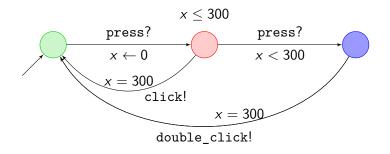
Energy Automata, Energy Functions, Kleene Algebra

Uli Fahrenberg

École polytechnique, Palaiseau, France

January 2019

Recall Timed Automata



Recall Timed Automata

Definition

The set $\Phi(C)$ of clock constraints ϕ over a finite set C is defined by the grammar

 $\phi ::= x \bowtie k \mid \phi_1 \land \phi_2 \qquad (x, y \in C, k \in \mathbb{Z}, \bowtie \in \{\leq, <, \geq, >\}).$

Definition

A timed automaton is a tuple $(L, \ell_0, C, \Sigma, I, E)$ consisting of a finite set L of locations, an initial location $\ell_0 \in L$, a finite set C of clocks, a finite set Σ of actions, a location invariants mapping $I : L \to \Phi(C)$, and a set $E \subseteq L \times \Phi(C) \times \Sigma \times 2^C \times L$ of edges.

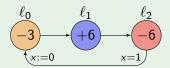
Recall Timed Automata

- Useful for modeling synchronous real-time systems
- Reachability, emptiness, LTL model checking PSPACE-complete
- Universality undecidable
- Fast on-the-fly algorithms, using zones, for reachability, liveness, and Timed CTL model checking
- UppAal
- Extensions to weighted timed automata, real-time games, etc.
- This work: Energy problems in timed automata

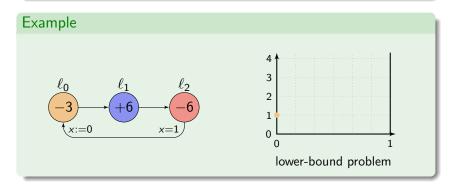
Energy is not only consumed, but can be regained.

- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.

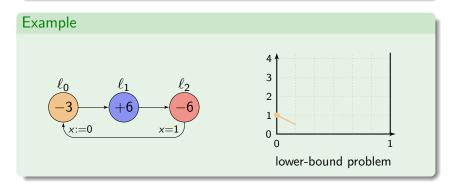
Example



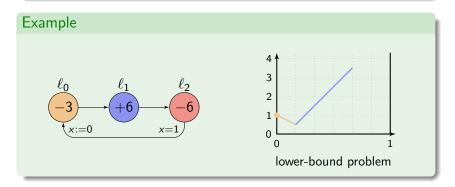
- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.



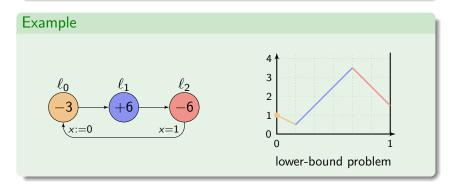
- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.



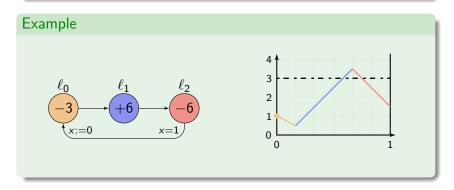
- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.



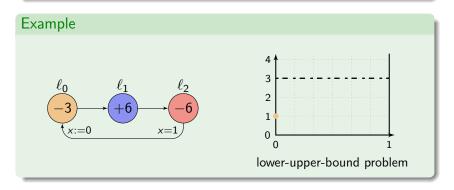
- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.



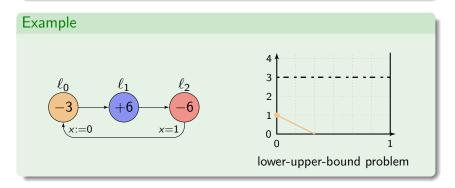
- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.



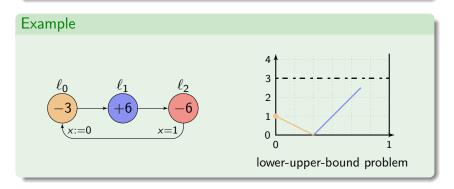
- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.



