Energiautomater, energifunktioner og Kleene-algebra

Uli Fahrenberg Kim G. Larsen

École polytechnique, France
Aalborg Universitet, Denmark

NIK 2018

Energy Automata, Energy Functions, Kleene Algebra

Uli Fahrenberg Kim G. Larsen

École polytechnique, France
Aalborg Universitet, Denmark

NIK 2018

Recall Timed Automata

Recall Timed Automata

Definition

The set $\Phi(C)$ of clock constraints ϕ over a finite set C is defined by the grammar

$$
\phi::=x \bowtie k \mid \phi_{1} \wedge \phi_{2} \quad(x, y \in C, k \in \mathbb{Z}, \bowtie \in\{\leq,<, \geq,>\}) .
$$

Definition

A timed automaton is a tuple $\left(L, \ell_{0}, C, \Sigma, I, E\right)$ consisting of a finite set L of locations, an initial location $\ell_{0} \in L$, a finite set C of clocks, a finite set Σ of actions, a location invariants mapping $I: L \rightarrow \Phi(C)$, and a set $E \subseteq L \times \Phi(C) \times \Sigma \times 2^{C} \times L$ of edges.

Recall Timed Automata

- Useful for modeling synchronous real-time systems
- Reachability, emptiness, LTL model checking PSPACE-complete
- Universality undecidable
- Fast on-the-fly algorithms, using zones, for reachability, liveness, and Timed CTL model checking
- UppAal
- Extensions to weighted timed automata, real-time games, etc.
- This work: Energy problems in timed automata

Energy Constraints

Energy is not only consumed, but can be regained.

\sim "prices" can be negative;
\sim the aim is to continuously satisfy cost constraints
\sim in this paper, we focus on infinite runs.

Example

Energy Constraints

Energy is not only consumed, but can be regained.

$~ "$ prices" can be negative;
\sim the aim is to continuously satisfy cost constraints
\sim in this paper, we focus on infinite runs.

Example

lower-bound problem

Energy Constraints

Energy is not only consumed, but can be regained.

$~ "$ prices" can be negative;
\sim the aim is to continuously satisfy cost constraints
\sim in this paper, we focus on infinite runs.

Example

lower-bound problem

Energy Constraints

Energy is not only consumed, but can be regained.

\sim "prices" can be negative;
\sim the aim is to continuously satisfy cost constraints
\sim in this paper, we focus on infinite runs.

Example

lower-bound problem

Energy Constraints

Energy is not only consumed, but can be regained.

$~$ "prices" can be negative;
\sim the aim is to continuously satisfy cost constraints
\sim in this paper, we focus on infinite runs.

Example

lower-bound problem

Energy Constraints

Energy is not only consumed, but can be regained.

\sim "prices" can be negative;
\sim the aim is to continuously satisfy cost constraints
\sim in this paper, we focus on infinite runs.

Example

Energy Constraints

Energy is not only consumed, but can be regained.

$~$ "prices" can be negative;
\leadsto the aim is to continuously satisfy cost constraints
\sim in this paper, we focus on infinite runs.

Example

lower-upper-bound problem

Energy Constraints

Energy is not only consumed, but can be regained.

\sim "prices" can be negative;
\leadsto the aim is to continuously satisfy cost constraints
\sim in this paper, we focus on infinite runs.

Example

lower-upper-bound problem

Energy Constraints

Energy is not only consumed, but can be regained.

$~$ "prices" can be negative;
\sim the aim is to continuously satisfy cost constraints
\sim in this paper, we focus on infinite runs.

Example

lower-upper-bound problem

Energy Constraints

Energy is not only consumed, but can be regained.

$~$ "prices" can be negative;
\sim the aim is to continuously satisfy cost constraints
\sim in this paper, we focus on infinite runs.

Example

lower-upper-bound problem

Energy Constraints

Energy is not only consumed, but can be regained.

$~$ "prices" can be negative;
\sim the aim is to continuously satisfy cost constraints
\sim in this paper, we focus on infinite runs.

Example

lower-upper-bound problem

Energy Constraints

Energy is not only consumed, but can be regained.

$~ "$ prices" can be negative;
\sim the aim is to continuously satisfy cost constraints
\sim in this paper, we focus on infinite runs.

Example

lower-upper-bound problem

Energy Constraints

Energy is not only consumed, but can be regained.

$~$ "prices" can be negative;
\sim the aim is to continuously satisfy cost constraints
\sim in this paper, we focus on infinite runs.

Example

lower-upper-bound problem

Energy Constraints

Energy is not only consumed, but can be regained.

