Generating Posets beyond N

Uli Fahrenberg¹ Christian Johansen² Georg Struth³ Ratan Bahadur Thapa²

École Polytechnique, Palaiseau, France

University of Oslo, Norway

University of Sheffield, UK

RAMiCS 2020

- Kleene algebra is nice and useful
 - also its extensions: semimodules, tests, domain, ...
- Concurrent Kleene algebra: extension of KA for concurrency
 - [Hoare, Möller, O'Hearn, Struth, van Staden, Villard, Wehrman, Zhu '09, '11, '16]
- Kleene algebra plus parallel composition
- the free CKA (minus some details): sets of series-parallel pomsets
 - labeled posets with concatenation & parallel composition
- Something's amiss in concurrent Kleene algebra

• new gluing operation on pomsets, to *continue events across compositions*

Another Example

$$\begin{pmatrix} a \\ c \end{pmatrix} \overset{a}{*} \begin{pmatrix} a \\ d \end{pmatrix} \overset{d}{*} \begin{pmatrix} b \\ d \end{pmatrix} = \begin{pmatrix} a \xrightarrow{b} b \\ c \xrightarrow{b} d \end{pmatrix}$$

- this is the N pomset, which is not series-parallel
- hence our title, Generating Posets beyond N

Series-Parallel Posets

- a poset: finite set P plus partial order ≤: reflexive, transitive, antisymmetric
- parallel composition of posets (P_1, \leq_1) , (P_2, \leq_2) :

• serial composition:

$$P_1 * P_2 = (P_1 \sqcup P_2, \leq_1 \cup \leq_2 \cup P_1 \times P_2)$$

$$\uparrow P_1 \text{ before } P_2$$

Series-Parallel Posets

- a poset: finite set P plus partial order ≤: reflexive, transitive, antisymmetric
- parallel composition of posets (P_1, \leq_1) , (P_2, \leq_2) :

$$P_1 \otimes P_2 = (P_1 \sqcup P_2, \leq_1 \cup \leq_2)$$

• serial composition:

$$P_1 * P_2 = (P_1 \sqcup P_2, \leq_1 \cup \leq_2 \cup P_1 \times P_2)$$

Definition (Winkowski '77, Grabowski '81)

A poset is series-parallel (sp) if it is empty or can be obtained from the singleton poset by a finite number of serial and parallel compositions.

Theorem (Grabowski '81)

A poset is sp iff it does not contain N as an induced subposet.

The equational theory of sp-posets is well-understood: [Gischer '88], [Bloom-Esik '96]

Concurrent Monoids

Definition (Gischer '88, Hoare *et al.* '11)

A concurrent monoid is an ordered bimonoid $(S, \leq, *, \|, 1)$ with shared *- $\|$ -unit 1 which satisfies weak interchange:

$$(a\|b)*(c\|d)\leq (a*c)\|(b*d)$$

• subsumption on posets: $P \preceq Q$ if P "has more order" than Q

Theorem (Gischer '88, Bloom-Esik '96)

The set of sp-posets under subsumption is the free concurrent monoid.

Problem & Solution

- we like the N poset, but it's not series-parallel
- in fact, N's are everywhere: for example, *producer-consumer*:

Problem & Solution

- we like the N poset, but it's not series-parallel
- in fact, N's are everywhere: for example, *producer-consumer*:

Problem & Solution

- $\bullet\,$ we like the N poset, but it's not series-parallel
- in fact, N's are everywhere: for example, producer-consumer:

Problem

Find a class of posets which includes N (and sp-posets) and which has good algebraic properties.

Our Proposal

Posets with interfaces with parallel and gluing composition.

Posets with Interfaces

Definition

A poset with interfaces (iposet) is a poset P plus two injections

$$[n] \xrightarrow{s} P \xleftarrow{t} [m]$$

such that s[n] is minimal and t[m] is maximal in P.

- $([n] = \{1, \ldots, n\}; S \subseteq P \text{ minimal if } p \not< s \text{ for all } p \in P, s \in S)$
- (there are 25 non-isomorphic iposets with underlying N)

Interfaces

Def.: Iposet $s : [n] \to P \leftarrow [m] : t$; $s[n] \subseteq P_{\min}$, $t[m] \subseteq P_{\max}$.