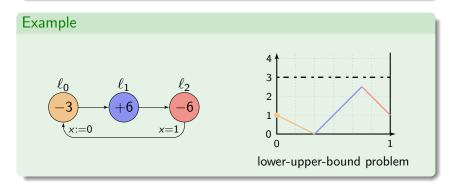
- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.



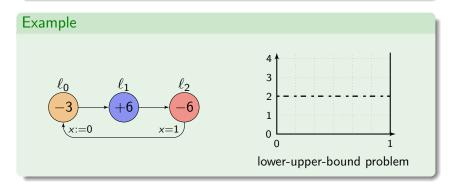
- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.



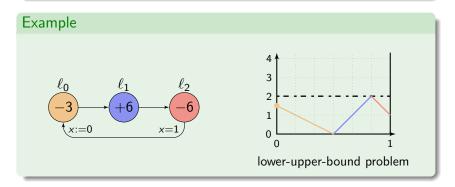
- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.



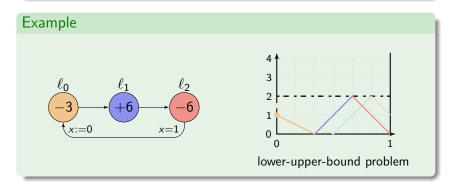
- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.



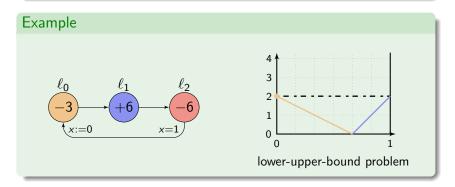
- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.



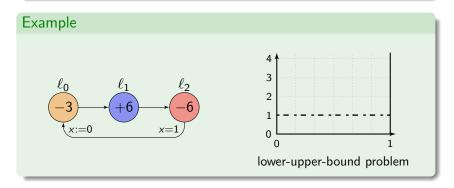
- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.



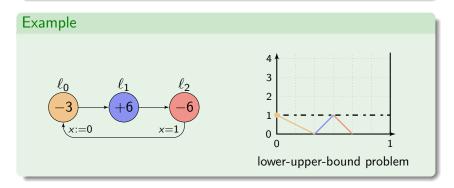
- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.



- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.



- \sim "prices" can be negative;
- \rightsquigarrow the aim is to continuously satisfy cost constraints
- \rightsquigarrow in this paper, we focus on infinite runs.



Problems

Definition:

- $\gamma = s_0 \xrightarrow{p_1} s_1 \xrightarrow{p_2} \cdots \xrightarrow{p_n} s_n$ a finite path in a weighted transition system
- $\mathbf{c} \in \mathbb{R}_{\geq 0}$ initial credit
- $b \in \mathbb{R}_{\geq 0}$ (possible) upper bound
- accumulated cost of γ with initial credit c: $c + p_1 + p_2 + ...$

Problems:

- lower bound: Find infinite run γ for which c + p₁ + ... + p_n ≥ 0 for all finite prefixes
- interval bound: Find infinite γ for which c + p₁ + ... + p_n ∈ [0, b] for all finite prefixes

Results

- First paper: FORMATS 2008 (170 citations for now)
- Lots of work since then, by lots of people
- Last paper for now: FM 2018 (Best Paper Award)
- My acknowledgements: Kim G. Larsen, Patricia Bouyer, Nicolas Markey¹, Jiří Srba, Zoltán Ésik[†], Karin Quaas, David Cachera, Axel Legay, Pierre-Alain Reynier, Claus Thrane
- lower-bound problem decidable for 1-clock WTA undecidable for 4-clock WTA
- interval problem undecidable for 2-clock WTA
- Applications in scheduling
 - of batch plants
 - of satellites

¹also for some of the slides...

GOMSPACE: Scheduling of Nanosatellites Using UppAal

3 The Interval Problem for 1-Clock WTA (Work in Progress)

3 The Interval Problem for 1-Clock WTA (Work in Progress)

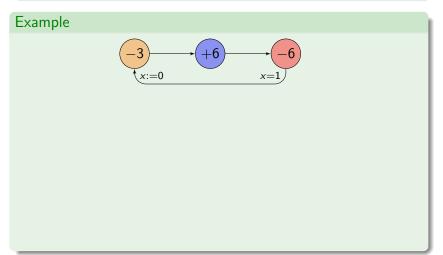
Theorem

For 1-clock WTA without weights on transitions, the lower-bound problem is solvable in polynomial time.