\sim "prices" can be negative;
\leadsto the aim is to continuously satisfy cost constraints
\sim in this paper, we focus on infinite runs.

Example

lower-upper-bound problem

Energy Constraints

Energy is not only consumed, but can be regained.

$~ "$ prices" can be negative;
\leadsto the aim is to continuously satisfy cost constraints
\sim in this paper, we focus on infinite runs.

Example

lower-upper-bound problem

Energy Constraints

Energy is not only consumed, but can be regained.

$~$ "prices" can be negative;
\sim the aim is to continuously satisfy cost constraints
\sim in this paper, we focus on infinite runs.

Example

lower-upper-bound problem

Problems

Definition:

- $\gamma=s_{0} \xrightarrow{p_{1}} s_{1} \xrightarrow{p_{2}} \cdots \xrightarrow{p_{n}} s_{n}$ a finite path in a weighted transition system
- $c \in \mathbb{R}_{\geq 0}$ initial credit
- $b \in \mathbb{R}_{\geq 0}$ (possible) upper bound
- accumulated cost of γ with initial credit $c: c+p_{1}+p_{2}+\ldots$

Problems:

- lower bound: Find infinite run γ for which $c+p_{1}+\ldots+p_{n} \geq 0$ for all finite prefixes
- interval bound: Find infinite γ for which $c+p_{1}+\ldots+p_{n} \in[0, b]$ for all finite prefixes

Results

- First paper: FORMATS 2008 (170 citations for now)
- Lots of work since then, by lots of people
- Last paper for now: FM 2018 (Best Paper Award)
- My acknowledgements: Kim G. Larsen, Patricia Bouyer, Nicolas Markey ${ }^{1}$, Jiří Srba, Zoltán Ésik ${ }^{\dagger}$, David Cachera, Axel Legay, Pierre-Alain Reynier, Claus Thrane, Line Juhl, Giovanni Bacci
- lower-bound problem decidable for 1-clock WTA undecidable for 4-clock WTA
- interval problem undecidable for 2-clock WTA
- Applications in scheduling
- of batch plants
- of satellites

[^0]
GOMSPACE: Scheduling of Nanosatellites Using UppAal

(1) Motivation
(2) The Lower-Bound Problem for 1-Clock WTA
(3) The Interval Problem for 1-Clock WTA (Work in Progress)

4 Conclusion

(1) Motivation

(2) The Lower-Bound Problem for 1-Clock WTA

3 The Interval Problem for 1-Clock WTA (Work in Progress)

4 Conclusion

The Lower-Bound Problem for 1-Clock WTA

Theorem

For 1-clock WTA without weights on transitions, the lower-bound problem is solvable in polynomial time.

Proof Idea

- can assume that delays within a region are elapsed in the most profitable location
- hence can use corner-point abstraction

Corner-point abstraction

Idea
Delays within a region are elapsed in the most profitable location.

Example

Corner-point abstraction

Idea

Delays within a region are elapsed in the most profitable location.

Example

Corner-point abstraction

Idea

Delays within a region are elapsed in the most profitable location.

Example

Corner-point abstraction

Idea

Delays within a region are elapsed in the most profitable location.

Example

Corner-point abstraction

Idea

Delays within a region are elapsed in the most profitable location.

Remark

The corner-point abstraction is not correct if discrete transitions are weighted:

\qquad

Corner-point abstraction

Idea

Delays within a region are elapsed in the most profitable location.

Remark

The corner-point abstraction is not correct if discrete transitions are weighted:

Corner-point abstraction

Idea

Delays within a region are elapsed in the most profitable location.

Remark

The corner-point abstraction is not correct if discrete transitions are weighted:

The Lower-Bound Problem for 1-Clock WTA

Theorem (FORMATS 2008)

For 1-clock WTA without weights on transitions, the lower-bound problem is solvable in polynomial time.

- corner-point abstraction

Theorem (HSCC 2010)

For 1-clock WTA with weights on transitions, the lower-bound problem is solvable in double-exponential time.

- completely different method, introducing energy functions

(1) Motivation

(2) The Lower-Bound Problem for 1-Clock WTA
(3) The Interval Problem for 1-Clock WTA (Work in Progress)

4 Conclusion

The Interval Problem for 1-Clock WTA
 (Work in Progress)

Definition

An interval timed automaton $A=(L, E, I, F, r)$ consists of a finite set L of locations, a finite set $E \subseteq L \times \mathbb{Q}^{3} \times L$ of transitions, subsets $I, F \subseteq L$ of initial and accepting locations, and weight rates $r: L \rightarrow \mathbb{Q}$.

