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Quantitative Quantitative Quantitative Analysis

Quantitative Models
x≥4

**

x :=0
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Quantitative Logics

Pr≤.1(♦error)

Quantitative Verification

JφK(s) = 3.14
d(s, t) = 42

Boolean world “Quantification”
Trace equivalence ≡ Linear distances dL
Bisimilarity ∼ Branching distances dB
s ∼ t implies s ≡ t dL(s, t) ≤ dB(s, t)
s |= φ or s 6|= φ JφK(s) is a quantity
s ∼ t iff ∀φ : s |= φ⇔ t |= φ dB(s, t) = supφ d

(
JφK(s), JφK(t)

)
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Quantitative Quantitative Quantitative Analysis

Problem: For processes with quantities, lots of different ways to
measure distance

point-wise D(σ, τ) = supi |σi − τi |
accumulating D(σ, τ) =

∑
i |σi − τi |

limit-average D(σ, τ) = lim supN
1
N
∑N

i=0 |σi − τi |
discounted D(σ, τ) =

∑
i λ

i |σi − τi |
maximum-lead D(σ, τ) = supN

∣∣∑N
i=0 σi −

∑N
i=0 τi

∣∣
Cantor D(σ, τ) = 1/(1 + inf{j | σj 6= τj})
discrete D(σ, τ) = 0 if σ = τ ; ∞ otherwise
etc.
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Upshot

For an application, it is easiest to define distance between system
traces (executions)
Use games to convert these linear distances to branching distances
Use other games to compute branching distances
Extends also to specifications
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The Linear-Time–Branching-Time Spectrum

van Glabbeek, 2001 (excerpt):

bisimulation eq.

nested simulation eq.

ready simulation eq.
possible-futures eq.

simulation eq.
readiness eq.

trace eq.
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The Simulation Game

Spoiler Duplicator

Spoiler wins

s t
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The Simulation Game

1. Player 1 (“Spoiler”) chooses edge from s (leading to s ′)
2. Player 2 (“Duplicator”) chooses matching edge from t (leading to t ′)
3. Game continues from configuration s ′, t ′

ω. If Player 2 can always answer: YES, t simulates s.
Otherwise: NO
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The Linear-Time–Branching-Time Spectrum, Reordered

bisimulation eq.

3-nested simulation pr.

2-nested simulation eq.

2-nested simulation pr.

simulation eq.

simulation pr.

2-nested ready sim. eq.

2-nested ready sim. pr.

ready simulation eq.

ready simulation pr.
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The Simulation Game, Revisited

1. Player 1 chooses edge from s (leading to s ′)
2. Player 2 chooses matching edge from t (leading to t ′)
3. Game continues from configuration s ′, t ′

ω. If Player 2 can always answer: YES, t simulates s.
Otherwise: NO

Or, as an Ehrenfeucht-Fraïssé game:
1. Player 1 chooses edge from s (leading to s ′)
2. Player 2 chooses edge from t (leading to t ′)
3. Game continues from new configuration s ′, t ′

ω. At the end (maybe after infinitely many rounds!),
compare the chosen traces:
If the trace chosen by t matches the one chosen by s: YES
Otherwise: NO
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Quantitative Ehrenfeucht-Fraïssé Games
The quantitative setting:

Assume we have a way, possibly application-determined, to measure
distances of (finite or infinite) traces
a hemimetric D : (σ, τ) 7→ D(σ, τ) ∈ R≥0 ∪ {∞}

The quantitative Ehrenfeucht-Fraïssé game:
1. Player 1 chooses edge from s (leading to s ′)
2. Player 2 chooses edge from t (leading to t ′)
3. Game continues from new configuration s ′, t ′

ω. At the end, compare the chosen traces σ, τ :
The simulation distance from s to t is defined to be D(σ, τ)
Player 1 plays to maximize D(σ, τ); Player 2 plays to minimize
D(σ, τ)

This can be done for all the games in the LTBT spectrum.
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The Quantitative Linear-Time–Branching-Time Spectrum
For any trace distance D : (σ, τ) 7→ D(σ, τ) ∈ R≥0 ∪ {∞}:

bisimulation eq.

