
Energiautomater, energifunktioner og Kleene-algebra

Uli Fahrenberg Kim G. Larsen

École polytechnique, France

Aalborg Universitet, Denmark

NIK 2018



Energy Automata, Energy Functions, Kleene Algebra

Uli Fahrenberg Kim G. Larsen

École polytechnique, France

Aalborg Universitet, Denmark

NIK 2018



Recall Timed Automata
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Recall Timed Automata

Definition
The set Φ(C) of clock constraints φ over a finite set C is defined by the
grammar

φ ::= x ./ k | φ1 ∧ φ2 (x , y ∈ C , k ∈ Z, ./ ∈ {≤, <,≥, >}).

Definition
A timed automaton is a tuple (L, `0,C ,Σ, I,E ) consisting of a finite set L
of locations, an initial location `0 ∈ L, a finite set C of clocks, a finite set
Σ of actions, a location invariants mapping I : L→ Φ(C), and a set
E ⊆ L× Φ(C)× Σ× 2C × L of edges.
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Recall Timed Automata

Useful for modeling synchronous real-time systems
Reachability, emptiness, LTL model checking PSPACE-complete
Universality undecidable
Fast on-the-fly algorithms, using zones, for reachability, liveness, and
Timed CTL model checking
UppAal
Extensions to weighted timed automata, real-time games, etc.

This work: Energy problems in timed automata
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Energy Constraints

Energy is not only consumed, but can be regained.

; “prices” can be negative;
; the aim is to continuously satisfy cost constraints
; in this paper, we focus on infinite runs.

Example

−3
`0

+6
`1

−6
`2

x=1x :=0

0
0
1
2
3
4

1
lower-bound problem



Energy Constraints

Energy is not only consumed, but can be regained.

; “prices” can be negative;
; the aim is to continuously satisfy cost constraints
; in this paper, we focus on infinite runs.

Example

−3
`0

+6
`1

−6
`2

x=1x :=0
0

0
1
2
3
4

1
lower-bound problem



Energy Constraints

Energy is not only consumed, but can be regained.

; “prices” can be negative;
; the aim is to continuously satisfy cost constraints
; in this paper, we focus on infinite runs.

Example

−3
`0

+6
`1

−6
`2

x=1x :=0
0

0
1
2
3
4

1
lower-bound problem



Energy Constraints

Energy is not only consumed, but can be regained.

; “prices” can be negative;
; the aim is to continuously satisfy cost constraints
; in this paper, we focus on infinite runs.

Example

−3
`0

+6
`1

−6
`2

x=1x :=0
0

0
1
2
3
4

1
lower-bound problem



Energy Constraints

Energy is not only consumed, but can be regained.

; “prices” can be negative;
; the aim is to continuously satisfy cost constraints
; in this paper, we focus on infinite runs.

Example

−3
`0

+6
`1

−6
`2

x=1x :=0
0

0
1
2
3
4

1
lower-bound problem



Energy Constraints

Energy is not only consumed, but can be regained.

; “prices” can be negative;
; the aim is to continuously satisfy cost constraints
; in this paper, we focus on infinite runs.

Example

−3
`0

+6
`1

−6
`2

x=1x :=0
0

0
1
2
3
4

1



Energy Constraints

Energy is not only consumed, but can be regained.

; “prices” can be negative;
; the aim is to continuously satisfy cost constraints
; in this paper, we focus on infinite runs.

Example

−3
`0

+6
`1

−6
`2

x=1x :=0
0

0
1
2
3
4

1
lower-upper-bound problem



Energy Constraints

Energy is not only consumed, but can be regained.

; “prices” can be negative;
; the aim is to continuously satisfy cost constraints
; in this paper, we focus on infinite runs.

Example

−3
`0

+6
`1

−6
`2

x=1x :=0
0

0
1
2
3
4

1
lower-upper-bound problem



Energy Constraints

Energy is not only consumed, but can be regained.

; “prices” can be negative;
; the aim is to continuously satisfy cost constraints
; in this paper, we focus on infinite runs.

Example

−3
`0

+6
`1

−6
`2

x=1x :=0
0

0
1
2
3
4

1
lower-upper-bound problem



Energy Constraints

Energy is not only consumed, but can be regained.

; “prices” can be negative;
; the aim is to continuously satisfy cost constraints
; in this paper, we focus on infinite runs.

Example

−3
`0

+6
`1

−6
`2

x=1x :=0
0

0
1
2
3
4

1
lower-upper-bound problem



Energy Constraints

Energy is not only consumed, but can be regained.

; “prices” can be negative;
; the aim is to continuously satisfy cost constraints
; in this paper, we focus on infinite runs.

Example

−3
`0

+6
`1

−6
`2

x=1x :=0
0

0
1
2
3
4

1
lower-upper-bound problem



Energy Constraints

Energy is not only consumed, but can be regained.

