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Quantitative Analysis
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Quantitative Quantitative Quantitative Analysis

Quantitative Models| Quantitative Logics{ Quantitative Verification

o :XZ“ ~ [8](s) = 3.14
x:=0 Prs.l(oerror) d(S, t') =42
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Quantitative Quantitative Quantitative Analysis

Quantitative Models| Quantitative Logics{ Quantitative Verification

[o](s) =3.14
CDQ:OC) Pr<.1(Oerror) d(s,t) = 42
Boolean world “Quantification”
Trace equivalence = Linear distances d;
Bisimilarity ~ Branching distances dg
s~ timpliess=t di(s,t) < dg(s,t)
sE¢gorsE ¢ [¢](s) is a quantity
s~tiff Vo s o tEo | de(s, t) =sup, d([](s). [¢](t))
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Quantitative Quantitative Quantitative Analysis

Problem: For processes with quantities, lots of different ways to

measure distance

point-wise D(o,7) = sup; |o; — i
accumulating D(o,7) =>;|oi — i
limit-average D(o,7) = limsupy ﬁ SN oloi — 7l
discounted D(o,7) =3 Nlo; — i
maximum-lead D(o,7) = supy|XMooi — Mo 7il
Cantor D(o,7) =1/(1 +inf{j | 0; # 7;})
discrete D(o,7) =0 if 0 = T; 0o otherwise
etc.
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Upshot

e For an application, it is easiest to define distance between system
traces (executions)

@ Use games to convert these linear distances to branching distances
@ Use other games to compute branching distances

@ Extends also to specifications
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@ Background: Quantitative analysis

© The Linear-Time-Branching-Time Spectrum via Games
© From Trace Distances to Branching Distances via Games
e Computing Branching Distances

© Conclusion
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© The Linear-Time-Branching-Time Spectrum via Games
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The Linear-Time—Branching-Time Spectrum

van Glabbeek, 2001 (excerpt):

bisimulation eq.

|

nested simulation eq.

e
ready simulation eq.

l possible-futures eq.

simulation eq. l

\ readiness eq.
p

trace eq.
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The Linear-Time—Branching-Time Spectrum
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The Linear-Time—Branching-Time Spectrum

van Glabbeek, 2001 (excerpt):
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The Simulation Game
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The Simulation Game

Spoiler Duplicator
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The Simulation Game
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The Simulation Game

Spoiler

Uli Fahrenberg

Duplicator

Spoiler wins
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The Simulation Game

Player 1 (“Spoiler”) chooses edge from s (leading to s’)
Player 2 (“Duplicator”) chooses matching edge from t (leading to t’)

Game continues from configuration s’, t/

€ w N e

If Player 2 can always answer: YES, t simulates s.
Otherwise: NO
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The Linear-Time—Branching-Time Spectrum, Reordered

bisimulation eq.

Y

3-nested simulation pr.

2-nested simulation eq:

-nested ready sim. pr.

2-nested simulation pr:
ready simulation eq.

simulation eq.

ready simulation pr.
/

simulation pr.
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The Linear-Time—Branching-Time Spectrum, Reordered

bisimulation eq. .. ..

N SR N
A\ \
3-nested simulation pr. ————— 3-nested trace inc. v

2-nested readiness eq.

—— 2-nested trace eq.
2-nested readiness pr.

2-nested simulation eq:
-nested ready sim. pr. —

2-nested simulation pr. — 2-nested trace inc.

