The Quantitative Linear-Time–Branching-Time Spectrum

Uli Fahrenberg

École polytechnique, Palaiseau, France

Tokyo November 2019

Quantitative Analysis

Quantitative Quantitative Analysis

Quantitative Quantitative Quantitative Analysis

Quantitative Quantitative Analysis

Quantitative Models	Quantitative Logics	Quantitative Verification
$x \ge 4$ x := 0	$Pr_{\leq .1}(\Diamond \mathit{error})$	$[\![\phi]\!](s) = 3.14$ d(s,t) = 42

Boolean world	"Quantification"
Trace equivalence \equiv	Linear distances d_L
Bisimilarity \sim	Branching distances <i>d</i> _B
$s \sim t$ implies $s \equiv t$	$d_L(s,t) \leq d_B(s,t)$
$s \models \phi \text{ or } s \not\models \phi$	$\llbracket \phi rbracket (s)$ is a quantity
$s \sim t \text{ iff } \forall \phi : s \models \phi \Leftrightarrow t \models \phi$	$d_B(s,t) = \sup_{\phi} d(\llbracket \phi rbracket (s), \llbracket \phi rbracket (t))$

Quantitative Quantitative Quantitative Analysis

Problem: For processes with quantities, lots of different ways to measure distance

- point-wise
- accumulating
- limit-average
- discounted
- maximum-lead
- Cantor
- discrete
- etc.

$$D(\sigma, \tau) = \sup_{i} |\sigma_{i} - \tau_{i}|$$

$$D(\sigma, \tau) = \sum_{i} |\sigma_{i} - \tau_{i}|$$

$$D(\sigma, \tau) = \limsup_{N} \frac{1}{N} \sum_{i=0}^{N} |\sigma_{i} - \tau_{i}|$$

$$D(\sigma, \tau) = \sum_{i} \lambda^{i} |\sigma_{i} - \tau_{i}|$$

$$D(\sigma, \tau) = \sup_{N} |\sum_{i=0}^{N} \sigma_{i} - \sum_{i=0}^{N} \tau_{i}|$$

$$D(\sigma, \tau) = 1/(1 + \inf\{j \mid \sigma_{j} \neq \tau_{j}\})$$

$$D(\sigma, \tau) = 0 \text{ if } \sigma = \tau; \infty \text{ otherwise}$$

Upshot

- For an application, it is easiest to define distance between system traces (executions)
- Use games to convert these *linear* distances to *branching* distances
- Use other games to compute branching distances
- Extends also to specifications

Nice people

- Kim G. Larsen, Claus R. Thrane (DK)
- Axel Legay, Louis-Marie Traonouez (FR)
- Karin Quaas (DE)
- Jan Křetínský, Nikola Beneš (CZ)
- [UF, C.R.Thrane. K.G.Larsen: *Quantitative analysis of weighted transition systems*. JLAP 2010]
- [UF, A.Legay: *The Quantitative Linear-Time–Branching-Time Spectrum*. TCS 2014]
- [UF, J.Křetínský, A.Legay, L.-M.Traonouez: *Compositionality for quantitative specifications*. SoCo 2018]
- [N.Beneš, UF, J.Křetínský, A.Legay, L.-M.Traonouez: *Logical vs. Behavioural Specifications*. I&C 2020]
- [UF, A.Legay, K.Quaas: Computing Branching Distances Using Quantitative Games. Proc. ICTAC 2019]

1 Background: Quantitative analysis

- 2 The Linear-Time–Branching-Time Spectrum via Games
- Istances to Branching Distances via Games
- 4 Computing Branching Distances

1 Background: Quantitative analysis

2 The Linear-Time–Branching-Time Spectrum via Games

3 From Trace Distances to Branching Distances via Games

4 Computing Branching Distances

5 Conclusion

The Linear-Time-Branching-Time Spectrum

van Glabbeek, 2001 (excerpt):

The Linear-Time-Branching-Time Spectrum

van Glabbeek, 2001 (excerpt):