3-nested simulation pr.

2-nested simulation eq.

2-nested simulation pr.

simulation eq.

simulation pr.

2-nested ready sim. eq.

2-nested ready sim. pr.

ready simulation eq.

ready simulation pr.

3-nested trace inc.

2-nested trace eq.

2-nested trace inc.

trace eq.

trace inc.

2-nested readiness eq.

2-nested readiness pr.

readiness eq.

readiness pr.
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Quantitative EF Games: The Gory Details – 1

Configuration of the game: (π, ρ): π the Player-1 choices up to now;
ρ the Player-2 choices
Strategy: mapping from configurations to next moves

I Θi : set of Player-i strategies
Simulation strategy: Player-1 moves allowed from end of π
Bisimulation strategy: Player-1 moves allowed from end of π
or end of ρ

I (hence π and ρ are generally not paths – “mingled paths”)
Pair of strategies =⇒ (possibly infinite) sequence of configurations
Take the limit; unmingle =⇒ pair of (possibly infinite) traces (σ, τ)
Bisimulation distance: sup

θ1∈Θ1

inf
θ2∈Θ2

dT (σ, τ)

Simulation distance: sup
θ1∈Θ0

1

inf
θ2∈Θ2

dT (σ, τ) (restricting Player 1’s
capabilities)
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Quantitative EF Games: The Gory Details – 2

Blind Player-1 strategies: depend only on the end of ρ
I (“cannot see Player-2 moves”)
I Θ̃1: set of blind Player-1 strategies

Trace inclusion distance: sup
θ1∈Θ̃0

1

inf
θ2∈Θ2

dT (σ, τ)

For nesting: count the number of times Player 1 choses edge from
end of ρ

I Θk
1 : k choices from end of ρ allowed

Nested simulation distance: sup
θ1∈Θ1

1

inf
θ2∈Θ2

dT (σ, τ)

Nested trace inclusion distance: sup
θ1∈Θ̃1

1

inf
θ2∈Θ2

dT (σ, τ)

For ready: allow extra “I’ll see you” Player-1 transition from end of ρ
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Transfer Theorem

Given two equivalences or preorders in the qualitative setting for
which there is a counter-example which separates them, then the two
corresponding distances are topologically inequivalent
(under certain mild conditions for the trace distance)
(The proof uses precisely the same counter-example)

Uli Fahrenberg The Quantitative LTBT Spectrum 29/ 38



Recursive Characterization

If the trace distance D : (σ, τ) 7→ d(σ, τ) has a decomposition
d = g ◦ f : Tr× Tr→ L→ R≥0 ∪ {∞} through a complete lattice L,
and f has a recursive formula
i.e. such that f (σ, τ) = F (σ0, τ0, f (σ1, τ1)) for some
F : Σ× Σ× L→ L (which is monotone in the third coordinate)
(where σ = σ0 · σ1 is a split of σ into first element and tail)
then all distances in the QLTBT are given as least fixed points of
some functionals using F

All trace distances we know can be expressed recursively like this.
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Recursive Characterization: One of Four Theorems

The endofunction I on (N+ ∪ {∞})× {1, 2} → LS×S defined by

I(hm,p)(s, t) =



max


sup

s x−→s′

inf
t y−→t′

F (x , y , hm,1(s ′, t ′))

sup
t y−→t′

inf
s x−→s′

F (x , y , hm−1,2(s ′, t ′))
if m ≥ 2, p = 1

sup
s x−→s′

inf
t y−→t′

F (x , y , hm,1(s ′, t ′)) if m = 1, p = 1

max


sup

t y−→t′

inf
s x−→s′

F (x , y , hm,2(s ′, t ′))

sup
s x−→s′

inf
t y−→t′

F (x , y , hm−1,1(s ′, t ′))
if m ≥ 2, p = 2

sup
t y−→t′

inf
s x−→s′

F (x , y , hm,2(s ′, t ′)) if m = 1, p = 2

has a least fixed point h∗ : (N+ ∪ {∞})× {1, 2} → LS×S , and if the LTS (S,T )
is finitely branching, then dk-sim = g ◦ h∗k,1 for all k ∈ N+ ∪ {∞}.
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Path-Building Games

Have seen how branching distances can be defined using a type of
“double path-building game”
But now, how to compute them?