\re{jy simulation eq. readiness eq.
simulation eq. trace eq. >\

N
ready simulation pr. readiness pr.
e —
simulation pr. trace inc.
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© From Trace Distances to Branching Distances via Games
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The Simulation Game, Revisited

Player 1 chooses edge from s (leading to s’)
Player 2 chooses matching edge from t (leading to t’)

Game continues from configuration s’, t/

€ w e

If Player 2 can always answer: YES, t simulates s.
Otherwise: NO

Or, as an Ehrenfeucht-Fraissé game:
Player 1 chooses edge from s (leading to s’)
Player 2 chooses edge from t (leading to t')

Game continues from new configuration s, t/

€ w o

At the end (maybe after infinitely many rounds!),

compare the chosen traces:

If the trace chosen by t matches the one chosen by s: YES
Otherwise: NO
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Quantitative Ehrenfeucht-Fraissé Games

The quantitative setting:

@ Assume we have a way, possibly application-determined, to measure
distances of (finite or infinite) traces

@ a hemimetric D : (o,7) + D(0,7) € R>o U {00}

The quantitative Ehrenfeucht-Fraissé game:

1. Player 1 chooses edge from s (leading to s’)
2. Player 2 chooses edge from t (leading to t')
3. Game continues from new configuration s’, t/
w

. At the end, compare the chosen traces o, T:
The simulation distance from s to t is defined to be D(o, 7)

e Player 1 plays to maximize D(o, 7); Player 2 plays to minimize
D(o,7)

This can be done for all the games in the LTBT spectrum.
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The Quantitative Linear-Time—Branching-Time Spectrum

For any trace distance D : (0,7) — D(o,7) € R>o U {o0}:

bisimulation eq. ...

Y » Y
3-nested simulation pr. —————— 3-nested trace inc. ;
2-nested readiness eq.

— 2-nested trace eq.
2-nested readiness pr.

2-nested simulation eq:
-nested ready sim. pr. —

2-nested simulation pr. —> 2-nested trace inc.

\ea{y simulation eq. readiness eq.
simulation eq. trace eq. >\

N
ready simulation pr. readiness pr.
e —
simulation pr. trace inc.
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Quantitative EF Games: The Gory Details — 1

e Configuration of the game: (m, p): m the Player-1 choices up to now;
p the Player-2 choices

Strategy: mapping from configurations to next moves
» O;: set of Player-j strategies

Simulation strategy: Player-1 moves allowed from end of 7

Bisimulation strategy: Player-1 moves allowed from end of 7
or end of p

» (hence 7 and p are generally not paths — “mingled paths™)

Pair of strategies = (possibly infinite) sequence of configurations

Take the limit; unmingle = pair of (possibly infinite) traces (o, 7)

Bisimulation distance: sup inf dr(o,7)
916@1926@2

e Simulation distance: sup inf dr(o,7) (restricting Player 1's
61€07 0,€0; capabilities)
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Quantitative EF Games: The Gory Details — 2

Blind Player-1 strategies: depend only on the end of p

» (“cannot see Player-2 moves")
» O1: set of blind Player-1 strategies

Trace inclusion distance: sup inf dy(o,7)
0169 0,€0,

For nesting: count the number of times Player 1 choses edge from
end of p

» Ok: k choices from end of p allowed

Nested simulation distance: sup inf dy(o,7)
9166% 6,€0,

@ Nested trace inclusion distance: sup inf dr(o,7)
016@% 0,€0,
@ For ready: allow extra “I'll see you" Player-1 transition from end of p
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Transfer Theorem

@ Given two equivalences or preorders in the qualitative setting for
which there is a counter-example which separates them, then the two
corresponding distances are topologically inequivalent

@ (under certain mild conditions for the trace distance)

@ (The proof uses precisely the same counter-example)
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Recursive Characterization

If the trace distance D : (o,7) +— d(o,7) has a decomposition
d=gof:TrxTr— L— RsoU{oo} through a complete lattice L,

and f has a recursive formula

i.e. such that f(o,7) = F(00, 70, f(c*, 7)) for some
F: X x X xL— L (which is monotone in the third coordinate)

1 is a split of o into first element and tail)

(where 0 =0¢ -0
then all distances in the QLTBT are given as least fixed points of
some functionals using F

All trace distances we know can be expressed recursively like this.
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Recursive Characterization: One of Four Theorems

