# The Quantitative Linear-Time-Branching-Time Spectrum 

Uli Fahrenberg

École polytechnique, Palaiseau, France
Tokyo November 2019


## Quantitative Analysis

Quantitative Models


## Quantitative Quantitative Analysis

Quantitative Models


Quantitative Logics

$$
\operatorname{Pr}_{\leq .1}(\triangle \text { error })
$$

## Quantitative Quantitative Quantitative Analysis

Quantitative Models


Quantitative Logics

$$
\left.\operatorname{Pr}_{\leq .1}( \rangle \text { error }\right)
$$

Quantitative Verification

$$
\begin{gathered}
\llbracket \phi \rrbracket(s)=3.14 \\
d(s, t)=42
\end{gathered}
$$

## Quantitative Quantitative Quantitative Analysis

## Quantitative Models



Quantitative Logics

$$
\operatorname{Pr}_{\leq .1}(\triangle \text { error })
$$

## Quantitative Verification

$$
\begin{gathered}
\llbracket \phi \rrbracket(s)=3.14 \\
d(s, t)=42
\end{gathered}
$$

Boolean world
Trace equivalence $\equiv$ Bisimilarity ~ $s \sim t$ implies $s \equiv t$ $s \models \phi$ or $s \not \models \phi$ $s \sim t$ iff $\forall \phi: s \models \phi \Leftrightarrow t \models \phi$
"Quantification"
Linear distances $d_{L}$
Branching distances $d_{B}$
$d_{L}(s, t) \leq d_{B}(s, t)$
$\llbracket \phi \rrbracket(s)$ is a quantity
$d_{B}(s, t)=\sup _{\phi} d(\llbracket \phi \rrbracket(s), \llbracket \phi \rrbracket(t))$

## Quantitative Quantitative Quantitative Analysis

Problem: For processes with quantities, lots of different ways to measure distance

- point-wise

$$
\begin{array}{r}
D(\sigma, \tau)=\sup _{i}\left|\sigma_{i}-\tau_{i}\right| \\
D(\sigma, \tau)=\sum_{i}\left|\sigma_{i}-\tau_{i}\right| \\
D(\sigma, \tau)=\lim \sup _{N} \frac{1}{N} \sum_{i=0}^{N}\left|\sigma_{i}-\tau_{i}\right| \\
D(\sigma, \tau)=\sum_{i} \lambda^{i}\left|\sigma_{i}-\tau_{i}\right| \\
D(\sigma, \tau)=\sup _{N}\left|\sum_{i=0}^{N} \sigma_{i}-\sum_{i=0}^{N} \tau_{i}\right| \\
D(\sigma, \tau)=1 /\left(1+\inf \left\{j \mid \sigma_{j} \neq \tau_{j}\right\}\right) \\
D(\sigma, \tau)=0 \text { if } \sigma=\tau ; \infty \text { otherwise }
\end{array}
$$

- etc.


## Upshot

- For an application, it is easiest to define distance between system traces (executions)
- Use games to convert these linear distances to branching distances
- Use other games to compute branching distances
- Extends also to specifications


## Nice people

- Kim G. Larsen, Claus R. Thrane (DK)
- Axel Legay, Louis-Marie Traonouez (FR)
- Karin Quaas (DE)
- Jan Křetínský, Nikola Beneš (CZ)
- [UF, C.R.Thrane. K.G.Larsen: Quantitative analysis of weighted transition systems. JLAP 2010]
- [UF, A.Legay: The Quantitative Linear-Time-Branching-Time Spectrum. TCS 2014]
- [UF, J.Křetínský, A.Legay, L.-M.Traonouez: Compositionality for quantitative specifications. SoCo 2018]
- [N.Beneš, UF, J.Křetínský, A.Legay, L.-M.Traonouez: Logical vs. Behavioural Specifications. I\&C 2020]
- [UF, A.Legay, K.Quaas: Computing Branching Distances Using Quantitative Games. Proc. ICTAC 2019]
(1) Background: Quantitative analysis
(2) The Linear-Time-Branching-Time Spectrum via Games
(3) From Trace Distances to Branching Distances via Games

4 Computing Branching Distances
(5) Conclusion

## (1) Background: Quantitative analysis

(2) The Linear-Time-Branching-Time Spectrum via Games
(3) From Trace Distances to Branching Distances via Games
(4) Computing Branching Distances
(5) Conclusion

## The Linear-Time-Branching-Time Spectrum

van Glabbeek, 2001 (excerpt):
bisimulation eq.

nested simulation eq.
ready simulation eq.


## The Linear-Time-Branching-Time Spectrum

van Glabbeek, 2001 (excerpt):
bisimulation eq.
$\downarrow$
nested simulation eq. $\longrightarrow$ nested simulation pr.
ready simulation eq. $\longrightarrow$ ready simulation pr.


