Star-Continuous Ésik Algebras Theory and Applications

Uli Fahrenberg

École polytechnique, Palaiseau, France

Tokyo February 2020

Motivation

What is the minimum amount of battery required for the satellite to always be able to send and receive messages?

- The theory of weighted automata is very powerful
- Here: an application to energy problems

Semirings and Continuous Kleene Algebras

2 Semimodules and Esik Algebras

3 Energy Problems

4 Real-Time Energy Problems (Work in Progress)

1 Semirings and Continuous Kleene Algebras

2 Semimodules and Esik Algebras

3 Energy Problems

4 Real-Time Energy Problems (Work in Progress)

Semirings

A semiring is a structure (${\it S},\oplus,\otimes,0,1)$ such that

• $(S, \oplus, 0)$ is a commutative monoid,

► $x \oplus y = y \oplus x$, $x \oplus (y \oplus z) = (x \oplus y) \oplus z$, $x \oplus 0 = x$

• $(S,\otimes,1)$ is a monoid,

 $\blacktriangleright x \otimes (y \otimes z) = (x \otimes y) \otimes z, \ x \otimes 1 = 1 \otimes x = x$

• and which satisfies distributive and annihilation laws:

•
$$x(y \oplus z) = xy \oplus xz$$
, $(x \oplus y)z = xz \oplus yz$

$$\bullet \ x \otimes 0 = 0 \otimes x = 0$$

Examples:

- natural numbers: $(\mathbb{N}, +, \cdot, 0, 1)$
- \bullet the boolean semiring: ({ff, tt}, \lor, \land, ff, tt)
- max-plus algebra: ($\mathbb{R} \cup \{-\infty\}, \mathsf{max}, +, -\infty, \mathsf{0})$
- min-plus algebra: ($\mathbb{R} \cup \{\infty\}, \min, +, \infty, 0$)
- languages over some alphabet Σ : $(2^{\Sigma^*}, \cup, \cdot, \emptyset, \{\epsilon\})$
- etc.

A weighted automaton (over a semiring S) is a structure (Q, I, K, T):

- Q: finite set of states, $I, K \subseteq Q$ initial / accepting states
- $T \subseteq Q \times S \times Q$

- along paths: ·
- choice between paths: \cup
- usual automata

$${b}{a,c} \cup {b}{a,c} \cup {b}{a,c} \cup {b}{a,c}$$

A weighted automaton (over a semiring S) is a structure (Q, I, K, T):

- Q: finite set of states, $I, K \subseteq Q$ initial / accepting states
- $T \subseteq Q \times S \times Q$

- \bullet along paths: \wedge
- choice between paths: ∨
- digraphs

is reachable

A weighted automaton (over a semiring S) is a structure (Q, I, K, T):

- Q: finite set of states, $I, K \subseteq Q$ initial / accepting states
- $T \subseteq Q \times S \times Q$

- along paths: +
- choice between paths: min
- shortest path

4

A weighted automaton (over a semiring S) is a structure (Q, I, K, T):

- Q: finite set of states, $I, K \subseteq Q$ initial / accepting states
- $T \subseteq Q \times S \times Q$

Examples:

- along paths: min
- choice between paths: max
- maximum flow

2

Reachability in Weighted Automata

Let $S = (S, \oplus, \otimes, 0, 1)$ be a semiring and A = (Q, I, K, T) a weighted automaton over S.

- a path in A: $\pi = q_1 \xrightarrow{x_1} q_2 \xrightarrow{x_2} \cdots \xrightarrow{x_{n-1}} q_n$ with all $(q_i, x_i, q_{i+1}) \in T$
- the value of π : $|\pi| = x_1 \otimes x_2 \otimes \cdots \otimes x_{n-1}$
- π accepting if $q_1 \in I$ and $q_n \in K$

Definition

The reachability value of A is

$$|A| = \bigoplus \{ |\pi| \mid \pi \text{ accepting path in } A \}$$

- \otimes along paths; \oplus between paths
- needs some provision for infinite sums!