Nothing in the literature about computing values of double
path-building games . . .
On the other hand, people know how to compute values of (single)
path-building games!

I reachability games; discounted games; mean-payoff games, . . .
So, let’s convert our double path-building games to single
path-building games
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From Double to Single Path-Building Games
Let D : (σ, τ) 7→ D(σ, τ) ∈ R≥0 ∪ {∞} be a hemimetric on traces
Assume that we have functions valD and fD such that always,

D(σ, τ) = valD(0, fD(σ0, τ0), 0, fD(σ1, τ1), 0, . . . )

Let S = (S, i ,T ) and S ′ = (S ′, i ′,T ′) be LTS
Construct a game U = U(S,S ′) = (U1 ∪ U2, u0,−_) by

U1 = S × S ′ U2 = S × S ′ × Σ u0 = (i , i ′)

−_ = {(s, s ′) 0−_ (t, s ′, a) | (s, a, t) ∈ T}

∪ {(t, s ′, a)
fD(a,a′)
−−−−−_ (t, t ′) | (s ′, a′, t ′) ∈ T ′}

Path-building game: players alternate to build path π
Player 1 plays to maximize valD(π); Player 2 plays to minimize
valD(π)
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Computing Distances Using Path-Building Games

U(S,S ′) = (U1 ∪ U2, u0,−_):

U1 = S × S ′ U2 = S × S ′ × Σ u0 = (i , i ′)

−_ = {(s, s ′) 0−_ (t, s ′, a) | (s, a, t) ∈ T}

∪ {(t, s ′, a)
fD(a,a′)
−−−−−_ (t, t ′) | (s ′, a′, t ′) ∈ T ′}

Theorem
The value of U(S,S ′) is the simulation distance from S to S ′.
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Computing Distances Using Path-Building Games, contd.
V(S,S ′) = (V1 ∪ V2, v0,−_):

V1 = S × S ′ V2 = S × S ′ × Σ× {1, 2} v0 = (i , i ′)

−_ = {(s, s ′) 0−_ (t, s ′, a, 1) | (s, a, t) ∈ T}

∪ {(s, s ′) 0−_ (s, t ′, a′, 2) | (s ′, a′, t ′) ∈ T ′}

∪ {(t, s ′, a, 1)
fD(a,a′)
−−−−−_ (t, t ′) | (s ′, a′, t ′) ∈ T ′}

∪ {(s, t ′, a′, 2)
fD(a,a′)
−−−−−_ (t, t ′) | (s, a, t) ∈ T}

Theorem
The value of V(S,S ′) is the bisimulation distance between S and S ′.

Similar constructions for all distances in the
linear-time–branching-time spectrum
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Coda: Computing the Values of Path-Building Games

U(S,S ′) = (U1 ∪ U2, u0,−_):

U1 = S × S ′ U2 = S × S ′ × Σ u0 = (i , i ′)

−_ = {(s, s ′) 0−_ (t, s ′, a) | (s, a, t) ∈ T}

∪ {(t, s ′, a)
fD(a,a′)
−−−−−_ (t, t ′) | (s ′, a′, t ′) ∈ T ′}

discrete distance: reachability game PTIME
point-wise distance: weighted reachability game PTIME
discounted distance: discounted game NP ∩ coNP
limit-average distance: mean-payoff game NP ∩ coNP
maximum-lead distance: energy game NEXPTIME
Cantor distance: iterated reachability game PTIME
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Conclusion & Further Work

A general method to define linear and branching system distances
using double path-building games
A general method to compute linear and branching system distances
using (single) path-building games

Application to real-time and hybrid systems
Quantitative specification theories
Quantitative LTBT with silent moves?
What about probabilistic systems?
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