Compatibility Flooding: Measuring
Interaction of Services Interfaces

Meriem OUEDERNI' Uli FAHRENBERG?
Axel LEGAY? Gwen SALAUN?*

'IRIT / Toulouse INP, Toulouse, France
2Ecole polytechnique, Palaiseau, France
%INRIA, Rennes, France

“INP, INRIA, LIG, Grenoble, France

The 32rd Symposium On Applied Computing
Morocco 2017

Compatibility Flooding: Measuring
Interaction of Services Interfaces

Meriem OUEDERNI' Uli FAHRENBERGZ
Axel LEGAY? Gwen SALAUN?

'IRIT / Toulouse INP, Toulouse, France
2Ecole polytechnique, Palaiseau, France
%INRIA, Rennes, France

“INP, INRIA, LIG, Grenoble, France

The 32rd Symposium On Applied Computmg
Morocco 2017

Introduction (1/3)

@ Service-based systems are built using existing software
applications called services

@ Services are loosely-coupled, independently developed, and
accessed through their public interfaces, i.e., signature and
interaction protocols

@ Service interfaces are often incompatible, e.g., missing
message, missing parameter, deadlock, etc.

@ Interface compatibility must be checked in order to avoid
erroneous behaviours and ensure the safe reuse of services

Introduction (2/3)

Different compatibility notions exist
[Yellin&Strom],[Brand&Zafiropulo], [de Alfaro&Henzinger],
[Bordeaux&al], etc., e.g., two services are compatible if:

@ They can at least engage one communication sequence until
reaching a global final state: One-Path

@ Their interaction does not deadlock: Deadlock-Freeness

@ All reachable request (emission) must be replied (received):
Unspecified-Receptions

@ They have opposite behaviours: Opposite-Behaviours
° ...

Introduction (3/3)

Limitations of existing approaches are:

@ They commonly return a Boolean (True/False) result. However,
services are often incompatible, and
@ A False result does not differentiate between slightly and totally
incompatible services
o A False result gives no information which parts of service
protocols are compatible or not
@ A very few recent approaches compute a numeric compatibility
measure. But,
@ The checked interfaces do not consider value-passing and
internal T actions
@ The measuring process consists in simple (not iterative) protocol
traversal
@ A unique compatibility notion is considered

Our Proposal

@ We consider value-passing and 7 actions in the interface
description model and the verification process

@ We propose a generic Framework to automatically measure
the interface compatibility: a numerical result is returned

@ The framework is parameterised with different notions
organised into bidirectional and unidirectional classes. This
talk presents a bidirectional notion: unspecified receptions

@ We consider two-step measuring process:

e Computation of static compatibility

@ Computation of (behavioural) protocol compatibility using the
static compatibility: iterative protocol traversal and flooding
techniques are considered

@ The measuring process also returns the mismatch list, and it is
fully automated into our Comparator prototype tool

Model of Services

Outline

o Model of Services

Model of Services

Symbolic Transition System (STS)

STS: (A: Alphabet, S: States, /: Initial state, F: Final states, T:
Transitions) where:

@ A: (M: message, D: direction (! or ?) ,PL: typed parameter
list), or 7 action

@ /eSS, FCS TCS\FxAXS

@ The STS is very convenient for formal description and
verification of service behaviours

@ The STS’s operational semantics is synchronous

@ This model can be easily be derived from existing platform
languages, e.g., WF, BPEL for Web services

Model of Services

Symbolic Transition System (STS)

Definition
STS: (A: Alphabet, S: States, /: Initial state, F: Final states, T:
Transitions)
Service
sl
update?
it:str
s2

Interface Compatibility

Outline

© Interface Compatibility

Interface Compatibility
°

Bidirectional Notion

Unspecified Receptions

Definition

Each service must receive all messages emitted by its partner at all
reachable states, and both services must be free of deadlocks

4 N\ 4 N\
O-Store Customer

search? S1 repjy! s2 c2

1
seek! ¢ reply?

sO <3 s4

update? confirm!

