
Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Compatibility Flooding: Measuring
Interaction of Services Interfaces

Meriem OUEDERNI1 Uli FAHRENBERG2

Axel LEGAY3 Gwen SALAÜN4

1IRIT / Toulouse INP, Toulouse, France

2École polytechnique, Palaiseau, France

3INRIA, Rennes, France

4INP, INRIA, LIG, Grenoble, France

The 32rd Symposium On Applied Computing
Morocco 2017



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Compatibility Flooding: Measuring
Interaction of Services Interfaces

Meriem OUEDERNI1 Uli FAHRENBERG2

Axel LEGAY3 Gwen SALAÜN4

1IRIT / Toulouse INP, Toulouse, France

2École polytechnique, Palaiseau, France

3INRIA, Rennes, France

4INP, INRIA, LIG, Grenoble, France

The 32rd Symposium On Applied Computing
Morocco 2017



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Introduction (1/3)

Service-based systems are built using existing software
applications called services
Services are loosely-coupled, independently developed, and
accessed through their public interfaces, i.e., signature and
interaction protocols
Service interfaces are often incompatible, e.g., missing
message, missing parameter, deadlock, etc.
Interface compatibility must be checked in order to avoid
erroneous behaviours and ensure the safe reuse of services



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Introduction (2/3)

Different compatibility notions exist
[Yellin&Strom],[Brand&Zafiropulo], [de Alfaro&Henzinger],
[Bordeaux&al], etc., e.g., two services are compatible if:

They can at least engage one communication sequence until
reaching a global final state: One-Path
Their interaction does not deadlock: Deadlock-Freeness
All reachable request (emission) must be replied (received):
Unspecified-Receptions
They have opposite behaviours: Opposite-Behaviours
. . .



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Introduction (3/3)

Limitations of existing approaches are:
They commonly return a Boolean (True/False) result. However,
services are often incompatible, and

A False result does not differentiate between slightly and totally
incompatible services
A False result gives no information which parts of service
protocols are compatible or not

A very few recent approaches compute a numeric compatibility
measure. But,

The checked interfaces do not consider value-passing and
internal τ actions
The measuring process consists in simple (not iterative) protocol
traversal
A unique compatibility notion is considered



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Our Proposal

We consider value-passing and τ actions in the interface
description model and the verification process
We propose a generic Framework to automatically measure
the interface compatibility: a numerical result is returned
The framework is parameterised with different notions
organised into bidirectional and unidirectional classes. This
talk presents a bidirectional notion: unspecified receptions
We consider two-step measuring process:

Computation of static compatibility
Computation of (behavioural) protocol compatibility using the
static compatibility: iterative protocol traversal and flooding
techniques are considered

The measuring process also returns the mismatch list, and it is
fully automated into our Comparator prototype tool



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Outline

1 Model of Services

2 Interface Compatibility
Bidirectional Notion

3 Compatibility Measuring
Static Compatibility
Behavioural Compatibility: Forward Computation
Prototype Tool
Proof of Convergence

4 Concluding Remarks



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Symbolic Transition System (STS)

Definition
STS: (A: Alphabet, S: States, I: Initial state, F : Final states, T :
Transitions) where:

A: (M: message, D: direction (! or ?) ,PL: typed parameter
list), or τ action
I ∈ S, F ⊆ S, T ⊆ S \ F × A× S

The STS is very convenient for formal description and
verification of service behaviours
The STS’s operational semantics is synchronous
This model can be easily be derived from existing platform
languages, e.g., WF, BPEL for Web services



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Symbolic Transition System (STS)

Definition
STS: (A: Alphabet, S: States, I: Initial state, F : Final states, T :
Transitions)



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Outline

1 Model of Services

2 Interface Compatibility
Bidirectional Notion

3 Compatibility Measuring
Static Compatibility
Behavioural Compatibility: Forward Computation
Prototype Tool
Proof of Convergence

4 Concluding Remarks



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Bidirectional Notion

Unspecified Receptions

Definition
Each service must receive all messages emitted by its partner at all
reachable states, and both services must be free of deadlocks



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Outline

1 Model of Services

2 Interface Compatibility
Bidirectional Notion

3 Compatibility Measuring
Static Compatibility
Behavioural Compatibility: Forward Computation
Prototype Tool
Proof of Convergence

4 Concluding Remarks



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Overview of Our Approach



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Static Compatibility

Measures

State Nature
Given a global state (s1, s2) ∈ S1 × S2, state nature
compatibility is equal to 1 if both states have the same nature,
i.e., initial, final, or none of them. Otherwise, this measure is 0.

Parameters
This measure is computed from the comparison of emitted and
received parameter types, order, and number.

Labels
Two labels are totally incompatible, lab-comp(l1, l2) = 0, if they
have the same direction.
Otherwise, lab-comp(l1, l2) compares the semantic distance
between label names (using Wordnet), and the parameter
types.



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Behavioural Compatibility: Forward Computation

Preliminaries

Being given two STSs, STSi∈{1,2} = (Ai ,Si , Ii ,Fi ,Ti):
Definition: two states are compatible if their backward and
forward neighbouring states are compatible
Measuring techniques: a compatibility flooding algorithm and
an iterative computation
Result: a matrix COMPk

CN,D, a list of mismatches, and a global
compatibility measure:

COMPk
CN,D[s1, s2] is the compatibility measure of the global state

(s1, s2) at the k th iteration
CN is the compatibility notion and D ∈ {↔,→}
∀(s1, s2) ∈ S1 × S2, COMP0

CN,D[s1, s2] = 1
COMPk

CN,D[s1, s2] = ?