- s: starting interface ; t: terminating interface
- events in t[m] are unfinished ; events in s[n] are "unstarted"

Definition

$$P_1 * P_2 = \begin{cases} (P_1 \sqcup P_2)/t_1(i) = s_2(i) \\ \leq_1 \cup \leq_2 \cup (P_1 \setminus t_1[m]) \times (P_2 \setminus s_2[m]) \end{cases}$$

Gluing Composition

Definition

$$P_1 * P_2 = \begin{cases} (P_1 \sqcup P_2)/t_1(i) = s_2(i) \\ \leq_1 \cup \leq_2 \cup (P_1 \setminus t_1[m]) \times (P_2 \setminus s_2[m]) \end{cases}$$

- only defined if terminating int. of P_1 is equal to starting int. of P_2
- iposets form small category (with gluing as composition)

Gluing Composition

Definition

$$P_1 * P_2 = \begin{cases} (P_1 \sqcup P_2)/t_1(i) = s_2(i) \\ \leq_1 \cup \leq_2 \cup (P_1 \setminus t_1[m]) \times (P_2 \setminus s_2[m]) \end{cases}$$

- only defined if terminating int. of P_1 is equal to starting int. of P_2
- iposets form small category (with gluing as composition)

Gluing Composition

Definition

$$P_1 * P_2 = \begin{cases} (P_1 \sqcup P_2)/t_1(i) = s_2(i) \\ \leq_1 \cup \leq_2 \cup (P_1 \setminus t_1[m]) \times (P_2 \setminus s_2[m]) \end{cases}$$

- only defined if terminating int. of P_1 is equal to starting int. of P_2
- iposets form small category (with gluing as composition)

Parallel Composition

- parallel composition of iposets: put posets in parallel and renumber interfaces
- for $[n_1] \rightarrow P_1 \leftarrow [m_1]$ and $[n_2] \rightarrow P_2 \leftarrow [m_2]$, have $[n_1 + n_2] \rightarrow P_1 \otimes P_2 \leftarrow [m_1 + m_2]$
- not commutative ; only "lax tensor" ; not a PROP

Parallel Composition

- parallel composition of iposets: put posets in parallel and renumber interfaces
- for $[n_1] \rightarrow P_1 \leftarrow [m_1]$ and $[n_2] \rightarrow P_2 \leftarrow [m_2]$, have $[n_1 + n_2] \rightarrow P_1 \otimes P_2 \leftarrow [m_1 + m_2]$
- not commutative ; only "lax tensor" ; not a PROP $\begin{array}{c} \uparrow \\ \circ & \uparrow \\ \circ & \uparrow \\ \circ & \uparrow \\ \ast \\ \circ & \circ \\ \circ & \circ \\ \uparrow \\ \circ & \circ \\ \circ & \circ$

Parallel Composition

- parallel composition of iposets: put posets in parallel and renumber interfaces
- for $[n_1] \rightarrow P_1 \leftarrow [m_1]$ and $[n_2] \rightarrow P_2 \leftarrow [m_2]$, have $[n_1 + n_2] \rightarrow P_1 \otimes P_2 \leftarrow [m_1 + m_2]$
- not commutative ; only "lax tensor" ; not a PROP $$\Uparrow$$

$$(P_1 \otimes P_2) * (Q_1 \otimes Q_2) \preceq (P_1 * Q_1) \otimes (P_2 * Q_2)$$

Gluing-Parallel Iposets

- the four singletons:

Gluing-Parallel Iposets

- the four singletons:
- recall *sp-posets*: generated from \bigcirc using * and \otimes
 - sp-posets are *freely* generated
 - ► *P* is sp iff *P* is **N**-free

Gluing-Parallel Iposets

• the four singletons:

- \bullet recall *sp-posets*: generated from $\ \bigcirc$ using * and \otimes
 - sp-posets are *freely* generated
 - P is sp iff P is N-free
- gp-iposets: generated from \bigcirc , 1) , (1 , 1) using * and \otimes

Proposition

Gp-iposets are freely generated, except for the relations

$$\begin{pmatrix} \P^{1} \\ P \end{pmatrix} * \begin{pmatrix} 1 \\ Q \end{pmatrix} = \begin{pmatrix} \bigcirc \\ P * Q \end{pmatrix}$$
$$\begin{pmatrix} 1 \ \P^{1} \\ P \end{pmatrix} * \begin{pmatrix} 1 \\ Q \end{pmatrix} = \begin{pmatrix} 1 \\ P * Q \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{1} \\ P \end{pmatrix} * \begin{pmatrix} \mathbf{1} \ \mathbf{M} \ \mathbf{1} \\ Q \end{pmatrix} = \begin{pmatrix} \mathbf{1} \\ P * Q \end{pmatrix}$$
$$\begin{pmatrix} \mathbf{1} \ \mathbf{M} \ \mathbf{1} \\ P \end{pmatrix} * \begin{pmatrix} \mathbf{1} \ \mathbf{M} \ \mathbf{1} \\ Q \end{pmatrix} = \begin{pmatrix} \mathbf{1} \ \mathbf{M} \ \mathbf{1} \\ P * Q \end{pmatrix}$$

Forbidden Substructures

Proposition

If P is gp, then it does not contain any of the following as induced subposets:

- unlike for *sp*-posets, that's not an iff (we don't know)
- but these five are the only posets on ≤ 6 points which are not gp

Some Counting, up to Isomorphism

п	P(<i>n</i>)	SP(n)	GP(<i>n</i>)	IP(n)	GPI(n)
0	1	1	1	1	1
1	1	1	1	4	4
2	2	2	2	17	16
3	5	5	5	86	74
4	16	15	16	532	419
5	63	48	63	???	2980
6	318	167	313	???	26566
7	2045	602	???	???	???
OEIS	A000112	A003430	A079566 ?	n.a.	n.a.

