,82)Fwa-bw-propagy b (s1,52)+nai(s1,s2)
witwa+1

where the weights w1 and w2 denote the number of best matches
found among the outgoing and incoming, respectively, transition
labels in states s; and sa.

2.2.4 Compatibility Flooding

Finally, the compatibility degree of (s1, s2) at the k" iteration is
computed as the average of its previous compatibility at the (k —
l)th iteration and the current state compatibility:

CM?]T/,}:) [s1,s2] + slate—compgN’D ((s1,82))

CM?N,D[SM s2] = 5

EXAMPLE 1. The table in Fig. 5| (right) shows the matrix ob-
tained, after 7 iterations, for the example depicted according to the
UC notion. Let us comment on the compatibility of states cO and
s0. The measure is quite high because both states are initial and
the emission seek! at cO perfectly matches the reception search? at
sO (they are WordNet synonyms). However, the compatibility de-
gree is less than 1 due to the backward propagation of the deadlock
from the global state (s1, c3) to (s1,cl), and then from (s1,cl) to
(s0, c0).

3. COMPATIBILITY FLOODING CHARAC-
TERISTICS

®Given that we have excluded 7-loops, this will eventually be the
case.

3.1 Convergency

In this section, we give a detailed formal proof that the computa-
tion described previously always converges to a unique compati-
bility matrix CMcn,p. The argument is based on the fact, proven
below, that the function on matrices defined in this section is a con-
traction, hence by Banach’s fixed point theorem, it converges to
a unique fixed point. For practical purposes, our iterative process
is terminated when the distance e, = [CMgy p — CM?,T,}D\ goes
below a fixed threshold.

We show now that our algorithm for computing behavioural com-
patibility between services converges in a finite number of steps,
regardless of its input. We show the proof for unidirectional com-
plementarity onlys; it is similar for the other notions.

Let F : [0,1]*™ — [0, 1]"*"™ be the function defined by

M(s1,82) + state-compye (M)(s1,s2)
2

F(M)(Sl,SQ) = (])

state-compyc _, (M)(s1,82) =

wi fwv-propagyc,_, (M) (s1,52)+ws bw-propagyc, _, (M)(s1,52)+nar(s1,52)

wi+wz+1
@
fW'me“guc,a(M)(ShSﬂ =
2y :Tvsll)ﬁv’me”gUC\H (M)(sY,82) + obs-compyc, _, (M) (s1,52)
. |[tau(sy)|+1
if tau(s1) # @
2(82ﬂ'vslz)ﬁv'pmp“gUC.%(A/I)(sl’3/2)+0b5'00ml’uc,a(]Vf)(SLSQ)
, Ttau(s2)[11
otherwise
(3)
obs-compye _, (M)(s1,82) =
1 if sumuc,_>(M)(82, S1, FW(SQ),FW(Sl)) = |FW(52)|
and (82, 81) € DF
0 if (82781) ¢DF
sumyc, — (M) (s2,51,Fw(s2),Fw(s1)) .
max([Fw(s2)],[Fw(s1)]) otherwise
)
sumyc,— (M) (s1, s2,T1, T2) =
max  (lab-comp(l1,l2) M (s}, s5))
(s1,01,8))€T) (s2,12,55)€T> S
if |Fw(s1,T1)| # 0 and |(Fw(s2,T2)| # 0 ®)
0 otherwise
Let A = 3(1 + 5“4£420), then A < 1. We show that F is \-

Lipschitz continuous, hence a contraction. Banach’s fixed-point
theorem then ensures that F' has a unique fixed point and that the
iteration given by equations () to (B in finitely many steps reaches
the fixed point with arbitrary precision. By definition of F, this
fixed point is CMyc, .

We use the max-metric for matrices, i.e. | M|| = max; ; |[M%|.
Let M1, M € [0,1]™*", then

1 i i
£ (M) = F(Mz)|| < 5 max [My — My’ |+

1
§||state—compucﬁ(M1) — state-compye _, (Mo)||



Now
(state-compyc, _, (M1) — State—compUCYH(MQ))ij =
s (wa(wepropagye, (M) — fu-propagic, . (M2)”)
+ ws (bW-PVOPaguc,ﬁ(MQij - bw—propagUCﬁ(Mz)ij)) 7
and as the formulas for fw-propag,c _, and bw-propagc _, are en-

tirely analogous, we can assume that

|(state-compy _, (M) — state—compUCH(Mg))i” <

b2y propagye (M) — fiv-propagye, , (Ma)],

hence,

1 i i
IF(M1) = F(Mz)|| < 5 max |My’ — My’