Aside: Variants of Weighted Automata

- in this talk: a weighted automaton is $(Q, I, K, T \subseteq Q \times S \times Q)$
- alternatively, $T: Q \rightarrow 2^{S \times Q}$ or $T: Q \times Q \rightarrow S$
- (for the last, "matrix", representation, T(q, q') = 0 is the same as no transition)
- in most literature, a weighted automaton is $A = (Q, I, K, T \subseteq Q \times \Sigma \times S \times Q)$
- that is, weighted and labeled
- then |A| is not an element of S, but a function Σ* → S: a power series
- equivalent to our setting: replace S with functions $\Sigma^* \to S$ (which again form a semiring with the pointwise operations)

Complete Semirings

Definition (repeat)

The reachability value of A is

$$|A| = \bigoplus \{ |\pi| \mid \pi \text{ accepting path in } A \}$$

• needs some provision for infinite sums!

Definition

A semiring $(S, \oplus, \otimes, 0, 1)$ is complete if all infinite sums $\bigoplus X$ for $X \subseteq S$ exist.

- now the definition of |A| makes sense
- but completeness is a rather restrictive condition
- we'll do something different

Continuous Kleene Algebras

From now on, restrict to idempotent semirings $(S, \oplus, \otimes, 0, 1)$.

- that is, $x \oplus x = x$ for all $x \in S$
- N is not idempotent, but B, max-plus, min-plus, max-min, 2^{Σ^*} are, as are most other important examples
- write $\vee = \oplus$ and $\perp = 0$ for emphasis

Definition

A continuous Kleene algebra is an idempotent semiring $(S, \lor, \otimes, \bot, 1)$ in which $\bigvee X$ exists for all $X \subseteq S$, and such that for all $Y \subseteq S$, $x, z \in S$, $x(\bigvee Y)z = \bigvee xYz$.

- a complete idempotent semiring in which multiplication distributes over infinite suprema
- again, too restrictive

Star-Continuous Kleene Algebras

Definition (repeat)

A continuous Kleene algebra is an idempotent semiring $(S, \lor, \otimes, \bot, 1)$ in which $\bigvee X$ exists for all $X \subseteq S$, and such that for all $Y \subseteq S$, $x, z \in S$, $x(\bigvee Y)z = \bigvee xYz$.

Definition

A star-continuous Kleene algebra is an idempotent semiring $(S, \lor, \otimes, \bot, 1)$ in which $\bigvee \{x^n \mid n \ge 0\}$ exists for all $x \in S$, and such that for all $x, y, z \in S$, $x(\bigvee \{y^n \mid n \ge 0\})z = \bigvee x\{y^n \mid n \ge 0\}z$.

• loop abstraction:

Star-Continuous Kleene Algebras

For $x \in S$ in a star-continuous Kleene algebra S, define

$$x^* = \bigvee_{n \ge 0} x^n$$

- for languages, that's the Kleene star
- poor man's inverse: the equation

$$x^* = 1 \oplus x \oplus x^2 \oplus \dots = \frac{1}{1-x}$$

does make surprisingly much sense!

Star-Continuous Kleene Algebras

- all continuous Kleene algebras are star-continuous, but not vice-versa
 - 2^{Σ^*} is a continuous Kleene algebra
 - the set of regular languages over Σ is star-continuous, but not continuous
- not all idempotent semirings are star-continuous Kleene algebras
 - counterexample is necessarily infinite

Matrix Semirings

Let S be a semiring and $n \ge 1$.

- $S^{n \times n}$: semiring of $n \times n$ matrices over S
- (with matrix addition and multiplication)
- If S is a star-continuous Kleene algebra, then so is $S^{n \times n}$
- with $M_{i,j}^* = \bigvee_{m \ge 0} \bigvee_{1 \le k_1, \dots, k_m \le n} M_{i,k_1} M_{k_1,k_2} \cdots M_{k_m,j}$

• and for
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 any partition,
$$M^* = \begin{bmatrix} (a \lor bd^*c)^* & (a \lor bd^*c)^*bd^* \\ (d \lor ca^*b)^*ca^* & (d \lor ca^*b)^* \end{bmatrix}$$

(recursively)

• "generalized Floyd-Warshall"

Reachability in Weighted Automata, II

Let $S = (S, \lor, \otimes, \bot, 1)$ be a star-continuous Kleene algebra and A = (Q, I, K, T) a weighted automaton over S.