\ / \ C3/

Compatibility Measuring

Outline

e Compatibility Measuring

Compatibility Measuring

Overview of Our Approach

Bidirectional Eropagatlor).

Foward Propagat|on } { Back;/v-ard Propagation

+ Mismatches
+ Global Compatibility

Compatibility Measuring
°

Static Compatibility

Measures

State Nature

@ Given a global state (s1,s2) € S1 x S, state nature
compatibility is equal to 1 if both states have the same nature,
i.e., initial, final, or none of them. Otherwise, this measure is 0.

Parameters

@ This measure is computed from the comparison of emitted and
received parameter types, order, and number.

4

@ Two labels are totally incompatible, lab-comp(h, k) = 0, if they
have the same direction.

@ Otherwise, lab-comp(l, k) compares the semantic distance
between label names (using Wordnet), and the parameter
types.

Compatibility Measuring
©000000

Behavioural Compatibility: Forward Computation

Preliminaries

Being given two STSs, STSic(1.2y = (Ai, Si, i, Fi, Ti):
@ Definition: two states are compatible if their backward and
forward neighbouring states are compatible
@ Measuring techniques: a compatibility flooding algorithm and
an iterative computation
@ Result: a matrix COMP,, , a list of mismatches, and a global
compatibility measure:
° COMPéNyD[& , S2] is the compatibility measure of the global state
(s1,s2) at the k™ iteration
@ CN is the compatibility notion and D € {«+», —}
o V(S1,Sz) € Sy x Sz, COMPgN’D[Sth] =1
° COMPéNVD[& , 8] =12

Compatibility Measuring
0®00000
Behavioural Compatibility: Forward Computation

Observational Compatibility

The observational compatibility is returned by the function
obs-complis ., ((s1, 82)):

@ It returns 0 if there is a deadlock

@ It returns 1 if every emission in s; (S2, resp.) perfectly matches

a reception in s, (s1, resp.), and both protocols evolve into
compatible states

@ Otherwise, it is computed from the best compatibility obtained
from the comparison of every emission in sy (s2, resp.) and the
receptions in sy (s1 resp.) leading to the best neighbours

@ The best compatibility at the k™ iteration is determined by the
maximal value of lab-comp(, k) * COMPgy p[s}, s3]

Compatibility Measuring
00®0000
Behavioural Compatibility: Forward Computation

Observational Compatibility

4 N\ 4 N\
O-Store Customer

search? S1 | 52 c2
GBS seek! cl reply?

sO 3 s4

update? confirm!

\ / \ C3/

obs-comp/s ... ((So, Co))
= lab-comp(seek!, search?)x
COMP&RH [31 5 C1]
=1

Compatibility Measuring
000®000

Behavioural Compatibility: Forward Computation

State Compatibility

This measure, state—comp‘l},q,(_)((a ,S2)), is computed from:

@ The bidirectional propagation of the compatibility measure
returned for the neighbouring states, i.e., consideration of both
service point of view:

@ The existence of 7 transitions requires to compute the
compatibility on the target states
@ The observable transitions are compared using obs-compﬁH,H

@ The state nature compatibility

Compatibility Measuring
0000e00
Behavioural Compatibility: Forward Computation

State Compatibility

4 N\ 4 N\
O-Store Customer

search? S1 | 52 c2
I seek! cl reply?

sO s3 s4

update? confirm!

\ / \ C3/

fw-propags ., ((s1,¢1)) = 1%

fw-propag] ,H((s1,o3))+obs—comp’ o ((s1,01)) 1
[A = = + obs-comp(z ., ((s1,¢1))]

® fw-propag|y, .,((s1,cs)) = obs-compz ., ((s1,03)) =0
@ obs-comp/;z _((s1,¢1))
= lab-comp(reply?, reply!) « COMP{ _[s2,co] =1

Compatibility Measuring
00000e0

Behavioural Compatibility: Forward Computation

Compatibility Flooding

Last Measuring Step

COMP,, pls1, s2] is computed from its previous value
COMPEy, 1[s1, s2] and state-complgy ((S1, 52)).