1 w1+ ws
Em\W'P"Opagucﬁ(Ml)—fW-PmPagucﬁ(M2)H .
To obtain a bound for |{fw—pr0pagUC,_)(Ml)—fw—propaguc’_,(MQ)H,
we note that fiw-propagyc _,(M)(s1, s2) essentially computes a
weighted average of obs-compy _, (M)(s1, s2) for all states 1,
sh reachable from s1, resp. s2, by sequences of 7-transitions: as-

suming tau(sz2) = 0 for now, we have
fw-propagyc _, (M)(s1, s2)
_ obrcompucs (o115 |~ oot D)6, 02)
[tau(s1)| + 1 [tau(s1)| + 1

oo
*}Sl

_ obs-compyc, _,(M)(s1, 52) Z obs-compyc _, (M)(s, s2)
[tau(s1)| +1 (Itau(s1)] + 1) (tau(sy) + 1)

Tl
s1—rs]

3 fw-propagyc, _, (M)(s7, s2)

N (tau(sD] + D(tau@) +1)

]
T T
s1—sh—sy

thus,
fw-propagyc, (M) (s1, s2) — fw-propagyc, ., (Mz)(s1, 52)
obs-compyc _, (M1)(s1,52) — obs-compye _, (M2)(s1,52)

N [tau(s1)] + 1

obs-compucyﬁ(Ml)(sll,Sg)—obx-compu(;wg,(1\12)(3/1,32)
+ 2 (au(sn) [+ D (Ttau(s,)[+1)

Tl
18]

>

T
S1—-—>S

obs-compyc _, (Ml)(sgn) ,82) —obs-compyc _, (Mg)(sgn) ,82)
(Itau(s1)|+1)-+-(tau(si™ ) |+1) '

(n)
1
Hence, also lifting the assumption that tau(s2) = (), we see that

fw-propagyc, . (M1)(s1, s2)—fw-propagyc _,(Mz)(s1, s2)| <

max |obs-compyc._, (M1) (s}, 55) —obs-compye, , (M) (s}, 5b)] .
81,85

‘We have shown that

1 i i
1F(Mr) = F(Mp)|| < 5 max My’ — My’ +

wi+wo

1 iJ‘|
2 witwa+1 :

max [obs-compye, _, (M1)" —obs-compy. _, (Mo)
1,7 ’ ’

Now to compute an upper bound of |obs-compyc _, (M1)(s1, s2) —
obs- compy _,(Mz2)(s1, s2)|, we see that its maximum is attained
when both values fall in the last case of (@), so
lobs-compye _, (M1)(s1, 82) — obs-compye _,(Mz)(s1, 52)]

Istmyc,—y (M) (s2,51,Fw(s2) Fw(s1)) —sumyc, - (M) (.51, Fw(s2) Fw(s1))]
max([Fw(s2)], [ Fw(s1)])

= rxlax(|Fv1’(521)|,|Fw(51)|) Z ’ rr%ax lab-comp(ll,lg) M1(8l2781)
l_% ;51 sh
s3—%sh

— max lab-comp(l1,l2) Mg(sé,sl)‘

51588,
1
< TR GTTRGTT D o lab-comp(l1, 1)
5235/2 S17781 |M1(S/2751)_M2(5/2781)‘
<

- E max |M{? — My?| < max |M;? — MJ?|.
n - i 1,]
J

This now entails that
| F'(My) — F(Ma)]]

1 | - 1wy + ws | |
< Z My — MY - M — MY
_QII}%X| 1 2‘+2w1+w2—|—1nw}%x| 1 2|

= \||My — M| .

3.2 Mismatch Detection and Extensibility

Our compatibility measure comes with a mismatches list which
identifies the incompatibility sources, e.g., unmatched message
names, same direction, different state natures, unordered or un-
shared parameter types. Regarding the compatibility matrix, for
each global state we generate a list indicating the mismatch kind
meaning that whether the issue is coming from state nature or dead-
lock or otherwise from incoming or outgoing labels (messages, di-
rections, and parameter types). The generation of this mismatch
list is done in parallel with the compatibility measuring process
presented in Section 2] For instance, the states s0 and c1 in Fig.[3]
present several mismatches, e.g., sO is initial while c1 is not, and
their outgoing transition labels have the same directions.