- transform A to matrix form:
 - recall $T: Q \times Q \rightarrow S$
 - write $Q = \{1, \ldots, n\}$
 - then $I, K \subseteq Q$ become $\iota, \kappa \in \{\bot, 1\}^n$
 - and $T \in S^{n \times n}$: the transition matrix
- recall $|A| = \bigoplus \{ |\pi| \mid \pi \text{ accepting path in } A \}$

Theorem

$$|A| = \iota T^* \kappa$$

Semirings and Continuous Kleene Algebras

2 Semimodules and Esik Algebras

3 Energy Problems

4 Real-Time Energy Problems (Work in Progress)

Motivation: Büchi Conditions in Weighted Automata

Let A = (Q, I, K, T) be a weighted automaton over a semiring S

- an infinite path in A: $\pi = q_1 \xrightarrow{x_1} q_2 \xrightarrow{x_2} \cdots$ with all $(q_i, x_i, q_{i+1}) \in T$
- π Büchi if $q_1 \in I$ and

$$\{q \in Q \mid \forall n \ge 0 : \exists i \ge n : q_i = q\} \cap K \neq \emptyset$$

Goal: make sense of the "definition"

$$\| {oldsymbol A} \| = igoplus \{ \| \pi \| \mid \pi$$
 Büchi path in ${oldsymbol A} \}$

- but what is the value $\|\pi\|$ of an infinite path? an infinite product?
- and, how to compute ||A||?

Semiring-Semimodule Pairs

• semiring
$$S = (S, \oplus, \otimes, 0, 1)$$

- plus commutative monoid $V = (V, \oplus, 0)$
- left S-action $S \times V \to V$, $(s, v) \mapsto sv$
- such that for all $s, s' \in S$, $v \in V$:

$$(s \oplus s')v = sv \oplus s'v \qquad s(v \oplus v') = sv \oplus sv'$$

$$(ss')v = s(s'v) \qquad 0s = 0$$

$$s0 = 0 \qquad 1v = v$$

• (think of vector spaces over fields, or modules over rings)

Ésik Algebras

Definition

An Ésik algebra is an idempotent semiring-semimodule pair (S, V) together with an infinite product $\prod : S^{\omega} \to V$, such that

- for all $x_0, x_1, \ldots \in S$, $\prod x_n = x_0 \prod x_{n+1}$;
- for any sequence $x_0, x_1, \ldots \in S$ and any sequence $0 = n_0 \le n_1 \le \cdots$ which increases without a bound, let $y_k = x_{n_k} \cdots x_{n_{k+1}-1}$ for all $k \ge 0$; then $\prod x_n = \prod y_k$.
- \bullet that is, \prod generalizes the finite product in S
- a new name for an old notion (Zoltán Ésik died in 2016)
- S for values of finite paths; V for values of infinite paths:

$$\|q_1 \xrightarrow{x_1} q_2 \xrightarrow{x_2} \cdots \| = \prod x_{n-1}$$

Continuous Ésik Algebras

Definition

An Ésik algebra (S, V, \prod) is continuous if

- S is a continuous Kleene algebra and V is a complete lattice,
- the S-action on V preserves all suprema in either argument, and
- for all $X_0, X_1, \ldots \subseteq S$, $\prod (\bigvee X_n) = \bigvee \{ \prod x_n \mid x_n \in X_n, n \ge 0 \}.$
- Ésik-Kuich 2004
- too restrictive

Star-Continuous Ésik Algebras

Definition
An Ésik algebra
$$(S, V, \prod)$$
 is star-continuous if
• S is a star-continuous Kleene algebra,
• for all $x, y \in S, v \in V, xy^*v = \bigvee_{n \ge 0} xy^n v$,
• for all $x_0, x_1, \dots, y, z \in S$, $\prod (x_n(y \lor z)) = \bigvee_{\substack{x'_0, x'_1, \dots \in \{y, z\}}} \prod x_n x'_n$,
• for all $x, y_0, y_1, \dots \in S$, $\prod x^*y_n = \bigvee_{\substack{k_0, k_1, \dots \ge 0}} \prod x^{k_n} y_n$.

