Pomset Languages of Higher-Dimensional Automata

Uli Fahrenberg

École polytechnique, Palaiseau, France

October 17, 2018

Motivation

- The theory of regular languages is nice and beautiful. It's also fundamental for much of what we do.
- For non-interleaving models ("true concurrency"), no such theory
- It seems that this is mostly due to the choice of model: Petri nets are messy!
- Closest to what I want: [Fanchon-Morin 2002/2009] (abandoned after 2009)
- Here: pomset languages of higher-dimensional automata

Before we begin

Warning

Much of this is work in progress.

Acknowledgement

Joint work with Christian Johansen (Oslo), Georg Struth (Sheffield), and Samuel Mimram

- Higher-dimensional automata
- 2 Languages of HDA
- 3 Examples
- Properties
- 5 Po(m)sets with interfaces
- 6 Weak pomset languages

•00

Higher-dimensional automata

•00

•00

pairwise independent

 $\{a, b, c\}$ independent

000

Tigher-dimensional automata

A precubical set:

- a graded set $X = \{X_n\}_{n \in \mathbb{N}}$
- in each dimension n, 2n face maps $\delta_k^0, \delta_k^1: X_n \to X_{n-1}$ $(k=1,\ldots,n)$
- the precubical identity: $\delta_k^{\nu} \delta_{\ell}^{\mu} = \delta_{\ell-1}^{\mu} \delta_k^{\nu}$ for all $k < \ell$

A (finite) higher-dimensional automaton (X, I, F, ℓ) :

- a finite precubical set X
- with initial and final states $I, F \subseteq X_0$
- and labeling $\ell: X_1 \to \Sigma$
 - such that for all $x \in X_2$ and i = 1, 2, $\ell(\delta_i^0 x) = \ell(\delta_i^1 x)$
- [van Glabbeek-Pratt 1991]

HDA as a model for concurrency:

- points $x \in X_0$: states
- edges $a \in X_1$: transitions (labeled with events)
- *n*-squares $\alpha \in X_n$ ($n \ge 2$): independency relations (concurrently executing events)

van Glabbeek 2006 (TCS): Up to history-preserving bisimilarity, HDA "generalize the main models of concurrency proposed in the literature"

Languages of HDA

Languages of HDA

 $L_1 = \{abc, acb, bac, bca, cab, cba\}$

$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$L_3 = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \dots \right\}$$

$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$\begin{split} L_2 = \left\{ \begin{pmatrix} a \\ b \rightarrow c \end{pmatrix}, \begin{pmatrix} a \\ c \rightarrow b \end{pmatrix}, \begin{pmatrix} b \\ a \rightarrow c \end{pmatrix}, \\ \begin{pmatrix} b \\ c \rightarrow a \end{pmatrix}, \begin{pmatrix} c \\ a \rightarrow b \end{pmatrix}, \begin{pmatrix} c \\ b \rightarrow a \end{pmatrix}, \dots \right\} \end{split}$$

$$L_3 = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \dots \right\}$$

Languages of HDA

$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$L_{2} = \left\{ \begin{pmatrix} a \\ b \to c \end{pmatrix}, \begin{pmatrix} a \\ c \to b \end{pmatrix}, \begin{pmatrix} b \\ a \to c \end{pmatrix}, \\ \begin{pmatrix} b \\ c \to a \end{pmatrix}, \begin{pmatrix} c \\ a \to b \end{pmatrix}, \begin{pmatrix} c \\ b \to a \end{pmatrix} \right\} \cup L_{1}$$

sets of pomsets

$$L_3 = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right\} \cup L_2$$

Pomsets

```
A (finite) pomset ("partially ordered multiset") (P, \leq, \ell):
```

- a finite partially ordered set (P, \leq)
- with labeling $\ell: P \to \Sigma$
- (AKA labeled partial order)
- [Lamport 1978]

Weak pomset languages

$$\begin{pmatrix} a \longrightarrow b \\ c \longrightarrow d \end{pmatrix}$$

- (not series-parallel!)
- gluing product of pomsets:

$$\begin{pmatrix} a \\ c \end{pmatrix} \stackrel{(a)}{\smile} \begin{pmatrix} a \\ d \end{pmatrix} \stackrel{(d)}{\smile} \begin{pmatrix} b \\ d \end{pmatrix} = \begin{pmatrix} a \\ c \longrightarrow d \end{pmatrix} \stackrel{(d)}{\smile} \begin{pmatrix} b \\ d \end{pmatrix} = \begin{pmatrix} a \longrightarrow b \\ c \longrightarrow d \end{pmatrix}$$

• (new ternary operation; more later)

Auto-concurrency

$$\begin{pmatrix} a \rightarrow b \\ a \rightarrow b \end{pmatrix}$$

A loop

Are all pomsets generated by HDA?

No, only (labeled) interval orders

- ullet Poset (P,\leq) is an interval order iff it does not contain (\Longrightarrow)
 - (iff it is "2+2-free")
- iff it has an interval representation:
 - a set $I = \{[I_i, r_i]\}$ of real intervals
 - with order $[l_i, r_i] \leq [l_j, r_j]$ iff $r_i \leq l_j$
 - and an order isomorphism $(P, \leq) \leftrightarrow (I, \preceq)$
- [Fishburn 1970]

Are all pomsets generated by HDA?