Our approach is generic and can be easily extended to integrate
other compatibility notions. Adding a compatibility notion CN
only requires to define a new function abs-compléN, p> Where D €
{—, <}

3.3 Analysis of Compatibility Measures

In this section, we first present how total protocol compatibility can
be computed from the matrix. In the case of incompatible services,
we propose some techniques for computing a global compatibility
measure.

Compatible Protocols. Our flooding algorithm ensures that ev-
ery time a mismatch is detected in a reachable global state, its ef-
fect will be propagated to the initial states. Hence, the forward
and backward compatibility propagation implies that protocols are
compatible if and only if their initial states are also compatible, i.e.,
CMen,p[I1, I2] = 1. Such information is useful, e.g., for automat-
ically selecting available services in order to compose them.

Global Protocol Compatibility. The global compatibility measure
helps to differentiate between services that are slightly incompat-
ible and those which are totally incompatible. This is useful to
perform a first service selection step in order to find some candi-
dates among a large number of services. Seeking for services with



Algorithm 1 global-comp(S1, S2, CMcn, D, t)

. global-res := 0, count := 0, matched-states := 0
: for all s; €51 do
match ‘= False
for all s2 €S53 do
if CMCN,D[Sl, 82} > t then
global-res == global-res + CMcn,p[s1, $2]
match = True; count ‘= count + 1
if match = True then
matched-states = matched-states + 1
10: if count # 0 then

. ~ .__ global-res  matched-states
11:  global-res :== £ R

12: return global-res
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Figure 4: Comparator architecture.

high global compatibility degree enables to simplify further pro-
cessing to resolve their interface incompatibility, e.g., using service

adaptation [[12].

The global compatibility can be computed differently depending on
the user preferences. A first solution consists in computing the av-
erage of the maximal compatibility degrees computed for all states.
An alternative, shown in Algorithm [I] is to compute the global
compatibility degree as the average of all compatibility degrees that
are higher than or equal to a threshold ¢. To account for unmatched
states, we multiply this average by the rate of states which have at
least one possible matching with compatibility degree higher than ¢.

Algorithm [T] computes the global compatibility measure from one
STS’s point of view, and this works for the unidirectional com-
patibility notions. For the bidirectional compatibility notions, the
global compatibility is computed as the average of the values re-
turned by both functions global-comp(S1,S2,CMcn,p,t) and
global-comp(S2, S1,CMcn,p, t).

EXAMPLE 2. This example illustrates the computation of the
global compatibility degree for the online store system of Fig. B
Given a threshold t = 0.7 and the matrix of Table[3| the application
of Algorithm [I| returns a global compatibility degree of 0.6. This
rather low measure is justified by the state mismatch at c1 of the
Customer protocol, which does not match with any state of the O-
Store protocol (all compatibility values are below the threshold).

We can now also finish our example from the introduction, cf. Fig.[T}
As this is a client-server setting, we compute compatibility using
the UR notion. Using our tool Comparator and a threshold of 0.7
as above, we can compute the three MedServers’ compatibility de-
grees with the Client service to 0.55, 0.85, and 0.76, respectively,
hence preferring MedServer1 over the other two.

4. TOOL SUPPORT

4.1 Implementation

ONLINE COMPARATOR TOOL

Please Fill in this Form to Measure the Interface Compatibility
() Existing E I

(2]

Select Example Upload STSs

Choose File ) no file selected

() My Example

(2]

Choose File ) no file selected

Unload 8T8=
- Select Notion -

Unidirectional Complementarity

T

Compatibility Notion

Complementer

[Complemented

Run Comparator, |Reset

Figure 5: Online Comparator: Online User Interface.

Results of the C

patibility M e

Example medicalSystem

MedServer.xml

— Client.xml

Compatibility Notion|/|Unspecified Receptions

cl c2 c3 c4
sl 1.0 0.06 0.01 0.01
s2 0.05 1.0 0.35 0.01

s3 0.01 0.26 1.0 0.01

Compatibility Matrix

s4 0.01 0.01 0.01 1.0

»

s5 0.01 0.26 0.64 0.01

Global Compatibility||1

Mismatches Download

Figure 6: Online Comparator: Result.