The endofunction / on (N, U {co0}) x {1,2} — L5%° defined by

I(hm,p)(s, t) =

sup inf F(x,y,hmi(s',t"))
s—rs! t-—Lot! :
max sup inf F(x,y, hm_12(s',t")) fmz2p=1
t—2st s’
sup inf F(x,y,hmi(s',t")) fm=1,p=1
s—rs! t—Lot!
sup inf F(x,y, hmo(s', 1))
max 4 tt s fm>2p=2
sup inf F(x,y, hm_11(s',t"))
s—rs! t—Lot!
sup inf F(x,y, hmo(s', 1)) fm=1p=2

y X
t——t’ s—s’

has a least fixed point h* : (N, U {oc}) x {1,2} — L5%°, and if the LTS (S, T)
is finitely branching, then d*s™ =g o hi ; forall k € N, U {o0}.

Uli Fahrenberg
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@ Computing Branching Distances
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Path-Building Games

@ Have seen how branching distances can be defined using a type of
“double path-building game”

@ But now, how to compute them?

@ Nothing in the literature about computing values of double
path-building games . ..

@ On the other hand, people know how to compute values of (single)
path-building games!

» reachability games; discounted games; mean-payoff games, ...

@ So, let's convert our double path-building games to single
path-building games
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From Double to Single Path-Building Games

Let D: (0,7) — D(o,7) € R>o U {oo} be a hemimetric on traces
Assume that we have functions valp and fp such that always,

D(o,7) = valp(0, fp(00,70),0, fip(o1,71),0,...)

Let S=(S,i, T)and 8’ = (5,7, T') be LTS
Construct a game U = U(S,S’) = (U1 U Uz, ug, —) by

Uy=5Sx§5 Up=SxS xX ug = (i, ")
= {(s,5) = (t,5,a) | (s,at) € T}

fp(a,a’
U{(tsa) 20D (b vy (54, F) e T

@ Path-building game: players alternate to build path w
@ Player 1 plays to maximize valp(w); Player 2 plays to minimize
valp(m)
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Computing Distances Using Path-Building Games

U(S,S’) = (Ul U U, Uo,—b):
Uy=Sx5 Uy=SxSxX UO:(i,i/)
= {(s,5) > (t.5.3) | (s,a,t) € T}

U{(tsa) 20D, (e vy (5,4 ) € T

Theorem
The value of U(S,S’) is the simulation distance from S to §'.
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Computing Distances Using Path-Building Games, contd.
V(S,8) = (ViU Vo, vy, —):
Vi=SxS  Vo=SxSx¥x{L,2} w=(i)
—- = {(s,5) > (t,s',a,1) | (s,a,t) € T}
U{(s,s) = (s,t,d,2) | (s, 4. t) e T'}
U{(t,s,a,1) PO, (1 ¢y | (4, ) € T
fo(a,a)

U{(s,t',a',2) —= (t,t') | (s,a,t) € T}

Theorem
The value of V(S,S8’) is the bisimulation distance between S and S'. J

@ Similar constructions for all distances in the
linear-time—branching-time spectrum
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Coda: Computing the Values of Path-Building Games

U(S,S/) = (Ul U U, Uo,—b):
Uy=SxS U=SxS%xT  u=(ii)
o ={(s.5) > (t,5,a) | (s,a,t) € T}

U{(tsa) 20D (e )| (5,4, ) € T

o discrete distance: reachability game PTIME
@ point-wise distance: weighted reachability game PTIME
@ discounted distance: discounted game NP N coNP
@ limit-average distance: mean-payoff game NP N coNP
@ maximum-lead distance: energy game NEXPTIME
o Cantor distance: iterated reachability game PTIME
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Conclusion & Further Work

@ A general method to define linear and branching system distances
using double path-building games

@ A general method to compute linear and branching system distances
using (single) path-building games

@ Application to real-time and hybrid systems
@ Quantitative specification theories

@ Quantitative LTBT with silent moves?

@ What about probabilistic systems?
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