No, only (labeled) interval orders

- Poset (P, \leq) is an interval order iff it does not contain (\implies)
 - (iff it is "2+2-free")
- iff it has an interval representation:
 - a set $I = \{[I_i, r_i]\}$ of real intervals
 - with order $[l_i, r_i] \preceq [l_j, r_j]$ iff $r_i \leq l_j$
 - and an order isomorphism $(P, \leq) \leftrightarrow (I, \preceq)$

- An ST-trace: $a_{\kappa}^+ b_{\kappa}^+ a_{\kappa}^+ a^- a^- b^-$ [van Glabbeek 1990]
- as intervals:
- Lemma: ST-traces up to the equivalence generated by $a^+b^+\sim b^+a^+$ and $a^-b^-\sim b^-a^-$ are in bijection with interval orders.

Intuitively clear: but need to make this precise!

Definition

A poset with interfaces (i-poset) is a cospan $s:[n] \to P \leftarrow [m]:t$ of monomorphisms s, t into a poset P such that s[n] is minimal and t[m] is maximal in P.

• [n]: discrete poset $\{1, \ldots, n\}$ with $i \le j$ iff i = j; $[0] = \emptyset$

Posets with interfaces

Definition

A poset with interfaces (i-poset) is a cospan $s:[n] \to P \leftarrow [m]:t$ of monomorphisms s, t into a poset P such that s[n] is minimal and t[m] is maximal in P.

• [n]: discrete poset $\{1, \ldots, n\}$ with $i \leq j$ iff i = j; $[0] = \emptyset$

interfaces for composition!

Definition

The concatenation / gluing product of i-posets

$$s_P: [n] \to (P, \leq_P) \leftarrow [m]: t_P \text{ and } s_Q: [m] \to (Q, \leq_Q) \leftarrow [k]: t_Q:$$

- $P \triangleright Q = s : [n] \rightarrow (R, <) \leftarrow [k] : t$
- $R = (P \sqcup Q)_{/t_P(i) = s_O(i)}$
- $\bullet \leq = (\leq_P \cup \leq_Q \cup (P \setminus t_P[m]) \times (Q \setminus s_Q[m]))^*$

Definition

The concatenation / gluing product of i-posets

$$s_P: [n] \to (P, \leq_P) \leftarrow [m]: t_P \text{ and } s_Q: [m] \to (Q, \leq_Q) \leftarrow [k]: t_Q:$$

- $P \triangleright Q = s : [n] \rightarrow (R, <) \leftarrow [k] : t$
- $R = (P \sqcup Q)_{/t_P(i) = s_O(i)}$
- $\bullet \leq = (\leq_P \cup \leq_Q \cup (P \setminus t_P[m]) \times (Q \setminus s_Q[m]))^*$

An ordered pushout

Lemma

Let $s_P : [n] \to P \leftarrow [m] : t_P \text{ and } s_Q : [m] \to Q \leftarrow [k] : t_Q \text{ be } i\text{-posets}$ and $f : P \to M$, $g : Q \to M$ morphisms into a poset (M, \leq_M) such that the diagram

commutes and such that for all $x \in P \setminus t_P[m]$, $y \in Q \setminus s_Q[m]$, $f(x) \leq_M g(y)$. Then there exists a unique poset morphism $h : P \triangleright Q \to M$ in (1).

Weak pomset languages

A small symmetric monoidal category

- a small category: objects $n \in \mathbb{N}$, morphisms i-posets $(s, P, t) : n \to m$, composition \triangleright , identities (id, [n], id) : $n \to n$
- parallel product / disjoint union of posets:

$$[n_1] \to P_1 \leftarrow [m_1], \quad [n_2] \to P_2 \leftarrow [m_2] \mapsto [n_1 + n_2] \stackrel{\simeq}{\to} [n_1] \sqcup [n_2] \to P_1 \sqcup P_2 \leftarrow [m_1] \sqcup [m_2] \stackrel{\simeq}{\leftarrow} [m_1 + m_2]$$

- symmetries: isomorphisms $n \rightarrow n$
- ⇒ small symmetric monoidal category

Weak pomset languages

- Languages of HDA are subsumption-closed: if $P \in L$, then $Q \in L$ for any refinement $Q \prec P$
 - $P \succ Q$ iff \exists bijective morphism $P \rightarrow Q$
- L weak if $L = \downarrow L := \{Q \mid \exists P \in L : P \succ Q\}$
- Let \mathcal{W} : the class of all weak sets of i-pomsets
- ullet operations on \mathcal{W} :
 - \bullet $I \cup M$
 - $L \otimes M = \bigcup \{P \otimes Q \mid P \in L, Q \in M\}$
 - $L \triangleright M = \bigcup \{P \triangleright Q \mid P \in L, Q \in M, P \text{ and } Q \text{ composable}\}$

Proposition

- $(\mathcal{W}, \cup, \otimes, \emptyset, \mathbb{1}_{\otimes})$ and $(\mathcal{W}, \cup, \triangleright, \emptyset, \mathbb{1}_{\triangleright})$ idempotent semirings
- units $\mathbb{1}_{\otimes} = \{ id_0 \}, \ \mathbb{1}_{\triangleright} = \{ id_n \mid n \in \mathbb{N} \}$
- interchange: $(A \otimes B) \triangleright (C \otimes D) \subseteq (A \triangleright C) \otimes (B \triangleright D)$