Our approach for measuring the compatibility degree of service
protocols has been fully implemented in a prototype tool called
Comparator [3]]. The framework architecture is given in Fig.[d] The
tool, implemented in Python, accepts as input two XML files corre-
sponding to the service interfaces and an initial configuration, i.e.,
the compatibility notion, the checking direction, and a threshold ¢.
The tool returns the compatibility matrix, the mismatch list, and the
global compatibility degree which indicates how compatible both
services are. The implementation is highly modular, which makes
easy its extension with new compatibility notions or other strategies
for comparing message names and parameters.

Our Comparator tool can be used through a Web application
which enables the users to check either some examples from our
database or their own examples that they can upload to our appli-
cation. Figures |§| and |§| illustrate with a couple of screenshots the
use of our application. The first one represents the user interface
to set the measuring parameters—example, compatibility notion,
and roles in the case of UC notion. The second Figure shows an
example of compatibility measure computed using Comparator.

4.2 Experimental Results

We have validated our prototype tool on more than 110 examples,



ranging from small ones, to experiment boundary cases, to real-
world examples, e.g., a car rental [6]], a travel booking system [12],
a video-on-demand application [21]], music player system [21], a
medical management system [4]], and a multi-function device ser-
vice [22]. For illustration purposes, three case studies are available
online at [5]] and present the results of our approach for quantifying
the compatibility.

Table [T] summarises the results of some of the examples of our
database. Experiments have been carried out on a Mac OS ma-
chine running on a 2.53 GHz Intel dual core processor with 4 GB
of RAM. The computation time differs with respect to the input
interface size (states and transitions). Experiments show that small
examples with few states and transitions (e.g., Ex9, Ex44, Ex71) re-
quire a negligible time for measuring their compatibility, whereas
bigger examples (e.g., Ex90, Ex101) need more time (see Table ).
The computation time increases with respect to the number of 7
branchings and loops. For instance, the size of Ex85 is quite big
but this example consists of protocols with sequential structure and
including very few loops, therefore the computation time does not
exceed two minutes. On the other hand, the conducted experiments
showed that protocols involving many loops (e.g., Ex90) require
more time than those having only few loops (e.g., Ex85). To sum
up, experiments have shown that Comparator computes the compat-
ibility degree of quite large systems (e.g., services with hundreds
of states and transitions) in a reasonable time (many iterations are
performed in a few minutes).

It is worth noticing that efficiency was not our main concern in
the current implementation of Comparator. Our experiments (as
sketched in Table [T) aim at illustrating our approach on concrete
examples and at showing that it computes the compatibility degree
of service protocols in a reasonable time.

4.3 Evaluation

Human Expert Evaluation. The first author has been considered
an expert to compare the measure automatically computed with
the manual analysis of service compatibility and mismatches. This
study has shown that each time a couple of states in two protocols
presents several mismatches according to the manual evaluation,
this corresponds to a low value in the matrix and vice-versa.

We also realised that the manual analysis of interaction protocols is
time-consuming and confusing, specially in case of large and com-
plex systems. However, the comparator tool performs many itera-
tions to compute the compatibility of large systems—considering
many loops and internal behaviours—in a systematic and automat-
ing way, saving time and human effort. Our approach is valuable,
it enables a quick and reasonable comparison compared with the
manual processing.

Although it can be relatively easy to compare some small protocols
by hand, protocol verification is hard and tedious issue, specially
for users who are not familiar with the verification issue. In such
a case, manual processing is time-consuming, error-prone and al-
ways likely to be laborious. The conducted experiments proved
that our automatic analysis covers the aforementioned issues. The
resulting matrix and detected mismatch list have always justified
the interface incompatibility.

Accuracy. To evaluate the preciseness of our compatibility mea-
sure, we reuse the well-known precision and recall metrics [23] to
estimate how much the measure automatically computed meets the
expected result (see [5]] for more details). Precision measures the
matching quality (number of false positive matching) and is de-
fined as the ratio of the number of correct state matching found to
the total of state matching found. Recall is the coverage of the state
matching results and is defined as the ratio of the number of cor-
rect state matching found to the total of all correct state matching

in the two protocols. An effective measure must produce high pre-
cision and recall values. We have studied the precision and recall
for the examples of our database. We assume (s1, s2) is a correct
match if the state s1 € S has the highest compatibility degree with
s2 € S> among those in S2. Our measuring process yields a pre-
cision and recall of 100% for compatible protocols. Our empirical
analysis has shown the good quality of our approach for compar-
ing incompatible protocols. For instance, the study of the car rental
system [6] which provides a service for car rental and an example
of user requirements produces a precision and recall equal to 85%
and 95%, respectively. We applied the same evaluation to a flight
advice system [5]] which helps travellers to find flight information.
This yields a precision and a recall equal to 91% and 100%, respec-
tively. All the other examples of our database returned high values
(more than 90%) for both metrics.

