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Abstract. We introduce ¢r-multisemigroups as duals of modal quan-
tales and study modal correspondences between equations in these multi-
semigroups and the domain and codomain axioms of modal quantales.
Our results yield new insights on the origin of locality in modal semi-
rings and quantales. They also yield construction principles for modal
powerset quantales that cover a wide range of models and applications.

1 Introduction

This work adds to a series on convolution semirings and quantales built over re-
lational monoids and multimonoids [3}[8}12]. Tt explains the structure of modal
semirings and quantales [7,|11], not generally for convolution algebras [12], but
specifically for modal powerset quantales—the standard setting for computa-
tional models in this context. We consider such quantales as boolean algebras
with operators [19]. The quantalic composition is then a binary modality; the
domain and codomain operations needed for defining modal operators are unary
ones. We ask about the dual relational structure in the sense of Jénsson and
Tarski [19] and its equational properties corresponding to the modal quantale
axioms for domain and codomain [7/11] in the sense of modal correspondence
theory. For plain quantales, this is well known: the dual monoidal structure
is a ternary relation equipped with a relational monoid structure and many
units 3}|8]—a monoid in the category Rel with the standard tensor. Yet which
relational structure corresponds to domain and codomain?

The standard models of modal semirings and quantales give us a hint: modal
quantales of binary relations, for instance, are powerset liftings of pair groupoids;
modal quantales of paths lift from path categories. We might therefore try to
lift (object-free) categories |23, Chapter XIL.5] to modal quantales so that their
source and target maps match the domain and codomain operations of modal
quantales. Categories, however, are partial monoids, whereas relational monoids
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are isomorphic to multimonoids, whose composition maps pairs of elements to
sets, like the shuffle of words. Other examples, such as the lifting of partial
abelian monoids of heaplets to assertion quantales of separation logic, do not
fall into this lifting scheme with categories either. A generalisation is desirable.

We introduce #r-multisemigroups as relational structures in disguise and the
appropriate dual structures to modal powerset quantales. Categories then arise
as partial £r-semigroups (where the image of the multioperation is suitably re-
stricted) that satisfy a locality property capturing the categorical composition
pattern: two arrows are composable precisely if the target of the first equals the
source of the second. Thus, ¢r-multisemigroups generalise object-free categories
and related structures such as function systems [28], ordered semigroupoids [21]
and modal semigroups [5] from (partial) operations to multioperations.

Our second main contribution lies in modal correspondences between identi-
ties in families of modal quantales with axioms of varying strength and those of
families of ¢r-multisemigroups. The most intriguing one holds between the well
studied locality axioms for domain and codomain in modal semirings and quan-
tales and similar identities in ¢r-multisemigroups, which in turn are equivalent
to the composition pattern for categories mentioned. This explains the origin of
locality of domain and codomain in modal semirings and quantales in terms of
this fundamental pattern. It also makes local #r-multisemigroups the algebras of
choice for constructing modal quantales axiom by axiom.

Our results thus provide a generic construction recipe for modal quantales
from simpler structures: every ¢r-multisemigroup gives us a modal powerset
quantale for free—and even modal convolution quantales capturing weighted
variants of the models presented in this text. This generalisation is briefly out-
lined at the end of this article, see |12] for details.

All results about #r-multisemigroups and the lifting to modal powerset quan-
tales have been formalised with Isabelle/HOIEl The proofs for fr-multisemi-
groups are straightforward equational calculations that do not need to be shown
on paper. The proof of the powerset lifting has been added because it yields
an intuition for the more complex construction of modal convolution quantales.
Additional proofs, definitions and explanations can be found in [12], including a
glossary of the algebraic structures featured in this text.

2 {¢r-Multisemigroups and Object-Free Categories

As mentioned in the introduction, the dual of the binary composition of a quan-
tale is a ternary relation. For powerset quantales it is defined on their atom
structure of singleton sets. But instead of a ternary relation R C X x X x X on
a set X, say, we work with the isomorpic multioperation ® : X x X — PX and
the resulting multisemigroups. See [22] for an overview. Henceforth we are using
“set” naively, so that we can speak, for instance, about the set of all posets and
include large categories as examples.

® https://github.com/gstruth/lr-multisemigroups
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We extend the multioperation ® to PX x PX — PX by
A@B:U{x®y|xeAandyeB} for all A,B C X.