Matrix COMP/, .

~
J
N
J
A\

O-Store Customer

s1 s2

search? reply! seeki € reply? 2

s0
s4 <0
s3 tau

update? confirm!

o o)
Co Cq C2 Cs

S | 095 0.17 0.01 0.01
sy | 0.01 0.82 0.01 0.32
s | 0.01 026 0.95 0.51
s3 | 0.01 0.47 0.01 0.16
s4 | 0.01 0.26 0.75 0.51

Compatibility Measuring
000000e

Behavioural Compatibility: Forward Computation

Characteristics of our Compatibility Measure

@ The compatibility flooding ensures that the effect of any
detected mismatch must be propagated until the initial states

@ Two protocols are compatible iff COMPEy, p[h, k] = 1

@ Incompatible protocols can be compared using a global
compatibility degree computed from COMPgNyD

@ The global compatibility degree helps for:

@ Ranking and selecting services from a huge number of
candidates
o Simplifying further processing to solve interface mismatches

Compatibility Measuring
°

Prototype Tool

Comparator

Behavioural Models (STSs)

- | Compatibility
Notions

4

Directional
Analysis

Detailed Compatibility Matrix

Compatibility Measuring ¢z
(Comparator) gﬁ

Label - Parameter
Compatibility Compatibility
4 k)

selects

o
Mismatch List

+
. éilects Global Compatibility Degree

@ The Comparator implementation is generic, modular,
extensible, and automated

@ Experiments have been applied on many examples (> 115,
some of them consist of hundreds of states and transitions)

@ Some real-world examples are available at
www.lcc.uma.es/~meriem/comparator.html

www.lcc.uma.es/~meriem/comparator.html

Compatibility Measuring
.

Proof of Convergence

Proof of Convergence

© COMP,, is a function of COMP, 7, and state-compfy,

COMP§, | + state-compfy,
2

COMPEy p = F(COMPg;,jD) =

e these are (square) matrices; state-comp’é,\,y p can be expressed
as a (complicated!) function of COMP(’},Q”D
@ Need to show that the iteration
COMP§y 1, — COMPY,, , = F(COMP§y) converges
@ Proof: Find A < 1 so that for all matrices My, M.,
IF(My) — F(Mg)|| < Al|My — Mo||
o |IM| = ml_?x Mli, j] is supremum metric
@ Hence F is A\-Lipschitz continuous, so for every € > 0 there is
K such that for all k > K, || COMPY,, , — COMPE, T, < €
@ Banach fixed-point theorem

Concluding Remarks

Outline

0 Concluding Remarks

Concluding Remarks

Main Contributions & Perspectives of Our Work

@ Generic and extensible framework for measuring the
compatibility of service interfaces considering different notions

@ Numerical measure of service compatibility: Boolean
compatibility can be also detected

@ Tool support and application to semi-automated service
adaptation (ACIDE and DINAPTER tools)

@ Automatic generation of adaptation contract
@ Automatic management of service evolution

@ Checking the service protocol compatibility under the
asynchronous communication semantics

Concluding Remarks

Main Contributions & Perspectives of Our Work

@ Generic and extensible framework for measuring the
compatibility of service interfaces considering different notions

@ Numerical measure of service compatibility: Boolean
compatibility can be also detected

@ Tool support and application to semi-automated service
adaptation (ACIDE and DINAPTER tools)

@ Automatic generation of adaptation contract
@ Automatic management of service evolution

@ Checking the service protocol compatibility under the
asynchronous communication semantics

THANK YOU

	Model of Services
	Interface Compatibility
	Bidirectional Notion

	Compatibility Measuring
	Static Compatibility
	Behavioural Compatibility: Forward Computation
	Prototype Tool
	Proof of Convergence

	Concluding Remarks