The Linear-Time-Branching-Time Spectrum

van Glabbeek, 2001 (excerpt):

- 1. Player 1 ("Spoiler") chooses edge from s (leading to s')
- 2. Player 2 ("Duplicator") chooses matching edge from t (leading to t')
- 3. Game continues from configuration s', t'
- ω . If Player 2 can always answer: YES, *t* simulates *s*. Otherwise: NO

The Linear-Time-Branching-Time Spectrum, Reordered

The Linear-Time-Branching-Time Spectrum, Reordered

Background: Quantitative analysis

2 The Linear-Time–Branching-Time Spectrum via Games

Istances to Branching Distances via Games

4 Computing Branching Distances

5 Conclusion

The Simulation Game, Revisited

- 1. Player 1 chooses edge from s (leading to s')
- 2. Player 2 chooses matching edge from t (leading to t')
- 3. Game continues from configuration s', t'
- ω . If Player 2 can always answer: YES, t simulates s. Otherwise: NO
- Or, as an Ehrenfeucht-Fraïssé game:
 - 1. Player 1 chooses edge from s (leading to s')
 - 2. Player 2 chooses edge from t (leading to t')
 - 3. Game continues from new configuration s', t'
 - ω. At the end (maybe after infinitely many rounds!),
 compare the chosen traces:
 If the trace chosen by t matches the one chosen by s: YES
 Otherwise: NO

Quantitative Ehrenfeucht-Fraïssé Games

The quantitative setting:

- Assume we have a way, possibly application-determined, to measure distances of (finite or infinite) traces
- a hemimetric $D: (\sigma, \tau) \mapsto D(\sigma, \tau) \in \mathbb{R}_{\geq 0} \cup \{\infty\}$

The quantitative Ehrenfeucht-Fraïssé game:

- 1. Player 1 chooses edge from s (leading to s')
- 2. Player 2 chooses edge from t (leading to t')
- 3. Game continues from new configuration s', t'
- ω. At the end, compare the chosen traces σ, τ: The simulation distance from s to t is defined to be D(σ, τ)
 - Player 1 plays to maximize $D(\sigma, \tau)$; Player 2 plays to minimize $D(\sigma, \tau)$

This can be done for all the games in the LTBT spectrum.

The Quantitative Linear-Time–Branching-Time Spectrum For any trace distance $D: (\sigma, \tau) \mapsto D(\sigma, \tau) \in \mathbb{R}_{\geq 0} \cup \{\infty\}$:

Quantitative EF Games: The Gory Details - 1

- Configuration of the game: (π, ρ) : π the Player-1 choices up to now; ρ the Player-2 choices
- Strategy: mapping from configurations to next moves

• Θ_i : set of Player-*i* strategies

- \bullet Simulation strategy: Player-1 moves allowed from end of π
- Bisimulation strategy: Player-1 moves allowed from end of π or end of ρ
 - (hence π and ρ are generally not paths "mingled paths")
- Pair of strategies \implies (possibly infinite) sequence of configurations
- Take the limit; unmingle \implies pair of (possibly infinite) traces (σ, τ)
- Bisimulation distance: $\sup_{\theta_1 \in \Theta_1} \inf_{\theta_2 \in \Theta_2} d_T(\sigma, \tau)$
- Simulation distance: sup inf $d_T(\sigma, \tau)$ (restricting Player 1's $\theta_1 \in \Theta_1^0 \theta_2 \in \Theta_2$ capabilities)

Quantitative EF Games: The Gory Details - 2

- \bullet Blind Player-1 strategies: depend only on the end of ρ
 - ("cannot see Player-2 moves")
 - ▶ Õ₁: set of blind Player-1 strategies
- Trace inclusion distance: $\sup_{\theta_1 \in \tilde{\Theta}_1^0} \inf_{\theta_2 \in \Theta_2} d_T(\sigma, \tau)$
- For nesting: count the number of times Player 1 choses edge from end of ρ
 - Θ_1^k : k choices from end of ρ allowed
- Nested simulation distance: $\sup_{\theta_1 \in \Theta_1^1} \inf_{\theta_2 \in \Theta_2} d_T(\sigma, \tau)$
- Nested trace inclusion distance: sup inf $d_T(\sigma, \tau)$ $\theta_1 \in \tilde{\Theta}_1^1 \theta_2 \in \Theta_2$
- $\bullet\,$ For ready: allow extra "I'll see you" Player-1 transition from end of ρ