We write  ©® B instead of {#} ® B, A®x instead of A® {z}, f(A) for the image
of A under f and drop ® when convenient. Finally, ® is a partial operation if
| ®y| <1 and a (total) operation if |z ©® y| = 1, for all z,y € X.

A multimagma (X,®) is a set X with a multioperation ® on X. A multi-
semigroup X is an associative multimagma, it satisfies z® (y ©z2) = (z O y) © 2
for all x,y, z € X. Partial semigroups and semigroups are defined by restricting
the image of ® as just explained.

Object-free categories are obtained either by defining source and target maps
on partial semigroups or by equipping partial semigroups with many units [23].
We explore both ways more generally for multisemigroups.

An fr-multimagma is a multimagma X with operations ¢, : X — X that
satisfy, for all z,y € X,

rOy#b=r)="LLy), (lx)oz={z}, zor()={z}

An lr-multisemigroup is an associative fr-multimagma. We call £ the source
operation and r the target operation of X. The letters indicate “left” and “right”.

Alternatively, a multimagma X is unital if there exists a set E C X such
that E©x = {2} = 2 @ FE for all x € X. A multimonoid is then a unital
multisemigroup. See [12] for a more detailed discussion.

We briefly summarise the relationship between the two structures. First, in
unital multimagmas, every e € E satisfies e ©® e = {e} and, if e,e’ € FE, then
e®e’ # P < e =e¢'. Units are thus “orthogonal” idempotents. In multimonoids,
every element has therefore precisely one left and one right unit, and this allows
defining source and target maps. Second, the set £(X) of all source elements in
any ¢r-multisemigroup X equals the set (X)) of all target elements and the ele-
ments of those sets satisfy the unit axioms for multimonoids (see also Section [d)).
Third, ¢r-multisemigroups and multimonoids form categories with morphisms
satisfying f(z ®1y) C f(x) ®2 f(y) for multisemigroups (X;, ®;) with i € {1, 2}.
For ¢r-multisemigroups, morphisms need to preserve ¢ and r as well; for multi-
monoids they need to preserve units. It is then easy to see that the categories of
£r-multisemigroups and multimonoids are isomorphic [12].

Partial ¢r-semigroups are not yet (object-free) categories—see Examples
and [8] below. We need to impose the typical composition pattern of categories:
two morphisms can be composed if the target of the first equals the source of
the second. So we call an ¢r-multimagma ¢r-local if

r(x)=Ly)=r0y#0  forala,yecX.

We relate this property with notions of locality known from modal semigroups
and semirings in Section [d} Example [6] below shows a local ¢r-multisemigroup
with a proper multioperation that does not form an object-free category.

An ¢r-multisemigroup X is ¢r-local if and only if
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UETOYANYO2z#D = u®z#0 for all u,z,y,z € X.

This implication is expressible in any multimagma. The connection to the two
equivalent formalisations of (object-free) categories in Mac Lane’s book [23] is
thus as follows.

Proposition 1 ([4]). The categories of object-free categories [23, Chapter I1.1]
and those of local partial monoids are isomorphic.

Proposition 2. The categories of object-free categories (25, Chapter XIL.5] and
those of €r-local partial €r-semigroups are isomorphic.

The morphisms used are those outlined above. Hence local partial £r-semigroups
are categories (when these structures are defined over classes).

3 Examples of ¢r-Multisemigroups

We start with concrete instances of categories.

Ezample 3 (Monoids). Monoids are one-object categories. The monoid 1 51,
for instance, corresponds to a partial monoid X = {1, a} with composition de-
fined by 11 = {1} and la = al = aa = {a}. Obviously, ¢(a) = 1 = r(a) and
locality follows from totality of composition. O

Multimonoids must have precisely one unit if the multioperation is total (in
the sense that images of compositions cannot be empty).

Ezample 4 (Pair Groupoids). The pair groupoid (X x X,®, Idx) on set X (or
the universal relation on X) is a local partial ¢r-semigroup with

(w,z) © (y,2) = {@ otherwise,
identity relation Idx on X, {((z,y)) = (z,z) and 7((z,y)) = (v,9). -

Pair groupoids lift to quantales of binary relations.