Application. Some researchers from GISUM laboratoryﬂ have ap-
plied the result computed by Comparator for service adaptation pur-
puses [3]. Our tool enables a quick compatibility measuring and
gives to the user a detailed interface comparison. This was a valu-
able help to resolve interface mismatches and suggest adaptation
solutions.

5. RELATED WORK

We present several related approaches to measuring similarity or
compatibility of interfaces. These are applied for service substitu-
tion and composition, respectively.

Protocol Traversal. The work in [24] measures the similarity of
two computer viruses described using labelled transition systems
(LTSs). It uses quantitative functions which are computed by a sim-
ple (not iterative) forward traversal of two LTSs. This work does
not return the differences which distinguish one service from an-
other, and there is no computation of a global similarity degree.
In [26], the authors check the compatibility of two services de-
scribed using the m-calculus. Here, two services are compatible
if there is always at least one transition sequence between them,
until reaching final states. This notion is too weak since it does not
guarantee deadlock-freeness for service composition. The authors
compute the compatibility degree of two services as the average
of the number of successful transition sequences. Neither detailed
compatibility of different protocol states nor the mismatch list is
returned.

Edit Distance. In |11} [1], the authors calculate the edit distance
between a given defective service and synthesised correct services.
They also detect the differences between two versions of one ser-
vice interface described using finite state machines. The quantita-
tive simulation measures the state similarity based on the analysis
of outgoing transition labels without any semantic comparison of
these label names, and there is no propagation of compatibility be-
tween neighbouring states.

Similarity Flooding. In [[13]|14], the similarity flooding technique
was applied to the problem of model matching. This algorithm re-
turns a matrix for the similarity propagation which is updated iter-
atively. The authors propose a set of metrics to measure correspon-
dences between elements of data structures such as data schemas
or data instances, described with LTSs. The work in [13] aims
at assisting developers in matching elements of a schema by sug-
gesting candidates. However, their tool does not enable fully au-
tomated matching. In [14]], the behavioural similarity is computed
as the maximum of forward and backward behavioural matching.
By doing so, it is not possible to detect the Boolean similarity from
the initial states. More recently, [15] proposes a semi-automated
approach for checking the matching of messages in two business

"http://www.gisum.uma.es
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Table 1: Some Experimental Results (t = 0.7; last column shows threshold).

Example || States | Transitions | Compatibility Notion | global | Time (mn) | Iterations (k) €

Ex9 8/5 8/5 5’5 81%2 oor;n 1%1185185 g 8:81
Bad | 2022 [ 1021 - R SR
Ex71 20/4 19/3 gg i Sﬁg‘g}éi S 8:8%
N EREE e 0 U/ N S KA
Ex90 86/86 |  90/90 X UEPER TR R ] 8:(1)3
Ex101 || 124/86 | 135/90 g’é 8:23 189;6(? ;15675: 160 8:(1%

process models such that the computed values can be updated de-
pending on the user feedback. The authors combine a depth and
flooding-based interface matching for measuring the behavioural
compatibility of two interacting protocols. This work aims at de-
tecting the message merge/split mismatch in order to help the auto-
matic specification of adaptation contacts.

Quantitative Model Checking. The quantitative approach to ser-
vice compatibility which we advocate here is related to recent quan-

titative approaches to model checking and verification. Here, Boolean

notions of verification are replaced by distances, just as we do here
for service compatibility. A general framework for such distance-
based quantitative verification has been developed in [9, 8} 10].

6. CONCLUSION

This paper proves the convergency of our flooding algorithme for
measuring the compatibility degree between behavioural models.
Our proposal is fully supported by the standalone Comparator tool
which has been validated on many examples.

Our work has straightforward applications to service-related issues,
e.g., automatic discovery, selection, ranking, and composition. On
a wider scale, our solution is useful for all interactive software sys-
tems described using STSs. In particular, Comparator has been used
in a real-world case study in the context of the ITACA project [3|]
for service composition and semi-automated adaptation. Compara-
tor has also been integrated into a prototype tool, called Updator [[18]],
which we implemented to deal with service evolution issues. Our
main perspective is to to apply our compatibility measuring ap-
proach for the automatic generation of adaptor protocols.
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