Transfer Theorem

- Given two equivalences or preorders in the *qualitative* setting for which there is a *counter-example* which separates them, then the two corresponding distances are topologically inequivalent
- (under certain mild conditions for the trace distance)
- (The proof uses precisely the same counter-example)

Recursive Characterization

- If the trace distance $D : (\sigma, \tau) \mapsto d(\sigma, \tau)$ has a decomposition $d = g \circ f : \operatorname{Tr} \times \operatorname{Tr} \to L \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ through a complete lattice L,
- and f has a recursive formula
- *i.e.* such that $f(\sigma, \tau) = F(\sigma_0, \tau_0, f(\sigma^1, \tau^1))$ for some $F : \Sigma \times \Sigma \times L \to L$ (which is *monotone* in the third coordinate)
- (where $\sigma = \sigma_0 \cdot \sigma^1$ is a split of σ into first element and tail)
- then all distances in the QLTBT are given as least fixed points of some functionals using *F*

All trace distances we know can be expressed recursively like this.

Recursive Characterization: One of Four Theorems

The endofunction I on $\left(\mathbb{N}_+\cup\{\infty\}\right)\times\{1,2\}\to L^{\mathsf{S}\times\mathsf{S}}$ defined by

$$I(h_{m,p})(s,t) = \begin{cases} \sup_{s \to s'} \inf_{t \to t'} F(x, y, h_{m,1}(s', t')) & \text{if } m \ge 2, p = 1 \\ \sup_{t \to t'} \inf_{s \to s'} F(x, y, h_{m-1,2}(s', t')) & \text{if } m = 1, p = 1 \\ \sup_{s \to s'} \inf_{t \to t'} F(x, y, h_{m,1}(s', t')) & \text{if } m = 1, p = 1 \\ \max \begin{cases} \sup_{s \to s'} \inf_{t \to t'} F(x, y, h_{m,2}(s', t')) & \text{if } m \ge 2, p = 2 \\ \sup_{s \to s'} \inf_{t \to t'} F(x, y, h_{m-1,1}(s', t')) & \text{if } m \ge 1, p = 2 \\ \sup_{t \to t'} \inf_{s \to s'} F(x, y, h_{m,2}(s', t')) & \text{if } m = 1, p = 2 \end{cases}$$

has a least fixed point $h^* : (\mathbb{N}_+ \cup \{\infty\}) \times \{1,2\} \to L^{S \times S}$, and if the LTS (S, T) is finitely branching, then $d^{k-\text{sim}} = g \circ h_{k,1}^*$ for all $k \in \mathbb{N}_+ \cup \{\infty\}$.

Background: Quantitative analysis

2 The Linear-Time–Branching-Time Spectrum via Games

3 From Trace Distances to Branching Distances via Games

4 Computing Branching Distances

5 Conclusion

Path-Building Games

- Have seen how branching distances can be defined using a type of "double path-building game"
- But now, how to compute them?
- Nothing in the literature about computing values of double path-building games . . .
- On the other hand, people know how to compute values of (single) path-building games!
 - reachability games; discounted games; mean-payoff games, ...
- So, let's convert our double path-building games to single path-building games

From Double to Single Path-Building Games

- Let $D: (\sigma, \tau) \mapsto D(\sigma, \tau) \in \mathbb{R}_{\geq 0} \cup \{\infty\}$ be a hemimetric on traces
- Assume that we have functions val_D and f_D such that always,

 $D(\sigma, \tau) = \text{val}_D(0, f_D(\sigma_0, \tau_0), 0, f_D(\sigma_1, \tau_1), 0, \dots)$