Ezample 5 (Matriz Theories). Elgot’s matricial theories [9] consist of sets MLS =
Un.mso ™™ of matrices over a semiring S with matrix multiplication as partial
composition. These form a category with natural numbers as objects and n x m-
matrices as morphisms. Defining ¢ and r to map any M € S™*™ to the identity
matrices {(M) = I,, and r(M) = I,,, of the appropriate dimensions, MLS forms a
local partial #r-semigroup. Matrix theories become categories of finite relations
if S is the semiring of booleans. O

The next example presents a local proper ¢r-multisemigroup.
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Ezample 6 (Shuffle Algebras). The shuffle multimonoid (X*, ||, {e}) over the free
monoid X* has the empty word e as its unit, and the proper multioperation
|| - 2% x 2* — PX* models the standard interleaving of words that respects
the orders of their letters. The shuffle multimonoid is local because || is total
(defined everywhere) and £(w) = & = r(w). O

Finally, here are two non-local partial semigroups.

Ezample 7 (Broken Monoid). The monoid in Example [3| becomes a non-local
partial £r-semigroup when composition is broken by imposing aa = (). a

Ezample 8 (Heaplets). The partial abelian monoid of heaplets (H,®,¢) from
separation logic is formed by the set of partial functions X — Y. Its partial
operation f ® g equals f U g if dom(f) N dom(g) is empty and @ otherwise. The
unit is the empty partial function € with empty domain. Locality fails because
0(f) = e = r(g) always holds while f ® g = 0 if domains of f and g overlap. O

4 f¢r-Multisemigroups in Context

We have already seen that local partial fr-semigroups are categories. Here we
relate them with Schweizer and Sklar’s function systems [28] and modal semi-
groups [5]. The following property gives us half of our results for free.

Duality (by opposition) for fr-multimagmas arises by interchanging ¢ and r as
well as the arguments of ®. The classes of #r-multimagmas and ¢r-multisemigroups
are closed under this transformation. Locality and partiality are self-dual. Hence
the dual of any property that holds in any of these classes holds as well.

Lemma 9. In any {r-multimagma, the following laws hold:

Lor =r,rol=/{ (compatibility),

Lol =1V, ror=r (retraction),

. L(z)l(x) = {{(x)} (idempotency),

. r(@)l(y) = L(y)r(z) (commutativity),

- U(t(z)y) = €2)ely) and r(wr(y)) = r(@)r(y) (export),
. A(zy)x C 2l(y) and zr(yz) C r(y)x (weak twisted).

All proofs have been checked with Isabelle. All laws in Lemma [9] correspond
to axioms for Schweizer and Sklar’s function systems [28] (see [12] for a detailed
comparison), yet generalised to multioperations.

The compatibility laws imply that ¢(x) = z < r(x) = z and further that

Xe={z[l(z) =2} ={z|r(z) =2} =X

Moreover, by the retraction laws, X, = ¢(X) and X, = r(X).

Lemma [J also implies that ¢(z)l(y) = £(y)l(z), r(z)r(y) = r(y)r(z) and
r(z)r(z) = {r(z)}. Further, the orthogonality law £(z)l(y) # 0 < £(z) = {(y)
and its dual hold. As #r-Multimagmas are unital, we may write E for X, or X,.
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Lemma 10. In any {r-multisemigroup, the following laws hold:

1. L(zy) CL(zl(y)) and r(zy) C r(r(zx)y) (weak locality),

2. zy # 0 = L(xy) = £(xl(y)) and xy # O = r(zy) = r(r(z)y) (cond. locality),
3. L(xy) € {l(x)} and r(zy) S {r(y)},

4wy £0 = Uay) = ()} and 2y £ 0 = r(oy) = {r(y)},

5. 2y # 0 = l(zy)z = zl(y) and zy # O = yr(zy) = r(x)y (cond. twisted).

Proofs have again been checked with Isabelle. The locality and twisted laws
generalise the remaining axioms of function systems. Function systems without
the twisted laws correspond to modal semigroups [5] and therefore semigroups
of binary relations. The twisted laws are specific to semigroups of functions. £r-
Multisemigroups thus generalise function systems and modal semigroups beyond
totality. See [5] for a discussion of related structures studied in semigroups theory
and applications.

5 ¥{r-Locality in Context

Next we return to locality, the specific difference between object-free categories
and partial r-semigroups according to Section [2}

Lemma 11. In any local ¢r-multisemigroup, the following laws hold:

1. U(zy) = L(xl(y)) and r(zy) = r(r(x)y) (equational locality),
2. L(zy)x = 2l(y) and yr(xy) =r(z)y (twisted).

Once again, all proofs have been done with Isabelle. In fact, ¢r-locality, the
composition pattern of categories, is an equational property. We henceforth refer
to equational locality simply as locality.