; “prices” can be negative;
; the aim is to continuously satisfy cost constraints
; in this paper, we focus on infinite runs.

Example

−3
`0

+6
`1

−6
`2

x=1x :=0
0

0
1
2
3
4

1
lower-upper-bound problem



Energy Constraints

Energy is not only consumed, but can be regained.

; “prices” can be negative;
; the aim is to continuously satisfy cost constraints
; in this paper, we focus on infinite runs.

Example

−3
`0

+6
`1

−6
`2

x=1x :=0
0

0
1
2
3
4

1
lower-upper-bound problem



Energy Constraints

Energy is not only consumed, but can be regained.

; “prices” can be negative;
; the aim is to continuously satisfy cost constraints
; in this paper, we focus on infinite runs.

Example

−3
`0

+6
`1

−6
`2

x=1x :=0
0

0
1
2
3
4

1
lower-upper-bound problem



Energy Constraints

Energy is not only consumed, but can be regained.

; “prices” can be negative;
; the aim is to continuously satisfy cost constraints
; in this paper, we focus on infinite runs.

Example

−3
`0

+6
`1

−6
`2

x=1x :=0
0

0
1
2
3
4

1
lower-upper-bound problem



Energy Constraints

Energy is not only consumed, but can be regained.

; “prices” can be negative;
; the aim is to continuously satisfy cost constraints
; in this paper, we focus on infinite runs.

Example

−3
`0

+6
`1

−6
`2

x=1x :=0
0

0
1
2
3
4

1
lower-upper-bound problem



Problems

Definition:
γ = s0

p1−→ s1
p2−→ · · · pn−→ sn a finite path in a weighted transition

system
c ∈ R≥0 initial credit
b ∈ R≥0 (possible) upper bound
accumulated cost of γ with initial credit c: c + p1 + p2 + . . .

Problems:
lower bound: Find infinite run γ for which c + p1 + . . .+ pn ≥ 0
for all finite prefixes
interval bound: Find infinite γ for which c + p1 + . . .+ pn ∈ [0, b]
for all finite prefixes
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Results

First paper: FORMATS 2008 (170 citations for now)
Lots of work since then, by lots of people
Last paper for now: FM 2018 (Best Paper Award)
My acknowledgements: Kim G. Larsen, Patricia Bouyer, Nicolas
Markey1, Jiří Srba, Zoltán Ésik†, David Cachera, Axel Legay,
Pierre-Alain Reynier, Claus Thrane, Line Juhl, Giovanni Bacci

lower-bound problem decidable for 1-clock WTA
undecidable for 4-clock WTA

interval problem undecidable for 2-clock WTA

Applications in scheduling
I of batch plants
I of satellites

1also for some of the slides. . .
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GOMSPACE: Scheduling of Nanosatellites Using UppAal
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The Lower-Bound Problem for 1-Clock WTA

Theorem
For 1-clock WTA without weights on transitions, the lower-bound
problem is solvable in polynomial time.

Proof Idea
can assume that delays within a region are elapsed in the most
profitable location
hence can use corner-point abstraction
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Corner-point abstraction

Idea
Delays within a region are elapsed in the most profitable location.
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Corner-point abstraction

Idea
Delays within a region are elapsed in the most profitable location.

Remark
The corner-point abstraction is not correct if discrete transitions
are weighted:

+2 +4−3
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The Lower-Bound Problem for 1-Clock WTA

Theorem (FORMATS 2008)
For 1-clock WTA without weights on transitions, the lower-bound
problem is solvable in polynomial time.

corner-point abstraction

Theorem (HSCC 2010)
For 1-clock WTA with weights on transitions, the lower-bound problem is
solvable in double-exponential time.

completely different method, introducing energy functions
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The Interval Problem for 1-Clock WTA
(Work in Progress)

Definition
An interval timed automaton A = (L,E , I,F , r) consists of a finite set L
of locations, a finite set E ⊆ L×Q3 × L of transitions, subsets I,F ⊆ L
of initial and accepting locations, and weight rates r : L→ Q.

transitions l p−−−−→[a,b] l ′: [a, b] interval bound; p price
spend some time in location l ; take transition if x ∈ [a, b]; add p
to x
runs have initial energy and initial time budget
can only spend time budget: no resets

I almost a 1-clock WTA, but not quite
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Interval Time Relations
A basic interval timed automaton

l p−−−−→[a,b] l ′

defines a relation

R = {(x , t, x ′) | a ≤ x + r(l) t ≤ b, x ′ = x + r(l) t + p}

These can be composed:

l p−−−−→[a,b] l ′ q−−−−→[c,d] l ′′

corresponds to

R1 .R2 = {(x0, t1+t2, x2) | ∃x1 : (x0, t1, x1) ∈ R1, (x1, t2, x2) ∈ R2} .