- Let S = (S, i, T) and S' = (S', i', T') be LTS
- Construct a game $\mathcal{U} = \mathcal{U}(\mathcal{S}, \mathcal{S}') = (U_1 \cup U_2, u_0,
 ightarrow)$ by

$$U_{1} = S \times S' \qquad U_{2} = S \times S' \times \Sigma \qquad u_{0} = (i, i')$$
$$\rightarrow = \{(s, s') \xrightarrow{0} (t, s', a) \mid (s, a, t) \in T\}$$
$$\cup \{(t, s', a) \xrightarrow{f_{D}(a, a')} (t, t') \mid (s', a', t') \in T'\}$$

- Path-building game: players alternate to build path π
- Player 1 plays to maximize val_D(π); Player 2 plays to minimize val_D(π)

Computing Distances Using Path-Building Games

$$\begin{aligned} \mathcal{U}(\mathcal{S},\mathcal{S}') &= (U_1 \cup U_2, u_0, \twoheadrightarrow): \\ U_1 &= S \times S' \qquad U_2 = S \times S' \times \Sigma \qquad u_0 = (i,i') \\ & \rightarrow = \{(s,s') \xrightarrow{0} (t,s',a) \mid (s,a,t) \in T\} \\ & \cup \{(t,s',a) \xrightarrow{f_D(a,a')} (t,t') \mid (s',a',t') \in T'\} \end{aligned}$$

Theorem

The value of $\mathcal{U}(\mathcal{S}, \mathcal{S}')$ is the simulation distance from \mathcal{S} to \mathcal{S}' .

Computing Distances Using Path-Building Games, contd. $\mathcal{V}(\mathcal{S},\mathcal{S}') = (V_1 \cup V_2, v_0, \rightarrow)$: $V_1 = S \times S'$ $V_2 = S \times S' \times \Sigma \times \{1, 2\}$ $v_0 = (i, i')$ $\rightarrow = \{(s, s') \xrightarrow{0} (t, s', a, 1) \mid (s, a, t) \in T\}$ $\cup \{(s,s') \xrightarrow{0} (s,t',a',2) \mid (s',a',t') \in T'\}$ $\cup \{(t, s', a, 1) \xrightarrow{f_D(a, a')} (t, t') \mid (s', a', t') \in T'\}$ $\cup \{(s,t',a',2) \xrightarrow{f_D(a,a')} (t,t') \mid (s,a,t) \in T\}$

Theorem

The value of $\mathcal{V}(\mathcal{S}, \mathcal{S}')$ is the bisimulation distance between \mathcal{S} and \mathcal{S}' .

• Similar constructions for all distances in the linear-time-branching-time spectrum

Coda: Computing the Values of Path-Building Games

$$\mathcal{U}(\mathcal{S}, \mathcal{S}') = (U_1 \cup U_2, u_0, \twoheadrightarrow):$$

$$U_1 = \mathcal{S} \times \mathcal{S}' \qquad U_2 = \mathcal{S} \times \mathcal{S}' \times \Sigma \qquad u_0 = (i, i')$$

$$\Rightarrow = \{(s, s') \xrightarrow{0} (t, s', a) \mid (s, a, t) \in T\}$$

$$\cup \{(t, s', a) \xrightarrow{f_D(a, a')} (t, t') \mid (s', a', t') \in T'\}$$

• discrete distance: reachability game	PTIME
• point-wise distance: weighted reachability game	PTIME
 discounted distance: discounted game 	$NP\capcoNP$
 limit-average distance: mean-payoff game 	$NP\capcoNP$
 maximum-lead distance: energy game 	NEXPTIME
• Cantor distance: iterated reachability game	PTIME

Conclusion & Further Work

- A general method to define linear and branching system distances using double path-building games
- A general method to compute linear and branching system distances using (single) path-building games
- Application to real-time and hybrid systems
- Quantitative specification theories
- Quantitative LTBT with silent moves?
- What about probabilistic systems?