- transitions $I \xrightarrow[{[a, b}]]{p} I^{\prime}:[a, b]$ interval bound; p price
- spend some time in location l; take transition if $x \in[a, b]$; add p to x
- runs have initial energy and initial time budget
- can only spend time budget: no resets
- almost a 1-clock WTA, but not quite

Interval Time Relations

- A basic interval timed automaton

$$
I \xrightarrow[{[a, b}]]{p} I^{\prime}
$$

defines a relation

$$
R=\left\{\left(x, t, x^{\prime}\right) \mid a \leq x+r(I) t \leq b, x^{\prime}=x+r(I) t+p\right\}
$$

- These can be composed:

$$
\left.I \xrightarrow[{[a, b}]]{p} I^{\prime} \xrightarrow[{[c, d}]\right]{q} I^{\prime \prime}
$$

corresponds to

$$
R_{1} \triangleright R_{2}=\left\{\left(x_{0}, t_{1}+t_{2}, x_{2}\right) \mid \exists x_{1}:\left(x_{0}, t_{1}, x_{1}\right) \in R_{1},\left(x_{1}, t_{2}, x_{2}\right) \in R_{2}\right\} .
$$

Theorem

With operations \cup and \triangleright, relations as above form an idempotent semiring.

The Algebraic Approach to Energy Problems, I

Let $\mathcal{Q}=\mathbb{Q}^{\infty} \times \mathbb{Q}_{\geq 0}^{\infty} \times \mathbb{Q}^{\infty}$: the set of interval timed relations

- together with operations \cup (addition) and \triangleright (multiplication)
\mathcal{Q} forms an idempotent semiring:
- \cup is associative \& commutative, with unit \emptyset
- \triangleright is associative, with unit $\operatorname{id}(x)=x$
- \triangleright distributes over $\cup ; x \triangleright \emptyset=\emptyset \triangleright x=\emptyset$ for all x
- $x \cup x=x$ for all x
\mathcal{Q} forms a continuous Kleene algebra:
- for all $Y \subseteq \mathcal{Q}$ and $x, z \in \mathcal{Q}, \cup Y$ exists and

$$
x \triangleright(\bigcup Y) \triangleright z=\bigcup x \triangleright Y \triangleright z
$$

The Algebraic Approach to Energy Problems, II

Let $n \geq 1$. $\mathcal{Q}^{n \times n}$: the semiring of $n \times n$ matrices over \mathcal{Q}

- with matrix addition \cup and matrix multiplication \triangleright $\mathcal{Q}^{n \times n}$ is again a continuous Kleene algebra
- with $M_{i, j}^{*}=\bigcup_{m \geq 0} \bigcup_{1 \leq k_{1}, \ldots, k_{m} \leq n} M_{i, k_{1}} M_{k_{1}, k_{2}} \cdots M_{k_{m}, j}$
- and for $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$,

$$
M^{*}=\left[\begin{array}{cc}
\left(a \cup b d^{*} c\right)^{*} & \left(a \cup b d^{*} c\right)^{*} b d^{*} \\
\left(d \cup c a^{*} b\right)^{*} c a^{*} & \left(d \cup c a^{*} b\right)^{*}
\end{array}\right]
$$

(recursively; "generalized Floyd-Warshal")

The Algebraic Approach to Energy Problems, III

$A=(\alpha, M, \kappa)$ an interval timed automaton

- $\alpha \in\{\emptyset, \text { id }\}^{n}$ initial vector, $\kappa \in\{\emptyset, \text { id }\}^{n}$ accepting vector, $M \in \mathcal{Q}^{n \times n}$ transition matrix
- finite path $s_{i} \xrightarrow{\omega_{0}} \cdots \xrightarrow{w_{n}} s_{j}$ accepting if $\alpha_{i}=\kappa_{j}=\mathrm{id}$
- finite behavior of A :

$$
|A|=\bigvee\left\{w_{0} \cdots w_{n} \mid s_{i} \xrightarrow{w_{0}} \cdots \xrightarrow{w_{n}} s_{j} \text { accepting finite path }\right\}
$$

Theorem: $|A|=\alpha M^{*} \kappa$

The Algebraic Approach to Energy Problems, IV

Let $\mathcal{V}=\mathbb{Q}^{\infty} \times \mathbb{Q}_{\geq 0}^{\infty}$: interval timed relations without output