Proposition 12. An fr-multisemigroup is fr-local if and only if

U(zl(y)) < L(zy) and  r(r(z)y) C r(ry).

Proof. Isabelle confirms that the equational locality laws imply #r-locality in any
fr-multimagma. Equality in £r-multisemigroups follows from Lemma ad

Locality and weak locality are known from (pre)domain and (pre)codomain
operations for modal semirings [6]. Predomain and precodomain operations are
weakly local, domain and codomain are local. Relative to ¢r-multisemigroups,
these laws are at powerset level. Modal semirings are meant to model semirings
of binary relations. These in turn are based on pair groupoids, as we shall see.
Equational locality and the equivalent variant

zy # 0 r(z) = y)

of ¢r-locality thus describe the origin of locality in categories and more generally
fr-multisemigroups. The precise relationship to modal semirings and quantales
is explained in the following sections.

Our final lemma on ¢r-multisemigroups yields a more fine-grained view on
definedness conditions and ¢r-locality.
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Lemma 13.

1. In any fr-multimagma,
r(z) = L(y) < r(x)l(y) #0 and r(z)l(y) =0 = zy = 0.
2. In any local r-multisemigroup, xy = 0 < r(x)l(y) = 0.

A property analogous to Lemma [13]2) is well known from modal semirings [6].
An analogue to ¢r-locality fails already in the one-element modal semiring.

6 Modal Quantales

We have already extended ® : X x X — PX to PX x PX — PX and the
functions £,7 : X — X to PX — PX by taking images. We wish to explore the
algebraic structure of such powerset liftings over ¢r-multimagmas and related
structures. Powerset liftings of relational monoids, and therefore those of /r-
multisemigroups, yield unital quantales [8,26]. But the precise lifting of source
and target operations remains to be explored. This requires some preparation.

A quantale |25] (Q, <,-,1) is a complete lattice (@, <) with a monoidal com-
position - with unit 1 that preserves all sups in both arguments. A quantale is
boolean if its lattice reduct is a complete boolean algebra—a complete lattice
and a boolean algebra. Some applications require weaker notions. A prequantale
is a quantale where the associativity law is absent [25].

We write \/ for the sup and A for the inf operator, and Vv, A for their binary
variants. We also write L = AQ = \/ 0 for the least and T = \VQ = A0
for the greatest element of @), and — for boolean complementation (both unary
and binary) if @ is boolean. We write @1 = {a € @Q | a < 1} for the set of
subidentities of . In a boolean quantale, ()1 is a complete boolean subalgebra
with complementation Az. 1 — x and composition coinciding with meet [11].

We lift the source and target operations of ¢r-multisemigroups to domain
and codomain operations at powerset level. Modal quantales of relations, which
are formally lifted from pair groupoids below, provide some intuition:

dom(R) = {(a,a) | 3b. (a,b) € R}, cod(R) = {(b,b) | Ja. (a,b) € R}

and hence dom(R) = £(R) and cod(R) = r(R).
More generally, a domain quantale [11] is a quantale (@, <,-,1) equipped
with a domain operation dom : Q — @ that satisfies, for all o, 8 € @,

a < dom(a) - a, dom (o - dom(B)) = dom(a - B), dom(a) < 1,
dom(L) =1, dom(a V ) = dom(a) V dom().

We call these equations the absorption, locality, subidentity, strictness and (bi-
nary) sup-preservation axiom, respectively. Absorption can be strengthened to
dom(a)a = a.. These domain axioms are precisely those of domain semirings [7].
Domain quantales are thus quantales that are also domain semirings. Properties
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of domain semirings therefore translate [11[12]. Interestingly, domain axioms for
\/ are not needed in domain quantales [11] because dom preserves arbitrary sups.
The interaction of dom with /\ is weaker and not our concern.

Much of the structure of the domain algebra induced by dom is inherited from
domain semirings as well. In particular, Qgom = {z | dom(z) = z} = dom(Q),
and it follows that the domain algebra (Q 4om,<,,1) is a subquantale of @) that
forms a bounded distributive lattice with - as binary inf [7]. The elements of
Q qom are called domain elements of Q). Yet, by contrast to modal semirings, the
lattice Q gom is complete [11], and if @ is boolean, then @ 4om = @1 is a complete
boolean algebra. For powerset quantales, this complete boolean algebra is atomic.