• Ésik-Fahrenberg-Legay-Quaas 2015

Matrix Semiring-Semimodule Pairs

Let (S, V) be a semiring-semimodule pair and $n \ge 1$.

- $(S^{n \times n}, V^n)$ is again a semiring-semimodule pair
- (the action is matrix-vector product)
- if (S, V) is a star-continuous Ésik algebra, then there is an operation ^ω: S^{n×n} → Vⁿ given by

(recursively)

Büchi Conditions in Weighted Automata, II

Let (S, V) be a star-continuous Ésik algebra and $A = (n, \iota, \kappa, T)$ a weighted automaton over S.

• reorder ${\it Q}=\{1,\ldots,n\}$ so that $\kappa=(1,\ldots,1,\perp,\ldots,\perp)$

• that is, now the first
$$k \le n$$
 states are accepting
• write $T = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, with $a \in S^{k \times k}$

Theorem

$$\|A\| = \iota \begin{bmatrix} (a + bd^*c)^{\omega} \\ d^*c(a + bd^*c)^{\omega} \end{bmatrix}$$

Semirings and Continuous Kleene Algebras

2 Semimodules and Esik Algebras

3 Energy Problems

4 Real-Time Energy Problems (Work in Progress)

Energy Problems

What is the minimum amount of battery required for the satellite to always be able to send and receive messages?

Energy Automata

Energy function:

- partial function $f: \mathbb{R}_{\geq 0} \hookrightarrow \mathbb{R}_{\geq 0}$
- which is defined on some closed interval [*l_f*,∞[or on some open interval]*l_f*,∞[,
- and such that for all $x \leq y$ for which f is defined,

$$f(y)-f(x)\geq y-x$$

Energy automaton: finite automaton labeled with energy functions

$$x \mapsto x+2; x \ge 2$$

$$x \mapsto x-1; x > 1$$

$$x \mapsto x+3; x > 1$$

$$x \mapsto x+1; x \ge 0$$

Energy Automata, Semantically

- start with initial energy x_0 and update at transitions according to label function
- if label function undefined on input, transition is disabled
- a discrete-time hybrid automaton(?)

Reachability: Given x_0 , does there exist an accepting (finite) run with initial energy x_0 ?

Büchi: Given x_0 , does there exist a Büchi (infinite) run with initial energy x_0 ?

Reachability in Energy Automata

- Let $L = [0, \infty]_{\perp}$: extended nonnegative real numbers plus \perp (for "undefined")
 - (a complete lattice)
- Extended energy function: function $f: L \rightarrow L$
- with $f(\perp) = \perp$, and $f(\infty) = \infty$ unless $f(x) = \perp$ for all $x \in L$,
- and $f(y) f(x) \ge y x$ for all $x \le y$.
- Set \mathcal{E} of such functions is an idempotent semiring with operations \lor (pointwise max) and \circ (composition)
- in fact, a star-continuous Kleene algebra
 - $f^*(x) = x$ if $f(x) \le x$; $f^*(x) = \infty$ if f(x) > x
 - not a continuous Kleene algebra

Theorem (Reachability)

There exists an accepting run from initial energy x_0 iff $|A|(x_0) \neq \bot$.

Büchi Runs in Energy Automata

- Let $\mathbf{2} = \{\mathbf{ff}, \mathbf{tt}\}$: the Boolean lattice
- Let ${\mathcal V}$ be the set of monotone and $\top\text{-continuous}$ functions $L\to {\mathbf 2}$
 - ▶ $f: L \to \mathbf{2}$ is called \top -continuous if $f(x) \equiv \mathbf{ff}$ or for all $X \subseteq L$ with $\bigvee X = \infty$, also $\bigvee f(X) = \mathbf{tt}$.
- $\bullet~(\mathcal{E},\mathcal{V})$ is an idempotent semiring-semimodule pair
- Define $\prod : \mathcal{E}^{\omega} \to \mathcal{V}$ by