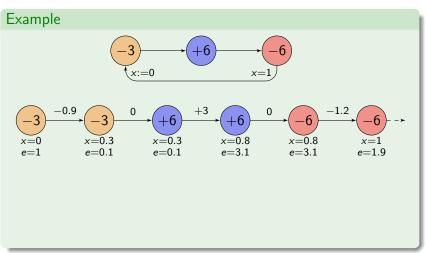
Proof Idea

- can assume that delays within a region are elapsed in the most profitable location
- hence can use corner-point abstraction

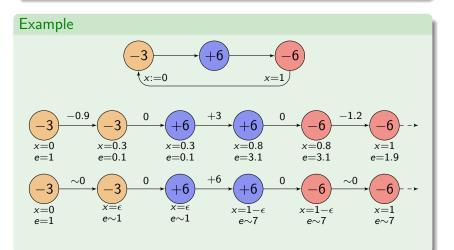
Idea



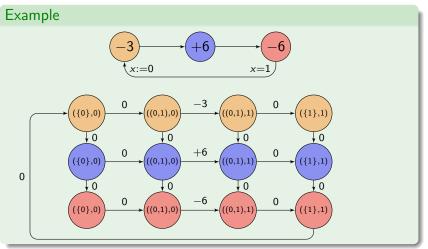
Idea



Idea



Idea

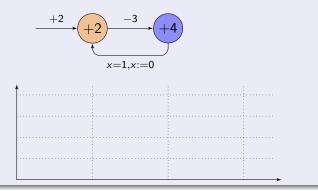


Idea

Delays within a region are elapsed in the most profitable location.

Remark

The corner-point abstraction is not correct if discrete transitions are weighted:

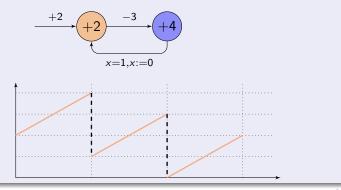


Idea

Delays within a region are elapsed in the most profitable location.

Remark

The corner-point abstraction is not correct if discrete transitions are weighted:

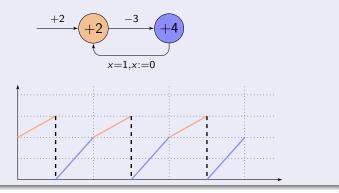


Idea

Delays within a region are elapsed in the most profitable location.

Remark

The corner-point abstraction is not correct if discrete transitions are weighted:



Theorem (FORMATS 2008)

For 1-clock WTA without weights on transitions, the lower-bound problem is solvable in polynomial time.

corner-point abstraction

Theorem (HSCC 2010)

For 1-clock WTA with weights on transitions, the lower-bound problem is solvable in double-exponential time.

• completely different method, introducing energy functions

3 The Interval Problem for 1-Clock WTA (Work in Progress)

The Interval Problem for 1-Clock WTA (Work in Progress)

Definition

An interval timed automaton A = (L, E, I, F, r) consists of a finite set L of locations, a finite set $E \subseteq L \times \mathbb{Q}^3 \times L$ of transitions, subsets $I, F \subseteq L$ of initial and accepting locations, and weight rates $r : L \to \mathbb{Q}$.

- transitions $I \xrightarrow{p} I'$: [a, b] interval bound; p price
- spend some time in location *I*; take transition if *x* ∈ [*a*, *b*]; add *p* to *x*
- runs have initial energy and initial time budget
- can only spend time budget: no resets
 - almost a 1-clock WTA, but not quite

Interval Time Relations

• A basic interval timed automaton

$$I \xrightarrow{p} I'$$

defines a relation

1

$$R = \{(x, t, x') \mid a \le x + r(l) t \le b, x' = x + r(l) t + p\}$$

• These can be composed:

$$I \xrightarrow{p} I' \xrightarrow{q} I''$$

corresponds to

$$R_1 \triangleright R_2 = \{ (x_0, t_1 + t_2, x_2) \mid \exists x_1 : (x_0, t_1, x_1) \in R_1, (x_1, t_2, x_2) \in R_2 \}.$$

Theorem

With operations \cup and \triangleright , relations as above form an idempotent semiring.