Quantales are closed under opposition: interchanging the order of composi-
tion in @ yields the quantale Q°P; properties translate under this duality. The
dual of dom on a domain quantale is of course a codomain operation cod.

A codomain quantale (Q, cod) is thus simply a domain quantale (Q°P, dom).
It satisfies the dual domain axioms. A modal quantale is a domain and codomain
quantale (Q, <,-, 1, dom, cod) that satisfies the compatibility axioms

dom o cod = cod and cod o dom = dom.

These force Qgom = Qcod-
Some ¢r-structures of interest fail to yield associativity or locality laws when
lifted. This requires more general notions.

— A modal prequantale is a prequantale in which the locality axioms for dom
and cod are replaced by the export axiom dom(dom(a)f) = dom(c)dom(S)
and its dual for cod. Then Qgom = dom(Q) = cod(Q) = Qcoq is still a
complete distributive lattice, but locality laws for dom and cod are not even
derivable as inequalities.

— A weakly local modal quantale is a modal quantale that satisfies the previous
axioms for dom and cod. The weak locality law dom(af) < dom(adom(f))
and its dual for cod are now derivable, but not the equational laws.

7 Constructing Modal Powerset Quantales

We now construct modal powerset quantales from ¢r-multisemigroups in the
spirit of modal correspondence theory for boolean algebras with operators. First
we recall the quantalic part.

Proposition 14. Let (X,©,¢,r) be an ¢r-multisemigroup. Then (PX,C, 0, E)
forms a boolean quantale whose underlying lattice is boolean atomic.

Proof. If (X,®,¢,r) is an ¢r-multisemigroup, then it is isomorphic to a multi-
monoid and further to a relational monoid, and its powerset algebra forms a
quantale [8[26]. The complete lattice on PX is trivially boolean atomic. O

Similarly, ¢r-multimagmas lift to prequantales.
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Ezample 15 (Powerset Quantales over €r-Semigroups). The powerset lifting of
any category yields a powerset quantale. It is boolean and has the arrows of the
category as atoms. The pair groupoid on set X lifts to the quantale of binary
relations over X. Its elements are possibly infinite-dimensional boolean-valued
square matrices in which the quantalic composition is matrix multiplication. O

The fact that groupoids can be lifted to algebras of binary relations with an
additional operation of converse was known to Jénsson and Tarski [20].

Proposition [I4] combines source and target elements into the unit E of the
powerset quantale. The lifting to modal quantales is more refined. In the follow-
ing theorems, we identify dom(A) with £(A) and cod(A) with r(A4) for A C X.
We develop our main theorem step-by-step from £r-multimagmas.

Lemma 16. Let X be an fr-multimagma. For A, B C X and A CPX,

1. L(r(A)) =r(A) and r(£(A)) = L(A) (compatlibility),

2. L(A)- A=A and A-r(A) = A (absorption),

8. L (UA) =Uncat(A) and r ((UA) = Usear(A) (sup-preservation),
4. f(A)g(B) = g(B)f(A) hold for f,g € {{,r} (commutativity),

5. U(A) C Xy and r(A) C X, (subidentity),

6. L(L(A)- B) =L(A)(B) and r(A-r(B)) = r(A)r(B) (export).

Proof. We show proofs up-to duality.

1. (r(A)) = {l(r(x)) |z € A} = {r(x) | x € A} =r(A).

: (A = | J{l(@)y | 2,y € A and (z)y + 0}
= Jl@)y | 2,y € A, £(z)y # 0 and r(£(z)) = L(y)}
=Jlt@)y | z.y € A, t(z)y # 0 and ((z) = ((y)}
=ty |y € A}

=UJlu} lyeay=A
3. L(UA) = {l(z) |[r e UA} =U{l(A) | A€ A}

4. We only prove the identity for £(A)r(B). The others then follow from (1).

B:U{Zxry|x€Aandy€B}
_U{r l(z)|x€ Aand y € B}
=r(B){(A).