## The Linear-Time-Branching-Time Spectrum

van Glabbeek, 2001 (excerpt):
bisimulation eq.
$\downarrow$
nested simulation eq. $\longrightarrow$ nested simulation pr.
ready simulation eq.


## The Simulation Game



## The Simulation Game



Duplicator


## The Simulation Game



Spoiler wins

## The Simulation Game

1. Player 1 ("Spoiler") chooses edge from $s$ (leading to $s^{\prime}$ )
2. Player 2 ("Duplicator") chooses matching edge from $t$ (leading to $t^{\prime}$ )
3. Game continues from configuration $s^{\prime}, t^{\prime}$
$\omega$. If Player 2 can always answer: YES, $t$ simulates $s$. Otherwise: NO

## The Linear-Time-Branching-Time Spectrum, Reordered

bisimulation eq.

3-nested simulation pr.

simulation pr.

## The Linear-Time-Branching-Time Spectrum, Reordered

bisimulation eq.

3-nested simulation pr. $\quad \stackrel{r}{ }$ 3-nested trace inc.


2-nested simulation eq. $\_\downarrow$ 2-nested trace eq.


## (1) Background: Quantitative analysis

(2) The Linear-Time-Branching-Time Spectrum via Games
(3) From Trace Distances to Branching Distances via Games

4 Computing Branching Distances
(5) Conclusion

## The Simulation Game, Revisited

1. Player 1 chooses edge from $s$ (leading to $s^{\prime}$ )
2. Player 2 chooses matching edge from $t$ (leading to $t^{\prime}$ )
3. Game continues from configuration $s^{\prime}, t^{\prime}$
$\omega$. If Player 2 can always answer: YES, $t$ simulates $s$. Otherwise: NO

Or, as an Ehrenfeucht-Fraïssé game:

1. Player 1 chooses edge from $s$ (leading to $s^{\prime}$ )
2. Player 2 chooses edge from $t$ (leading to $t^{\prime}$ )
3. Game continues from new configuration $s^{\prime}, t^{\prime}$
$\omega$. At the end (maybe after infinitely many rounds!), compare the chosen traces: If the trace chosen by $t$ matches the one chosen by $s$ : YES Otherwise: NO

## Quantitative Ehrenfeucht-Fraïssé Games

The quantitative setting:

- Assume we have a way, possibly application-determined, to measure distances of (finite or infinite) traces
- a hemimetric $D:(\sigma, \tau) \mapsto D(\sigma, \tau) \in \mathbb{R}_{\geq 0} \cup\{\infty\}$

The quantitative Ehrenfeucht-Fraïssé game:

1. Player 1 chooses edge from $s$ (leading to $s^{\prime}$ )
2. Player 2 chooses edge from $t$ (leading to $t^{\prime}$ )
3. Game continues from new configuration $s^{\prime}, t^{\prime}$
$\omega$. At the end, compare the chosen traces $\sigma, \tau$ : The simulation distance from $s$ to $t$ is defined to be $D(\sigma, \tau)$

- Player 1 plays to maximize $D(\sigma, \tau)$; Player 2 plays to minimize $D(\sigma, \tau)$

This can be done for all the games in the LTBT spectrum.

## The Quantitative Linear-Time-Branching-Time Spectrum

For any trace distance $D:(\sigma, \tau) \mapsto D(\sigma, \tau) \in \mathbb{R}_{\geq 0} \cup\{\infty\}$ :
bisimulation eq.

3-nested simulation pr. $\quad \stackrel{\square}{ }$ 3-nested trace inc.


## Quantitative EF Games: The Gory Details - 1

- Configuration of the game: $(\pi, \rho): \pi$ the Player- 1 choices up to now; $\rho$ the Player-2 choices
- Strategy: mapping from configurations to next moves
- $\Theta_{i}$ : set of Player- $i$ strategies
- Simulation strategy: Player-1 moves allowed from end of $\pi$
- Bisimulation strategy: Player-1 moves allowed from end of $\pi$ or end of $\rho$
- (hence $\pi$ and $\rho$ are generally not paths - "mingled paths")
- Pair of strategies $\Longrightarrow$ (possibly infinite) sequence of configurations
- Take the limit; unmingle $\Longrightarrow$ pair of (possibly infinite) traces $(\sigma, \tau)$
- Bisimulation distance: $\sup _{\theta_{1} \in \Theta_{1}} \inf _{\theta_{2} \in \Theta_{2}} d_{T}(\sigma, \tau)$
- Simulation distance: $\sup \inf d_{T}(\sigma, \tau)$

$$
\theta_{1} \in \Theta_{1}^{0} \theta_{2} \in \Theta_{2}
$$

## Quantitative EF Games: The Gory Details - 2

- Blind Player-1 strategies: depend only on the end of $\rho$
- ("cannot see Player-2 moves")
- $\tilde{\Theta}_{1}$ : set of blind Player-1 strategies
- Trace inclusion distance: sup inf $d_{T}(\sigma, \tau)$