Uli Fahrenberg

The Algebraic Approach to Energy Problems, I

Let $\mathcal{Q}=\mathbb{Q}^\infty\times\mathbb{Q}_{\geq 0}^\infty\times\mathbb{Q}^\infty$: the set of interval timed relations

• together with operations \cup (addition) and \triangleright (multiplication)

▶ $R_1 \triangleright R_2 = \{(x_0, t_1 + t_2, x_2) \mid \exists x_1 : (x_0, t_1, x_1) \in R_1, (x_1, t_2, x_2) \in R_2\}$

 $\mathcal Q$ forms an idempotent semiring:

- ullet \cup is associative & commutative, with unit \emptyset
- \triangleright is associative, with unit $\mathbb{1} = \{(x, 0, x) \mid x \in \mathbb{Q}^\infty\}$
- \triangleright distributes over \cup ; $x \triangleright \emptyset = \emptyset \triangleright x = \emptyset$ for all x
- $x \cup x = x$ for all x

 \mathcal{Q} forms a continuous Kleene algebra:

• for all $Y \subseteq \mathcal{Q}$ and $x, z \in \mathcal{Q}$, $\bigcup Y$ exists and

 $x \triangleright (\bigcup Y) \triangleright z = \bigcup x \triangleright Y \triangleright z$

The Algebraic Approach to Energy Problems, II

Let n ≥ 1. Q^{n×n}: the semiring of n × n matrices over Q
with matrix addition ∪ and matrix multiplication ⊳
Q^{n×n} is again a continuous Kleene algebra

• with
$$M_{i,j}^* = \bigcup_{m \ge 0} \bigcup_{1 \le k_1, \dots, k_m \le n} M_{i,k_1} M_{k_1,k_2} \cdots M_{k_m,j}$$

• and for
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, can compute
$$M^* = \begin{bmatrix} (a \cup bd^*c)^* & (a \cup bd^*c)^*bd^* \\ (d \cup ca^*b)^*ca^* & (d \cup ca^*b)^* \end{bmatrix}$$

(recursively; "generalized Floyd-Warshal")

The Algebraic Approach to Energy Problems, III

 $A = (\alpha, M, \kappa)$ an interval timed automaton

- $\alpha \in \{\emptyset, \mathbb{1}\}^n$ initial vector, $\kappa \in \{\emptyset, \mathbb{1}\}^n$ accepting vector, $M \in \mathcal{Q}^{n \times n}$ transition matrix
- finite path $s_i \xrightarrow{w_0} \cdots \xrightarrow{w_n} s_j$ accepting if $\alpha_i = \kappa_j = \mathbb{1}$
- finite behavior of A:

$$|A| = \bigvee \{ w_0 \cdots w_n \mid s_i \xrightarrow{w_0} \cdots \xrightarrow{w_n} s_j \text{ accepting finite path} \}$$

Theorem: $|A| = \alpha M^* \kappa$

The Algebraic Approach to Energy Problems, IV

Let $\mathcal{V} = \mathbb{Q}^{\infty} \times \mathbb{Q}_{\geq 0}^{\infty}$: interval timed relations without output

- for infinite runs
- with operation ∪ and unit Ø, V forms a commutative idempotent monoid
- left \mathcal{Q} -action $\mathcal{Q} \times \mathcal{V} \to \mathcal{V}$: $(R, U) \mapsto R \triangleright U$
 - $(\mathcal{Q}, \mathcal{V})$ semiring-semimodule pair

infinite product $\mathcal{Q}^{\omega} \rightarrow \mathcal{V}$: for $R_0, R_1, \ldots \in \mathcal{Q}$, define

$$\prod R_n = \{(x,t) \mid \exists x_0, x_1, \ldots \in \mathbb{Q}^{\infty}, t_1, t_2, \ldots \in \mathbb{Q}^{\infty}_{\geq 0} :$$
$$\sum_{n=0}^{\infty} t_n = t, \forall n \ge 0 : (x_n, t_{n+1}, x_{n+1}) \in R_n \}$$