5. (A) = {l(z) |z € A} C {(z) |z € X} = {a | £(z) = 2} = E.
6.
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(({(A)B) = U{é lz)y) |z € A, y € Band l(x)y # 0}
= U{é |z €A, ye B, l(x)y#0and r(¢(z)) = £(y)}

)y)

z)l(y)

= J{t@)t(y) | = € A,y € B, £(x)y # 0 and ((z) = £(y)}
()
()

(
()
()¢
(z)
()

~

—U{é |z € A ye Band {(y)y # 0}
—U{€x£y|x€Aandy€B}
= ((A)¢(B). O

x)l(y

The proof has also been checked with Isabelle. And now for locality.
Lemma 17. Let X be an Cr-multisemigroup and A, B C X. Then
((AB) C U(AL(B)) and r(AB) C r(r(A)B).
The converse inclusions of these weak locality laws hold if X is local.

Proof. The inclusions hold in any quantale that satisfies the laws of Lemma [T6]
For the opposite direction, suppose that X is a local ¢r-multisemigroup. Then,
writing r(z) = £(y) in place of x ® y # () owing to locality,

)) = J{lat(y)) | = € A, y € B and r(z) = £(¢(y))}
= U{Z(xy) |z € A, ye Bandr(x)={y)} =¢(AB)
and the opposite result for r is obvious. a
The proofs have again been checked with Isabelle. We can now summarise.

Theorem 18. Let X be an {r-multimagma.

1. Then (PX,C,®, E, dom, cod) is a boolean modal prequantale, and the com-
plete boolean algebra is atomic.

2. It is a weakly local modal quantale if X is an €r-multisemigroup.

8. It is a modal quantale if X is a local fr-multisemigroup.

This result highlights the role of weak locality and locality in the three stages
of lifting. Its construction follows one direction of Jénsson-Tarski duality between
relational structures and boolean algebras with operators [13|[19], which it refines.
Like in modal logic, it leads to correspondences between identities in relational
structures and boolean algebras with operators. Those lifted in Lemma [16] and
are one direction of these. Their converses are explored in Section [§

Ezample 19 (Modal Powerset Quantales over £r-Semigroups).

1. Any category as a local partial £r-semigroup can be lifted to a modal power-
set quantale. The domain algebra is the entire boolean subalgebra of subiden-
tities of the quantale, the set of all objects of the category (or its identity
arrows). A modal quantale can thus be obtained from any category.



{r-Multisemigroups, Modal Quantales and the Origin of Locality 11

2. An instance is the modal powerset quantale of binary relations over X lifted
from the pair groupoid on X. Domain and codomain elements are precisely
the subidentity relations below Id x. In the associated matrix algebras, these
correspond to (boolean-valued) sub-diagonal matrices (which may have zeros
along the diagonal) and further to predicates.

3. Recall that the partial ¢r-semigroup of the broken monoid is only weakly
local. The powerset quantale is only weakly local, too. To check this, we sim-
ply replay the non-locality proof for the partial ¢r-semigroup with A = {a}:
dom(AA) = dom(0) = 0 C {1} = dom(A{1}) = dom(Adom(A)). Locality of
codomain is ruled out by duality. a

Most models of domain and modal semirings considered in the literature are
powerset structures lifted from categories. Theorem yields a uniform con-
struction recipe for all of them. The final example of this section shows that the
twisted laws for function systems do not lift to powersets.

Ezample 20. The category 1 % 2 is a partial local ¢r-semigroup with X =
{1,a,2}, ¢ and r defined by ¢(1) = r(1) =1 = £(a) and £(2) = r(2) = 2 = r(a)
and composition 11 = 1, la = a = a2 and 22 = 2. Then, for A = {1,a} and
B={2}, A-dom(B)=A-B={a} C A={1}-A=dom(A- B)- A refutes the
twisted law in PX. The opposite law for cod is refuted by a dual example. 0O

8 Recovering £r-Multisemigroups

We know from Joénsson-Tarski duality that one can find an ¢r-multisemigroup
within each modal powerset quantale, using its atom structure. Here we prove
correspondence results in this direction. These strengthen the relationship be-
tween locality in modal quantales and #r-multisemigroups further. Parts of these
results are special cases of more general theorems for convolution algebras [3/[12].

Proposition 21.

1. If PX is a prequantale in which O # E, then X is an £r-multimagma.
2. If PX is a quantale in which () # E, then X is an Lr-multisemigroup.