$$
\theta_{1} \in \tilde{\Theta}_{1}^{0} \theta_{2} \in \Theta_{2}
$$

- For nesting: count the number of times Player 1 choses edge from end of $\rho$
- $\Theta_{1}^{k}$ : $k$ choices from end of $\rho$ allowed
- Nested simulation distance: sup $\inf d_{T}(\sigma, \tau)$

$$
\theta_{1} \in \Theta_{1}^{1} \theta_{2} \in \Theta_{2}
$$

- Nested trace inclusion distance: sup $\inf d_{T}(\sigma, \tau)$ $\theta_{1} \in \tilde{\Theta}_{1}^{1} \theta_{2} \in \Theta_{2}$
- For ready: allow extra "I'll see you" Player-1 transition from end of $\rho$


## Transfer Theorem

- Given two equivalences or preorders in the qualitative setting for which there is a counter-example which separates them, then the two corresponding distances are topologically inequivalent
- (under certain mild conditions for the trace distance)
- (The proof uses precisely the same counter-example)


## Recursive Characterization

- If the trace distance $D:(\sigma, \tau) \mapsto d(\sigma, \tau)$ has a decomposition $d=g \circ f: \operatorname{Tr} \times \operatorname{Tr} \rightarrow L \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$ through a complete lattice $L$,
- and $f$ has a recursive formula
- i.e. such that $f(\sigma, \tau)=F\left(\sigma_{0}, \tau_{0}, f\left(\sigma^{1}, \tau^{1}\right)\right)$ for some $F: \Sigma \times \Sigma \times L \rightarrow L$ (which is monotone in the third coordinate)
- (where $\sigma=\sigma_{0} \cdot \sigma^{1}$ is a split of $\sigma$ into first element and tail)
- then all distances in the QLTBT are given as least fixed points of some functionals using $F$

All trace distances we know can be expressed recursively like this.

## Recursive Characterization: One of Four Theorems

The endofunction I on $\left(\mathbb{N}_{+} \cup\{\infty\}\right) \times\{1,2\} \rightarrow L^{S \times S}$ defined by
has a least fixed point $h^{*}:\left(\mathbb{N}_{+} \cup\{\infty\}\right) \times\{1,2\} \rightarrow L^{S \times S}$, and if the LTS $(S, T)$ is finitely branching, then $d^{k-\text { sim }}=g \circ h_{k, 1}^{*}$ for all $k \in \mathbb{N}_{+} \cup\{\infty\}$.

## (1) Background: Quantitative analysis

(2) The Linear-Time-Branching-Time Spectrum via Games
(3) From Trace Distances to Branching Distances via Games
(4) Computing Branching Distances
(5) Conclusion

## Path-Building Games

- Have seen how branching distances can be defined using a type of "double path-building game"
- But now, how to compute them?
- Nothing in the literature about computing values of double path-building games...
- On the other hand, people know how to compute values of (single) path-building games!
- reachability games; discounted games; mean-payoff games, ...
- So, let's convert our double path-building games to single path-building games


## From Double to Single Path-Building Games

- Let $D:(\sigma, \tau) \mapsto D(\sigma, \tau) \in \mathbb{R}_{\geq 0} \cup\{\infty\}$ be a hemimetric on traces
- Assume that we have functions $\mathrm{val}_{D}$ and $f_{D}$ such that always,

$$
D(\sigma, \tau)=\operatorname{val}_{D}\left(0, f_{D}\left(\sigma_{0}, \tau_{0}\right), 0, f_{D}\left(\sigma_{1}, \tau_{1}\right), 0, \ldots\right)
$$

- Let $\mathcal{S}=(S, i, T)$ and $\mathcal{S}^{\prime}=\left(S^{\prime}, i^{\prime}, T^{\prime}\right)$ be LTS
- Construct a game $\mathcal{U}=\mathcal{U}\left(\mathcal{S}, \mathcal{S}^{\prime}\right)=\left(U_{1} \cup U_{2}, u_{0}, \rightarrow\right)$ by

$$
\begin{aligned}
U_{1}= & S \times S^{\prime} \quad U_{2}=S \times S^{\prime} \times \Sigma \quad u_{0}=\left(i, i^{\prime}\right) \\
\rightarrow= & \left\{\left(s, s^{\prime}\right) \xrightarrow{0}\left(t, s^{\prime}, a\right) \mid(s, a, t) \in T\right\} \\
& \cup\left\{\left(t, s^{\prime}, a\right) \xrightarrow{f_{D}\left(a, a^{\prime}\right)}\left(t, t^{\prime}\right) \mid\left(s^{\prime}, a^{\prime}, t^{\prime}\right) \in T^{\prime}\right\}
\end{aligned}
$$

