Distributed Computing by Oblivious Mobile Robots

Uli Fahrenberg

École polytechnique, Palaiseau, France

MRIS March 14, 2018

Disclaimer

- This is not my research area
- I've read a book and some papers
- \bullet I find this exciting
- I think this is very relevant for things we want to do

A nice book

MORGAN & CLAYPOOL PUBLISHERS

Distributed Computing by Oblivious Mobile Robots

Paola Flocchini **Giuseppe Prencipe** Nicola Santoro

**SYNTHESIS LECTURES ON
DISTRIBUTED COMPUTING THEORY**

Nancy Lynch, Series Editor

Summary

- Lots of research in the theory of distributed robotics.
- Very much related to the theory of distributed systems.
- Focus on autonomous simple robots with limited communication capabilities.
- Nice theoretical results, but few things have been done in practice.

[Introduction](#page-1-0)

[Models](#page-5-0)

- Networks of mobile robots which are
	- anonymous: they all run the same algorithm
	- oblivious: they keep no memory of prior computations
	- distributed: there is no central control
	- with implicit communication (typically through light)
- **•** Sometimes, "oblivious" is relaxed to "finite memory".
- Generally, freedom from failures is assumed; few works on robots with crash faults or Byzantine faults
- Generally, robots are assumed to
	- be dimensionless: points in space; few works on solid or fat robots
	- have infinite precision; few works on inaccurate robots
	- have no notion of real time

Robots have layers (like onions or cakes)

Two-layer control model:

- Layer 1: control of individual robots
- Layer 2: control of the network

(For Layer 1, another nice book.)

Mobile Robotics

Luc Jaulin

- The Look-Compute-Move cycle:
	- **1** Look around and gather positions of other robots and obstacles
		- sometimes, limited visibility is assumed
	- **2** Compute your next move
		- with or without knowledge of previous positions or moves
	- ³ Move to the computed new position

• or stay put if you wish

- No looking or computing during the Move phase!
- No real-time model: can't say how long the phases will be

- fully synchronous (FSYNC): all LCM cycles in lockstep
- **o** semi-synchronous (SSYNC): all LCM cycles in lockstep, but in every round only a subset of robots participates
- asynchronous (ASYNC): most interesting (and difficult!)

Theorem $ASYNC \subseteq SSYNC \subseteq FSYNC$

Theorem

 $ASYNC + 5$ -colored lights \supseteq SSYNC

Theorem

 $ASYNC + 3$ -colored lights + one-snapshot memory \supseteq FSYNC

Gathering and convergence

- Convergence: make robots meet in one point.
- Gathering: make robots meet in one point in a finite number of rounds.

Theorem

Gathering is solvable in FSYNC, even with restricted mobility. Convergence is solvable in ASYNC, even with restricted mobility.

Proof.

Move to center of gravity.

Theorem

Gathering is impossible in SSYNC (and hence in ASYNC).

Proof.

Move-to-CoG does not work; neither does anything else.

Uli Fahrenberg **[Distributed Computing by Oblivious Mobile Robots](#page-0-0)** 10

Gathering with lights

Theorem (Heriban (COMASIC!), Défago, Tixeuil 2018)

Gathering 2 robots is solvable in ASYNC with 2-colored lights.

- Fail-stop collisions: if a robot collides with another during Move, it stops.
- Gathering: make robots form a connected configuration (in a finite number of rounds).

Theorem

Gathering is solvable in ASYNC for 2, 3 or 4 solid robots, in \mathbb{R}^2 , assuming common unit distance and fail-stop collisions.

Proof.

(It's complicated.)

(Nothing more seems to be known.)

Convergence with limited visibility

- Same visibility range for all robots.
- Visibility graph: points $=$ robots; edge iff visible
- partial ASYNC: global time bound on LCM cycle duration

Theorem

Convergence is impossible in FSYNC if the initial visibility graph is disconnected.

Proof.

Trivial.

Theorem

Convergence is solvable in partial ASYNC (and hence in SSYNC).

Proof.

Move towards center of circle which encloses all visible companions.

Convergence with inaccuracies

- **•** Distance imprecision ϵ : measurement \subseteq $[1 \epsilon, 1 + \epsilon] \cdot$ distance
- Angular imprecision *θ*: |measurement − angle| ≤ *θ*

Theorem

Gathering is impossible in FSYNC with distance imprecisions, even with memory and randomness.

Proof.

Partition the line into finitely many segments of length $\frac{1+\epsilon}{1-\epsilon}$...

Theorem (Cohen-Peleg 2008)

Convergence is *impossible in FSYNC if* $\theta \ge 60^\circ$, even with unlimited memory.

Convergence with inaccuracies, contd.

- \bullet Distance imprecision ϵ : measurement \subseteq $[1 \epsilon, 1 + \epsilon] \cdot$ distance
- Angular imprecision *θ*: |measurement − angle| ≤ *θ*

Theorem (Cohen-Peleg 2008)

Convergence is solvable in FSYNC if $\sqrt{2(1 + \epsilon)(1 - \cos \theta) + \epsilon^2} < 0.2$.

Proof.

Move to center of gravity, but stay outside circle of possible error.

Conjecture (Cohen-Peleg 2008)

Convergence is solvable in ASYNC for ϵ and θ sufficiently small.

Conclusion

- **o** This is fun!
- Results also for pattern formation, covering, and flocking
- Also many results for robots on graphs
- o It seems Luc wants to do moving circle formation in the Bay of Biscaya?

Conclusion

Seed Grant Proposals

Distributed Robotics from Theory to Practice

Uli Fahrenberg Ecole Polytechnique, ´ uli@lix.polytechnique.fr

Lead Researcher

Ulrich (Uli) Fahrenberg holds a PhD in mathematics from Aalb University, Denmark. He has started his career in computer science an assistant professor at Aalborg University. Afterwards he has wo as a postdoc at Inria Rennes, France, and since 2016 he is a resear at the computer science lab at École polytechnique. He works wi the Cosynus team and is associated with the Chaire ISC. He work algebraic topology, concurrency theory, real-time verification, and gene quantitative verification.

Other Researcher(s) / Institution(s)

Adina M. Panchea is a postdoc in the Cosynus team at the computer science of École Polytechnique. She holds a double-degree M.Sc in Advanced Control Real-Time Systems from the University "Politehnica" of Bucharest, Romania, an Systems, Autonomous Machines and Field Networks from Lille 1 University, France. In 2015, she received a PhD in automatic control and robotics from the Univers of Orléans, France.

Alexandre Chapoutot, ENSTA ParisTech ?

• This is fun!

- Results also for pattern formation, covering, and flocking
- Also many results for robots on graphs
- o It seems Luc wants to do moving circle formation in the Bay of Biscaya?