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Recall Timed Automata
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Recall Timed Automata

Definition
The set ®(C) of clock constraints ¢ over a finite set C is defined by the
grammar

¢ =x k| d1 Ao (x,ye CikeZ,xe{<,<,>,>}).

Definition

A timed automaton is a tuple (L, /o, C, X, I, E) consisting of a finite set L
of locations, an initial location £y € L, a finite set C of clocks, a finite set
¥ of actions, a location invariants mapping / : L — ®(C), and a set
ECLx®(C)x X x2¢x L of edges.
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Recall Timed Automata

Useful for modeling synchronous real-time systems
Reachability, emptiness, LTL model checking PSPACE-complete

Universality undecidable

Fast on-the-fly algorithms, using zones, for reachability, liveness, and
Timed CTL model checking

o UppAal

@ Extensions to weighted timed automata, real-time games, etc.

@ This work: Energy problems in timed automata
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Energy Constraints

Energy is not only consumed, but can be regained.

~> “prices” can be negative;
~> the aim is to continuously satisfy cost constraints

~ in this paper, we focus on infinite runs.

Example
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Energy Constraints

Energy is not only consumed, but can be regained.

~> “prices” can be negative;
~> the aim is to continuously satisfy cost constraints
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Problems

Definition:

0 v=s9 LN s1 LTI sp a finite path in a weighted transition
system

@ c € R>g initial credit
@ b € R>p (possible) upper bound

@ accumulated cost of v with initial credit ¢: c+p1 +po+ ...
Problems:

@ lower bound: Find infinite run v for which c+p1 +...+p, >0
for all finite prefixes

e interval bound: Find infinite v for which ¢ + p; + ...+ p, € [0, b]
for all finite prefixes
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Results

First paper: FORMATS 2008 (170 citations for now)
Lots of work since then, by lots of people
Last paper for now: FM 2018 (Best Paper Award)

My acknowledgements: Kim G. Larsen, Patricia Bouyer, Nicolas
Markey®, Jifi Srba, Zoltan Esik', Karin Quaas, David Cachera, Axel
Legay, Pierre-Alain Reynier, Claus Thrane

@ lower-bound problem decidable for 1-clock WTA
undecidable for 4-clock WTA

@ interval problem undecidable for 2-clock WTA

Applications in scheduling

» of batch plants
» of satellites

lalso for some of the slides. ..
Uli Fahrenberg Energy Automata, Energy Functions, Kleene Algebra 22



GOMSPACE: Scheduling of Nanosatellites Using UppAal
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@ Motivation

© The Lower-Bound Problem for 1-Clock WTA

© The Interval Problem for 1-Clock WTA (Work in Progress)

@ Conclusion



© The Lower-Bound Problem for 1-Clock WTA



The Lower-Bound Problem for 1-Clock WTA

Theorem

For 1-clock WTA without weights on transitions, the lower-bound
problem is solvable in polynomial time.

Proof ldea

@ can assume that delays within a region are elapsed in the most
profitable location

@ hence can use corner-point abstraction
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Corner-point abstraction

Idea
Delays within a region are elapsed in the most profitable location.

Example
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Idea

Delays within a region are elapsed in the most profitable location.
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The Lower-Bound Problem for 1-Clock WTA

Theorem (FORMATS 2008)

For 1-clock WTA without weights on transitions, the lower-bound
problem is solvable in polynomial time.

@ corner-point abstraction

Theorem (HSCC 2010)

For 1-clock WTA with weights on transitions, the lower-bound problem is
solvable in double-exponential time.

@ completely different method, introducing energy functions
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© The Interval Problem for 1-Clock WTA (Work in Progress)



The Interval Problem for 1-Clock WTA

(Work in Progress)

Definition

An interval timed automaton A = (L, E, I, F,r) consists of a finite set L
of locations, a finite set E C L x Q3 x L of transitions, subsets /, F C L
of initial and accepting locations, and weight rates r: L — Q.

@ transitions / ﬁ I': [a, b] interval bound; p price

@ spend some time in location /; take transition if x € [a, b]; add p
to x

@ runs have initial energy and initial time budget

@ can only spend time budget: no resets
» almost a 1-clock WTA, but not quite
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Interval Time Relations
@ A basic interval timed automaton
P !
eyl
defines a relation
R={(x,t,x") | a<x+r(Nt<bx =x+r(l)t+p}
@ These can be composed:
P / q "
I a!

corresponds to

Ri> Ry = {(x0, ti+t2, x2) | 3x1 : (x0, t1,x1) € Ri, (X1, t2, x2) € Ro}.