- for infinite runs
- with operation \cup and unit \emptyset, \mathcal{V} forms a commutative idempotent monoid
left \mathcal{Q}-action $\mathcal{Q} \times \mathcal{V} \rightarrow \mathcal{V}:(R, U) \mapsto R \triangleright U$
- $(\mathcal{Q}, \mathcal{V})$ semiring-semimodule pair
infinite product $\mathcal{Q}^{\omega} \rightarrow \mathcal{V}$: for $R_{0}, R_{1}, \ldots \in \mathcal{Q}$, define

$$
\begin{aligned}
& \prod R_{n}=\left\{(x, t) \mid \exists x_{0}, x_{1}, \ldots \in \mathbb{Q}^{\infty}, t_{1}, t_{2}, \ldots \in \mathbb{Q}_{\geq 0}^{\infty}:\right. \\
& \left.\sum_{n=0}^{\infty} t_{n}=t, \forall n \geq 0:\left(x_{n}, t_{n+1}, x_{n+1}\right) \in R_{n}\right\}
\end{aligned}
$$

- $(\mathcal{Q}, \mathcal{V})$ continuous Kleene ω-algebra

The Algebraic Approach to Energy Problems, V

$(\mathcal{Q}, \mathcal{V})$ continuous Kleene ω-algebra:

- \mathcal{Q} continuous Kleene algebra; \mathcal{V} complete lattice
- \mathcal{Q}-action on \mathcal{V} preserves all suprema: $x \triangleright(\bigcup Y) \triangleright u=\bigcup x \triangleright Y \triangleright u$
- and three axioms for the infinite product:
- For all $x_{0}, x_{1}, \ldots \in \mathcal{Q}, \Pi x_{n}=x_{0} \prod x_{n+1}$.
- Let $x_{0}, x_{1}, \ldots \in \mathcal{Q}$ and $0=n_{0} \leq n_{1} \leq \cdots$ a sequence which increases without a bound. Let $y_{k}=x_{n_{k}} \cdots x_{n_{k+1}-1}$ for all $k \geq 0$. Then $\Pi x_{n}=\Pi y_{k}$.
- For all $X_{0}, X_{1}, \ldots \subseteq \mathcal{Q}, \Pi\left(\bigvee X_{n}\right)=\bigvee\left\{\prod x_{n} \mid x_{n} \in X_{n}, n \geq 0\right\}$.

The Algebraic Approach to Energy Problems, VI

$\left(\mathcal{Q}^{n \times n}, \mathcal{V}^{n}\right)$ is again a continuous Kleene ω-algebra

- with $M_{i}^{\omega}=\bigcup \quad M_{i, k_{1}} M_{k_{1}, k_{2}} \cdots$

$$
1 \leq k_{1}, k_{2}, \ldots \leq n
$$

- and for $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$,

$$
M^{\omega}=\left[\begin{array}{l}
\left(a \cup b d^{*} c\right)^{\omega} \cup\left(a \cup b d^{*} c\right)^{*} b d^{\omega} \\
\left(d \cup c a^{*} b\right)^{\omega} \cup\left(d \cup c a^{*} b\right)^{*} c a^{\omega}
\end{array}\right]
$$

(recursively)

The Algebraic Approach to Energy Problems, VII

$A=(\alpha, M, \kappa)$ an interval timed automaton

- infinite path $s_{i} \xrightarrow{w_{0}} \xrightarrow{w_{1}} \cdots$ accepting if $\alpha_{i}=$ id and some s_{j} with $\kappa_{j}=\mathrm{id}$ is visited infinitely often
- Büchi behavior of A :

$$
\|A\|=\bigvee\left\{\prod w_{n} \mid s_{i} \xrightarrow{w_{0}} \xrightarrow{w_{1}} \cdots \text { accepting infinite path }\right\}
$$

- Re-order states so that $\kappa=($ id,\ldots, id $, \emptyset, \ldots, \emptyset)$
- i.e. the first $k \leq n$ states are accepting

Theorem: with $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ for $a \in S^{k \times k},\|A\|=\alpha\left[\begin{array}{c}\left(a+b d^{*} c\right)^{\omega} \\ d^{*} c\left(a+b d^{*} c\right)^{\omega}\end{array}\right]$

Conclusion

- Formal methods for solving energy problems
- Applications in scheduling
- Continuous Kleene ω-algebras: obscure algebraic theory with real-world applications!

The work on the interval problem presented here is only half complete: we've found a nice algebraic setting; but we've said nothing about actual computations

- See our FM 2018 paper for actual computations in a restricted setting ("segmented energy timed automata")
- Rest is future work

[^0]: ${ }^{1}$ also for some of the slides. . .