 $(\prod f_n)(x) = \mathbf{t} \text{ iff } \forall n \ge 0 : f_n(f_{n-1}(\cdots(x)\cdots)) \neq \bot$

- Lemma: $\prod f_n$ is indeed \top -continuous for all $f_0, f_1, \ldots \in \mathcal{E}$
- Theorem: $(\mathcal{V}, \mathcal{E})$ is a star-continuous Ésik algebra
 - not a continuous Ésik algebra

Theorem (Büchi)

There exists a Büchi run from initial energy x_0 iff $||A||(x_0) \neq \mathbf{ff}$.

Computability

Let $\mathcal{E}'\subseteq \mathcal{E}$, $\mathcal{V}'\subseteq \mathcal{V}$ such that

- \mathcal{E}' is closed under \lor , $\circ,$ and *
- \mathcal{V}' is closed under \vee and contains all infinite products of elements of \mathcal{E}'
- \bullet all elements of \mathcal{E}' and \mathcal{V}' are finitely representable

Theorem

Reachability and Büchi acceptance are decidable for \mathcal{E}' -weighted energy automata.

The above holds for example for \mathcal{E}' all piecewise linear energy functions.

Semirings and Continuous Kleene Algebras

2 Semimodules and Esik Algebras

3 Energy Problems

4 Real-Time Energy Problems (Work in Progress)

The Interval Problem for 1-Clock Weighted Timed Automata (Work in Progress)

Definition

An interval timed automaton A = (L, E, I, K, r) consists of a finite set L of locations, a finite set $E \subseteq L \times \mathbb{Q}^3 \times L$ of transitions, subsets $I, K \subseteq L$ of initial and accepting locations, and weight rates $r : L \to \mathbb{Q}$.

- transitions $I \xrightarrow{p} I'$: [a, b] interval bound; p price
- spend some time in location *I*; take transition if x ∈ [a, b]; add p to x
- runs have initial energy and initial time budget
- can only spend time budget: no resets
 - a 1-clock weighted timed automaton without resets
 - (resets can be removed from 1-clock WTA by splitting into components)

Timed Input-Output Relations

• An edge in an interval timed automaton

$$I \xrightarrow{p} I'$$

defines a timed input-output relation

$$R_{r(l),p,a,b} = \{(x,t,x') \mid a \le x + r(l) \ t \le b, x' = x + r(l) \ t + p\}$$

• These can be composed:

$$I \xrightarrow{p} I' \xrightarrow{q} I''$$

corresponds to

$$R_1 \triangleright R_2 = \{(x_0, t_1 + t_2, x_2) \mid \exists x_1 : (x_0, t_1, x_1) \in R_1, (x_1, t_2, x_2) \in R_2\}$$

Lemma

With operations \cup and \triangleright , relations as above form an idempotent semiring.

Uli Fahrenberg

Star-Continuous Ésik Algebras

Algebraic Properties

Let $\mathcal{Q} = (\mathbb{Q} \cup \{\infty\}) \times (\mathbb{Q}_{\geq 0} \cup \{\infty\}) \times (\mathbb{Q} \cup \{\infty\})$: the set of all timed input-output relations together with operations \cup and \triangleright :

 $R_1 \triangleright R_2 = \{(x_0, t_1 + t_2, x_2) \mid \exists x_1 : (x_0, t_1, x_1) \in R_1, (x_1, t_2, x_2) \in R_2\}$

Lemma

Q forms a continuous Kleene algebra.

Let $\mathcal{V} = (\mathbb{Q} \cup \{\infty\}) \times (\mathbb{Q}_{\geq 0} \cup \{\infty\})$. Define an action $\mathcal{Q} \times \mathcal{V} \to \mathcal{V}$: $R_1 \triangleright R_2 = \{(x_0, t_1 + t_2) \mid \exists x_1 : (x_0, t_1, x_1) \in R_1, (x_1, t_2) \in R_2\}$ Define an infinite product $\prod : \mathcal{Q}^{\omega} \to \mathcal{V}$: for $R_0, R_1, \ldots \in \mathcal{Q}$, let

$$\prod_{n\geq 0} R_n = \{ (x,t) \mid \exists x_0, x_1, \ldots \in \mathbb{Q} \cup \{\infty\}, t_1, t_2, \ldots \in \mathbb{Q}_{\geq 0} \cup \{\infty\} : \\ \sum_{n=0}^{\infty} t_n = t, \forall n \geq 0 : (x_n, t_{n+1}, x_{n+1}) \in R_n \}$$

Lemma

 $(\mathcal{Q}, \mathcal{V})$ forms a continuous Ésik algebra.