Theorem

With operations U and 1>, relations as above form an idempotent
semiring.

Uli Fahrenberg Energy Automata, Energy Functions, Kleene Algebra
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The Algebraic Approach to Energy Problems, |

Let @ = Q> x QZH x Q™: the set of interval timed relations

@ together with operations U (addition) and > (multiplication)

> Ri> Ry ={(x0,t1+ t2,x2) | Ix1 : (%0, t1,x1) € Ry, (x1, t2, x2) € Ra}

Q forms an idempotent semiring:

@ U is associative & commutative, with unit ()

@ > is associative, with unit 1 = {(x,0,x) | x € Q>}

o b distributes over U; x>0 = 0> x = @ for all x

o xUx = x for all x
Q forms a continuous Kleene algebra:

o forall Y C Qand x,z€ 9, |J Y exists and

XI>(U Y)DZ:UXD Yz
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The Algebraic Approach to Energy Problems, Il

Let n > 1. Q™" the semiring of n X n matrices over Q
@ with matrix addition U and matrix multiplication >

Q™" is again a continuous Kleene algebra

owith M= )] | MMk M,
m>0 1<k, o, km<n

a b
@ and for M = lc d]' can compute

(aUbd*c)*  (aU bd*c)*bd*

M= (dUca*b)*ca® (dUca*b)*

(recursively; “generalized Floyd-Warshal")

Uli Fahrenberg Energy Automata, Energy Functions, Kleene Algebra
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The Algebraic Approach to Energy Problems, Il

A = (o, M, k) an interval timed automaton

e a € {0, 1}" initial vector, k € {0, 1}" accepting vector,
M € Q"% transition matrix

o finite path s; NN sj accepting if aj = kj = 1

o finite behavior of A:
Al = Wo -+ Wy | S NN accepting finite path
j

Theorem: |A| = aM*k
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The Algebraic Approach to Energy Problems, 1V

Let V = Q> x Q: interval timed relations without output
o for infinite runs

@ with operation U and unit (), V forms a commutative idempotent
monoid

left Q-action @ x V — V: (R,U) — R>U
e (Q,V) semiring-semimodule pair
infinite product Q¥ — V: for Ry, Ry, ... € Q, define

HRn:{(X7t) | EIXOaxla"'EQooatl?D?"‘eQ%oo:

o0
Z th =t,Yn >0 (Xp, tat1, Xnt1) € Rn}
n=0

e (Q,V) continuous Kleene w-algebra

Uli Fahrenberg Energy Automata, Energy Functions, Kleene Algebra
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The Algebraic Approach to Energy Problems, V

(Q,V) continuous Kleene w-algebra:
@ Q continuous Kleene algebra; ¥V complete lattice
@ Q-action on V preserves all suprema: x> (JY)>u=Ux>Yr>u
@ and three axioms for the infinite product:

» For all xp,x1,...€ Q, [[xh =x0 [ Xnt1-

» Let xg,x1,... € @ and 0 = ng < n; < --- a sequence which
increases without a bound. Let yx = X, - - - Xp,,, 1 for all
k>0. Then [[x, = I v«-

» For all Xp, X1,... C Q, [I(V X,) = V{IIxn | xn € X5, n > 0}.
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The Algebraic Approach to Energy Problems, VI

(Q™" V") is again a continuous Kleene w-algebra

H w
o with MY = | MMy
1<ky,ko,...<n

a b
@ and for M = lc d]' can compute

(aU bd*c)¥ U (aU bd*c)*bd"

M= (d Uca*b)¥ U (d U ca*b)*ca”

(recursively)
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The Algebraic Approach to Energy Problems, VII

A = (a, M, k) an interval timed automaton

e infinite path s; —»—% ... accepting if a; = 1 and some s; with
kj = 1 is visited infinitely often
Biichi behavior of A:

A=\ {]] wa|s -2 - accepting infinite path}

@ Re-order states so that k = (1,...,1,0,...,0)
@ i.e. the first k < n states are accepting

(a+ bd*c)”
d*c(a+ bd*c)¥

Theorem: with M = li Z] for a € Sk Al = a
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Conclusion

@ Formal methods for solving energy problems
@ Applications in scheduling

@ Continuous Kleene w-algebras: obscure algebraic theory with
real-world applications!

The work on the interval problem presented here is only half complete:
we've found a nice algebraic setting; but we've said nothing about actual
computations

@ See our FM 2018 paper for actual computations in a restricted
setting (“segmented energy timed automata”)

@ Rest is future work
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