• (Q, V) continuous Kleene ω -algebra

The Algebraic Approach to Energy Problems, V

$(\mathcal{Q}, \mathcal{V})$ continuous Kleene ω -algebra:

- \mathcal{Q} continuous Kleene algebra; \mathcal{V} complete lattice
- Q-action on \mathcal{V} preserves all suprema: $x \triangleright (\bigcup Y) \triangleright u = \bigcup x \triangleright Y \triangleright u$
- and three axioms for the infinite product:
 - For all $x_0, x_1, \ldots \in \mathcal{Q}$, $\prod x_n = x_0 \prod x_{n+1}$.
 - Let $x_0, x_1, \ldots \in Q$ and $0 = n_0 \le n_1 \le \cdots$ a sequence which increases without a bound. Let $y_k = x_{n_k} \cdots x_{n_{k+1}-1}$ for all $k \ge 0$. Then $\prod x_n = \prod y_k$.
 - ► For all $X_0, X_1, \ldots \subseteq Q$, $\prod (\bigvee X_n) = \bigvee \{\prod x_n \mid x_n \in X_n, n \ge 0\}.$

The Algebraic Approach to Energy Problems, VI

$$Q^{n \times n}, \mathcal{V}^n) \text{ is again a continuous Kleene } \omega \text{-algebra}$$

• with $M_i^{\omega} = \bigcup_{1 \le k_1, k_2, \dots \le n} M_{i, k_1} M_{k_1, k_2} \cdots$
• and for $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, can compute
 $M^{\omega} = \begin{bmatrix} (a \cup bd^*c)^{\omega} \cup (a \cup bd^*c)^* bd^{\omega} \\ (d \cup ca^*b)^{\omega} \cup (d \cup ca^*b)^* ca^{\omega} \end{bmatrix}$

(recursively)

The Algebraic Approach to Energy Problems, VII

 $A = (\alpha, M, \kappa)$ an interval timed automaton

- infinite path $s_i \xrightarrow{w_0} \xrightarrow{w_1} \cdots$ accepting if $\alpha_i = 1$ and some s_j with $\kappa_j = 1$ is visited infinitely often
- Büchi behavior of A:

$$\|A\| = \bigvee \{ \prod w_n \mid s_i \xrightarrow{w_0} \cdots \text{accepting infinite path} \}$$

- Re-order states so that $\kappa = (1, \dots, 1, \emptyset, \dots, \emptyset)$
- i.e. the first $k \le n$ states are accepting Theorem: with $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ for $a \in S^{k \times k}$, $||A|| = \alpha \begin{bmatrix} (a+bd^*c)^{\omega} \\ d^*c(a+bd^*c)^{\omega} \end{bmatrix}$

Conclusion

- Formal methods for solving energy problems
- Applications in scheduling
- Continuous Kleene ω-algebras: obscure algebraic theory with real-world applications!

The work on the interval problem presented here is only half complete: we've found a nice algebraic setting; but we've said nothing about actual computations

- See our FM 2018 paper for actual computations in a restricted setting ("segmented energy timed automata")
- Rest is future work

Selected Bibliography

- P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and J. Srba. Infinite runs in weighted timed automata with energy constraints. In FORMATS, vol. 5215 of Lect. Notes Comput. Sci. Springer, 2008.
- P. Bouyer, U. Fahrenberg, K. G. Larsen, and N. Markey. Timed automata with observers under energy constraints. In *HSCC*, 2010.
- Z. Ésik, U. Fahrenberg, A. Legay, and K. Quaas. An algebraic approach to energy problems I & II. Acta Cybern., 23(1):203–228, 229–268, 2017.
- D. Cachera, U. Fahrenberg, and A. Legay. An ω-algebra for real-time energy problems. In *FSTTCS*, vol. 45 of *LIPIcs*. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 2015.
- G. Bacci, K. G. Larsen, N. Markey, P. Bouyer-Decitre, U. Fahrenberg, and P.-A. Reynier. Optimal and robust controller synthesis using energy timed automata with uncertainty. In *FM*, 2018.