- Path-building game: players alternate to build path $\pi$
- Player 1 plays to maximize val ${ }_{D}(\pi)$; Player 2 plays to minimize $\operatorname{val}_{D}(\pi)$


## Computing Distances Using Path-Building Games

$$
\begin{aligned}
\mathcal{U}\left(\mathcal{S}, \mathcal{S}^{\prime}\right)= & \left(U_{1} \cup U_{2}, u_{0}, \rightarrow\right): \\
U_{1}= & S \times S^{\prime} \quad U_{2}=S \times S^{\prime} \times \Sigma \quad u_{0}=\left(i, i^{\prime}\right) \\
\rightarrow & \left\{\left(s, s^{\prime}\right) \xrightarrow{0}\left(t, s^{\prime}, a\right) \mid(s, a, t) \in T\right\} \\
& \cup\left\{\left(t, s^{\prime}, a\right) \xrightarrow{f_{D}\left(a, a^{\prime}\right)}\left(t, t^{\prime}\right) \mid\left(s^{\prime}, a^{\prime}, t^{\prime}\right) \in T^{\prime}\right\}
\end{aligned}
$$

## Theorem

The value of $\mathcal{U}\left(\mathcal{S}, \mathcal{S}^{\prime}\right)$ is the simulation distance from $\mathcal{S}$ to $\mathcal{S}^{\prime}$.

## Computing Distances Using Path-Building Games, contd.

$$
\mathcal{V}\left(\mathcal{S}, \mathcal{S}^{\prime}\right)=\left(V_{1} \cup V_{2}, V_{0}, \rightarrow\right):
$$

$$
\begin{aligned}
V_{1}= & S \times S^{\prime} \quad V_{2}=S \times S^{\prime} \times \Sigma \times\{1,2\} \quad V_{0}=\left(i, i^{\prime}\right) \\
\rightarrow= & \left\{\left(s, s^{\prime}\right) \xrightarrow{0}\left(t, s^{\prime}, a, 1\right) \mid(s, a, t) \in T\right\} \\
& \cup\left\{\left(s, s^{\prime}\right) \xrightarrow{0}\left(s, t^{\prime}, a^{\prime}, 2\right) \mid\left(s^{\prime}, a^{\prime}, t^{\prime}\right) \in T^{\prime}\right\} \\
& \cup\left\{\left(t, s^{\prime}, a, 1\right) \xrightarrow{f_{0}\left(a, a^{\prime}\right)}\left(t, t^{\prime}\right) \mid\left(s^{\prime}, a^{\prime}, t^{\prime}\right) \in T^{\prime}\right\} \\
& \cup\left\{\left(s, t^{\prime}, a^{\prime}, 2\right) \xrightarrow{f_{0}\left(a, a^{\prime}\right)}\left(t, t^{\prime}\right) \mid(s, a, t) \in T\right\}
\end{aligned}
$$

## Theorem

The value of $\mathcal{V}\left(\mathcal{S}, \mathcal{S}^{\prime}\right)$ is the bisimulation distance between $\mathcal{S}$ and $\mathcal{S}^{\prime}$.

- Similar constructions for all distances in the linear-time-branching-time spectrum


## Coda: Computing the Values of Path-Building Games

$\mathcal{U}\left(\mathcal{S}, \mathcal{S}^{\prime}\right)=\left(U_{1} \cup U_{2}, u_{0}, \rightarrow\right):$

$$
\begin{aligned}
U_{1}= & S \times S^{\prime} \quad U_{2}=S \times S^{\prime} \times \Sigma \quad u_{0}=\left(i, i^{\prime}\right) \\
\rightarrow= & \left\{\left(s, s^{\prime}\right) \xrightarrow{0}\left(t, s^{\prime}, a\right) \mid(s, a, t) \in T\right\} \\
& \cup\left\{\left(t, s^{\prime}, a\right) \xrightarrow{f_{D}\left(a, a^{\prime}\right)}\left(t, t^{\prime}\right) \mid\left(s^{\prime}, a^{\prime}, t^{\prime}\right) \in T^{\prime}\right\}
\end{aligned}
$$

- discrete distance: reachability game
- point-wise distance: weighted reachability game
- discounted distance: discounted game
- limit-average distance: mean-payoff game
- maximum-lead distance: energy game
- Cantor distance: iterated reachability game

PTIME
PTIME
$N P \cap \operatorname{coNP}$
$N P \cap$ coNP
NEXPTIME
PTIME

## Conclusion \& Further Work

- A general method to define linear and branching system distances using double path-building games
- A general method to compute linear and branching system distances using (single) path-building games
- Application to real-time and hybrid systems
- Quantitative specification theories
- Quantitative LTBT with silent moves?
- What about probabilistic systems?