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Behavioural Compatibility: Forward Computation

Observational Compatibility

The observational compatibility is returned by the function
obs-compk

UR,↔((s1, s2)):
1 It returns 0 if there is a deadlock
2 It returns 1 if every emission in s1 (s2, resp.) perfectly matches

a reception in s2 (s1, resp.), and both protocols evolve into
compatible states

3 Otherwise, it is computed from the best compatibility obtained
from the comparison of every emission in s1 (s2, resp.) and the
receptions in s2 (s1 resp.) leading to the best neighbours

The best compatibility at the k th iteration is determined by the
maximal value of lab-comp(l1, l2) ∗ COMPk

CN,D[s
′
1, s
′
2]



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Behavioural Compatibility: Forward Computation

Observational Compatibility

obs-comp1
UR,↔((s0, c0))

= lab-comp(seek !, search?)∗
COMP0

UR,↔[s1, c1]
= 1



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Behavioural Compatibility: Forward Computation

State Compatibility

This measure, state-compk
UR,↔((s1, s2)), is computed from:

The bidirectional propagation of the compatibility measure
returned for the neighbouring states, i.e., consideration of both
service point of view:

The existence of τ transitions requires to compute the
compatibility on the target states
The observable transitions are compared using obs-compk

UR,↔

The state nature compatibility



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Behavioural Compatibility: Forward Computation

State Compatibility

fw-propag1
UR,↔((s1, c1)) =

1
2∗

[
fw-propag1

UR,↔((s1,c3))+obs-comp1
UR,↔((s1,c1))

2 + obs-comp1
UR,↔((s1, c1))]

fw-propag1
UR,↔((s1, c3)) = obs-comp1

UR,↔((s1, c3)) = 0

obs-comp1
UR,↔((s1, c1))

= lab-comp(reply?, reply !) ∗ COMP0
UR,↔[s2, c2] = 1



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Behavioural Compatibility: Forward Computation

Compatibility Flooding

Last Measuring Step

COMPk
CN,D[s1, s2] is computed from its previous value

COMPk−1
CN,D[s1, s2] and state-compk

CN,D((s1, s2)).

Matrix COMP7
UR,↔

c0 c1 c2 c3

s0 0.95 0.17 0.01 0.01
s1 0.01 0.82 0.01 0.32
s2 0.01 0.26 0.95 0.51
s3 0.01 0.47 0.01 0.16
s4 0.01 0.26 0.75 0.51



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Behavioural Compatibility: Forward Computation

Characteristics of our Compatibility Measure

The compatibility flooding ensures that the effect of any
detected mismatch must be propagated until the initial states
Two protocols are compatible iff COMPk

CN,D[I1, I2] = 1
Incompatible protocols can be compared using a global
compatibility degree computed from COMPk

CN,D

The global compatibility degree helps for:
Ranking and selecting services from a huge number of
candidates
Simplifying further processing to solve interface mismatches



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Prototype Tool

Comparator

The Comparator implementation is generic, modular,
extensible, and automated
Experiments have been applied on many examples (> 115,
some of them consist of hundreds of states and transitions)
Some real-world examples are available at
www.lcc.uma.es/˜meriem/comparator.html

www.lcc.uma.es/~meriem/comparator.html


Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Proof of Convergence

Proof of Convergence

COMPk
CN,D is a function of COMPk−1

CN,D and state-compk
CN,D:

COMPk
CN,D = F (COMPk−1

CN,D) :=
COMPk−1

CN,D + state-compk
CN,D

2

these are (square) matrices; state-compk
CN,D can be expressed

as a (complicated!) function of COMPk−1
CN,D

Need to show that the iteration
COMPk−1

CN,D 7→ COMPk
CN,D = F (COMPk−1

CN,D) converges

Proof: Find λ < 1 so that for all matrices M1, M2,
‖F (M1)− F (M2)‖ ≤ λ‖M1 −M2‖

‖M‖ = max
i,j

M[i , j] is supremum metric

Hence F is λ-Lipschitz continuous, so for every ε > 0 there is
K such that for all k ≥ K , ‖COMPk

CN,D − COMPk−1
CN,D‖ < ε

Banach fixed-point theorem



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Outline

1 Model of Services

2 Interface Compatibility
Bidirectional Notion

3 Compatibility Measuring
Static Compatibility
Behavioural Compatibility: Forward Computation
Prototype Tool
Proof of Convergence

4 Concluding Remarks



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Main Contributions & Perspectives of Our Work

Generic and extensible framework for measuring the
compatibility of service interfaces considering different notions
Numerical measure of service compatibility: Boolean
compatibility can be also detected
Tool support and application to semi-automated service
adaptation (ACIDE and DINAPTER tools)

Automatic generation of adaptation contract
Automatic management of service evolution
Checking the service protocol compatibility under the
asynchronous communication semantics



Model of Services Interface Compatibility Compatibility Measuring Concluding Remarks

Main Contributions & Perspectives of Our Work

Generic and extensible framework for measuring the
compatibility of service interfaces considering different notions
Numerical measure of service compatibility: Boolean
compatibility can be also detected
Tool support and application to semi-automated service
adaptation (ACIDE and DINAPTER tools)

Automatic generation of adaptation contract
Automatic management of service evolution
Checking the service protocol compatibility under the
asynchronous communication semantics

THANK YOU


	Model of Services
	Interface Compatibility
	Bidirectional Notion

	Compatibility Measuring
	Static Compatibility
	Behavioural Compatibility: Forward Computation
	Prototype Tool
	Proof of Convergence

	Concluding Remarks