Energy Problems in 1-Clock ITA

Let A = (L, E, I, K, r) be an ITA with $L = \{1, ..., n\}$. Define its transition matrix $M \in Q^{n \times n}$ by

$$M_{ij} = \bigvee \{R_{r(l_i),p,a,b} \mid (l_i, p, a, b, l_j) \in E\}$$

Define $\iota, \kappa \in \{\emptyset, \mathbb{1}\}^n$ as usual.

Theorem (Reachability)

There is an accepting run from initial state (x_0, t_0) iff there is $x \in \mathbb{Q}$ with $(x_0, t_0, x) \in \iota M^* \kappa$.

Reorder *L* so that there is $k \leq n$ with $\kappa_i = 1$ iff $i \leq k$, and partition $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with $a \in S^{k \times k}$.

Theorem (Büchi)

There is a Büchi run from initial state (x_0, t_0) iff $(x_0, t_0) \in \iota \begin{bmatrix} (a + bd^*c)^{\omega} \\ d^*c(a + bd^*c)^{\omega} \end{bmatrix}$ And Now the Work Begins

Problem: Given an ITA A, we have formulas for |A| and ||A||: but can we compute them?

• every elementary relation

$$R_{r,p,a,b} = \{(x,t,x') \mid a \le x + rt \le b, x' = x + rt + p\}$$

has a finite representation (by the four numbers r, p, a, b)

- let $Q_0 = \{R_{r,p,a,b} \mid r, p, a, b \in \mathbb{Q}\} \subseteq Q$ and $\mathcal{R} \subseteq Q$ be the closure of Q_0 under the operations \cup , \triangleright , and *
 - is every $R \in \mathcal{R}$ finitely representable?
 - ► are the operations ∪, ▷, * computable?
- let $\mathcal{U} \subseteq \mathcal{V}$ be the \mathcal{R} -subsemimodule generated by infinite products of elements of \mathcal{R}
 - is every $R \in \mathcal{U}$ finitely representable?
 - is the operation $^{\omega}$: $\mathcal{R} \rightarrow \mathcal{U}$ computable?
- So many questions . . .

Conclusion

- semirings and weighted automata: a very versatile framework
 - barely touched applications here
 - see Droste, Kuich, Vogler (eds.): Handbook of Weighted Automata, Springer 2009
- star-continuous Ésik algebras: a useful generalization of continuous Ésik algebras
 - (like star-continuous Kleene algebras are a useful generalization of continuous Kleene algebras)
- can be used to solve general energy problems

Ongoing work:

- real-time energy problems (FORMATS 2008; HSCC 2010; FM 2018; LMCS 2019)
- hybrid systems?
- non-idempotent case?

Selected Bibliography

- P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and J. Srba. Infinite runs in weighted timed automata with energy constraints. In FORMATS, 2008.
- P. Bouyer, U. Fahrenberg, K. G. Larsen, and N. Markey. Timed automata with observers under energy constraints. In *HSCC*, 2010.
- Z. Ésik, U. Fahrenberg, A. Legay, and K. Quaas. An algebraic approach to energy problems I & II. Acta Cybern., 23(1):203–268, 2017.
- G. Bacci, K. G. Larsen, N. Markey, P. Bouyer-Decitre, U. Fahrenberg, and P.-A. Reynier. Optimal and robust controller synthesis using energy timed automata with uncertainty. In *FM*, 2018.
- D. Cachera, U. Fahrenberg, and A. Legay. An ω-algebra for real-time energy problems. *Logical Meth. Comput. Sci.*, 15(2), 2019.