п	P(<i>n</i>)	SP(n)	GP(<i>n</i>)	IP(n)	GPI(<i>n</i>)
0	1	1	1	1	1
1	1	1	1	4	4
2	2	2	2	17	16
3	5	5	5	86	74
4	16	15	16	532	419
5	63	48	63	???	2980
6	318	167	313	???	26566
7	2045	602	???	???	???
OEIS	A000112	A003430	A079566 ?	n.a.	n.a.

- slow Python implementation
- bottleneck is isomorphism checking

Some Counting, up to Isomorphism

п	P(<i>n</i>)	SP(n)	GP(<i>n</i>)	IP(n)	GPI(n)
0	1	1	1	1	1
1	1	1	1	4	4
2	2	2	2	17	16
3	5	5	5	86	74
4	16	15	16	532	419
5	63	48	63	???	2980
6	318	167	313	???	26566
7	2045	602	???	???	???
OEIS	A000112	A003430	A079566 ?	n.a.	n.a.

• the only iposet on 2 points which is not gp:

п	P(<i>n</i>)	SP(n)	GP(<i>n</i>)	IP(n)	GPI(n)
0	1	1	1	1	1
1	1	1	1	4	4
2	2	2	2	17	16
3	5	5	5	86	74
4	16	15	16	532	419
5	63	48	63	???	2980
6	318	167	313	???	26566
7	2045	602	???	???	???
OEIS	A000112	A003430	A079566 ?	n.a.	n.a.

 Online Encyclopedia of Integer Sequences A079566: the number of connected graphs without induced sub-C₄

- posets with interfaces for concurrency
- instead of concurrent monoid, small category with lax tensor
 - a "multi-object concurrent monoid"
- gluing-parallel iposets include sp-posets and the N
 - they also include all interval orders
 - II-free; useful in concurrency [Wiener 1914], [Lamport '86], [van Glabbeek '90], [Vogler '91], [Janicky '93], etc.
- generation is "almost free"
- characterization by forbidden substructures?

Ongoing and Future Work

- Concurrent Kleene algebra:
 - ► concurrent monoid ~→ concurrent semiring
 - multi-object concurrent monoid ~> bicategories with lax tensors?
 - and the stars?
 - relation to synchronous Kleene algebra?
- CKA with domain:
 - domain elements are "structure-less" iposets
 - relation to higher-dimensional modal logic?
 - higher-dimensional modal Kleene algebra
- Languages of higher-dimensional automata:
 - sets of interval orders
 - concatenation of HDA \approx gluing of (sets of) interval orders
 - theory of regular languages for concurrency?

Posets for Concurrency: Interval Orders

- already in [Wiener 1914], then [Winkowski '77], [Lamport '86], [van Glabbeek '90], [Vogler '91], [Janicky '93], etc.
- interval orders: posets which have representation as (real) intervals, ordered by max₁ ≤ min₂
- Lemma (Fishburn '70): A poset is interval iff it does not contain $II = (\stackrel{\cdot}{:} \xrightarrow{\longrightarrow} \stackrel{\cdot}{:})$ as induced subposet.

• intuitively: if $a \longrightarrow b$ and $c \longrightarrow d$, then also $a \longrightarrow d$ or $c \longrightarrow b$

Gluing of Interval Orders

$$\begin{pmatrix} a \\ c \end{pmatrix} \stackrel{a}{*} \begin{pmatrix} a \\ d \end{pmatrix} \stackrel{d}{*} \begin{pmatrix} b \\ d \end{pmatrix} = \begin{pmatrix} a \xrightarrow{b} b \\ c \xrightarrow{b} d \end{pmatrix}$$
$$\frac{a}{c} \xrightarrow{d} \frac{a}{d} \xrightarrow{d} \frac{b}{d} = \frac{a}{c} \xrightarrow{d} \frac{b}{d}$$

Interval Orders vs ST-Traces

as intervals:

Proposition

ST-traces up to the equivalence generated by $a^+b^+ \sim b^+a^+$ and $a^-b^- \sim b^-a^-$ are the same as labeled interval orders.