Theorem
With operations ∪ and ., relations as above form an idempotent
semiring.
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The Algebraic Approach to Energy Problems, I

Let Q = Q∞ ×Q∞≥0 ×Q∞: the set of interval timed relations
together with operations ∪ (addition) and . (multiplication)

Q forms an idempotent semiring:
∪ is associative & commutative, with unit ∅
. is associative, with unit id(x) = x
. distributes over ∪; x . ∅ = ∅ . x = ∅ for all x
x ∪ x = x for all x

Q forms a continuous Kleene algebra:
for all Y ⊆ Q and x , z ∈ Q, ⋃Y exists and

x .
(⋃

Y
)
. z =

⋃
x .Y . z
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The Algebraic Approach to Energy Problems, II

Let n ≥ 1. Qn×n: the semiring of n × n matrices over Q
with matrix addition ∪ and matrix multiplication .

Qn×n is again a continuous Kleene algebra

with M∗i ,j =
⋃

m≥0

⋃
1≤k1,...,km≤n

Mi ,k1Mk1,k2 · · ·Mkm,j

and for M =
[
a b
c d

]
,

M∗ =
[

(a ∪ bd∗c)∗ (a ∪ bd∗c)∗bd∗
(d ∪ ca∗b)∗ca∗ (d ∪ ca∗b)∗

]
(recursively; “generalized Floyd-Warshal”)
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The Algebraic Approach to Energy Problems, III

A = (α,M, κ) an interval timed automaton
α ∈ {∅, id}n initial vector, κ ∈ {∅, id}n accepting vector,
M ∈ Qn×n transition matrix
finite path si

w0−→ · · · wn−→ sj accepting if αi = κj = id
finite behavior of A:

|A| =
∨{

w0 · · ·wn
∣∣ si

w0−→ · · · wn−→ sj accepting finite path
}

Theorem: |A| = αM∗κ
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The Algebraic Approach to Energy Problems, IV
Let V = Q∞ ×Q∞≥0: interval timed relations without output

for infinite runs
with operation ∪ and unit ∅, V forms a commutative idempotent
monoid

left Q-action Q× V → V: (R,U) 7→ R .U
(Q,V) semiring-semimodule pair

infinite product Qω → V: for R0,R1, . . . ∈ Q, define∏
Rn =

{(
x , t)

∣∣ ∃x0, x1, . . . ∈ Q∞, t1, t2, . . . ∈ Q∞≥0 :
∞∑

n=0
tn = t, ∀n ≥ 0 : (xn, tn+1, xn+1) ∈ Rn

}

(Q,V) continuous Kleene ω-algebra
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The Algebraic Approach to Energy Problems, V

(Q,V) continuous Kleene ω-algebra:
Q continuous Kleene algebra; V complete lattice
Q-action on V preserves all suprema: x .

(⋃
Y
)
. u = ⋃

x .Y . u
and three axioms for the infinite product:

I For all x0, x1, . . . ∈ Q,
∏

xn = x0
∏

xn+1.
I Let x0, x1, . . . ∈ Q and 0 = n0 ≤ n1 ≤ · · · a sequence which
increases without a bound. Let yk = xnk · · · xnk+1−1 for all
k ≥ 0. Then ∏ xn = ∏

yk .
I For all X0,X1, . . . ⊆ Q,

∏(∨Xn) = ∨
{
∏

xn | xn ∈ Xn, n ≥ 0}.
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The Algebraic Approach to Energy Problems, VI

(Qn×n,Vn) is again a continuous Kleene ω-algebra
with Mω

i =
⋃

1≤k1,k2,...≤n
Mi ,k1Mk1,k2 · · ·

and for M =
[
a b
c d

]
,

Mω =
[

(a ∪ bd∗c)ω ∪ (a ∪ bd∗c)∗bdω

(d ∪ ca∗b)ω ∪ (d ∪ ca∗b)∗caω

]
(recursively)
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The Algebraic Approach to Energy Problems, VII

A = (α,M, κ) an interval timed automaton
infinite path si

w0−→ w1−→ · · · accepting if αi = id and some sj with
κj = id is visited infinitely often
Büchi behavior of A:

‖A‖ =
∨{∏

wn
∣∣ si

w0−→ w1−→ · · · accepting infinite path
}

Re-order states so that κ = (id, . . . , id, ∅, . . . , ∅)
i.e. the first k ≤ n states are accepting

Theorem: with M =
[
a b
c d

]
for a ∈ Sk×k , ‖A‖ = α

[
(a + bd∗c)ω

d∗c(a + bd∗c)ω

]
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Conclusion

Formal methods for solving energy problems
Applications in scheduling
Continuous Kleene ω-algebras: obscure algebraic theory with
real-world applications!

The work on the interval problem presented here is only half complete:
we’ve found a nice algebraic setting; but we’ve said nothing about actual
computations

See our FM 2018 paper for actual computations in a restricted
setting (“segmented energy timed automata”)
Rest is future work
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