Proof. The results are known for unital relational magmas and relational monoids
[3, Proposition 4.1 and Corollary 4.7]. They thus hold for #r-multimagmas and
multisemigroups via the isomorphisms. a

The #r-semigroup X is thus completely determined by the subidentites below
FE in PX. We calculate the absorption law for ¢ explicitly as an example:

U(z) ©x = {l(x)} © {z} = dom({z}) © {z} = {x},

where the second step uses domain absorption in modal quantales. The fact
that dom appears in the calculation does not go beyond Proposition [21| because
dom({z}) = {¢(x)} C E in PX.

The next statement adds locality to the picture.
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Theorem 22. If PX is a modal quantale in which ) # E, then X is a local
Cr-multisemigroup.

Proof. Relative to Proposition [21]it remains to consider locality:

U(z © Uy)) = dom({z}) © dom({y}) = dom({z} © {y}) = L(z O y).
Locality of r follows by duality. ad

In light of Jonsson-Tarski duality, these results extend to atomic boolean
quantales. With the lifting results from Section [7] they yield in particular a cor-
respondence between locality in /r-multisemigroups and modal powerset quan-
tales. To construct such a quantale one should therefore look for the underlying
fr-multisemigroup, and often, more specifically, the underlying category.

9 Further Examples

We apply our construction to further examples of /r-multisemigroups and modal
convolution quantales. We start with those based on categories.

Path quantales. A quiver (or digraph) K is formed by a set Vi of vertices, a set
Ek of edges and source/target maps s,t : Ex — V. The path category of K has
vertices as objects and sequences m = (v1,€1,V2, ..., VUp—1,€n—1,Vp) : U1 — Uy, 88
arrows in which vertices and edges alternate. Composition 7y - 7 of 71 : v3 — vy
and w9 : v1 — vy is defined if vo = ws. It concatenates the two paths while
gluing the common end vy = v3. Sequences (v) of length 0 are identities. Path
categories are local partial ¢r-semigroups, with ¢(7) = (v1) and r(7) = (v,) for
7 as above. Theorem [I§ shows that the powerset algebra over the path category
of any quiver is a modal quantale—a modal quantale of path languages.

The path category generated by the one-point quiver with n arrows repre-
sents the free monoid with n generators. The ¢r-structure and hence the modal
structure is then trivial. Lifting along Theorem [I8]yields the quantale of formal
languages. Path categories are relevant to computing: they capture execution
sequences of programs, automata or transition systems.

Interval quantales. Pair groupoids over X become poset categories in which
pairs represent (closed) segments or intervals when the universal relations used
for pair groupoids are generalised to partially or totally ordered relations. Seg-
ments or intervals can be composed like the elements of the pair groupoid; the
units are the singleton intervals. Modal powerset quantales over such categories
yield algebraic semantics for interval logics [17] and interval temporal logics [24]
via the isomorphism between sets and predicates [8]. The modalities lifted from
source and target maps express properties of endpoints of segments and intervals.

Pomset quantales. Finite posets form partial £r-multisemigroups with respect
to serial composition, which is the disjoint union of posets with all elements of
the first poset preceding that of the second one in the order of the composition.
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The only unit is the empty poset, the algebra is therefore non-local and the
modal structure of the powerset quantale trivial.

Partial words [14] or pomsets are isomorphism classes of finite node-labelled
posets. The serial composition becomes total on pomsets, which yields a monoid
and establishes locality. Pomsets and pomset languages, obtained by powerset
lifting, form a standard model of concurrency.

Pomsets can be equipped with interfaces [29]. The source interface of a pom-
set consists of its minimal elements (with their labels); its target interface of its
maximal elements (again with their labels). Pomsets with interfaces form partial
fr-semigroups with ¢ and r mapping pomsets to their source and target inter-
faces, and composition defined by gluing pomsets on their interfaces whenever
they match and extending the order as in serial composition. The partial fr-
semigroups are local and therefore categories. The modal structure at powerset
level is no longer trivial.

Path quantales in topology. A path in a topological space X is a continuous
map f:[0,1] — X. The source of path f is £(f) = f(0), its target »(f) = f(1).
Paths f and g in X can be composed whenever r(f) = £(g), and then

f(2z) fo<z

(F-9)(x) = {g(2x -1) ifl<a

The parameterisation destroys associativity; (X[, . ¢,7) is therefore only a

local partial r-magma. The powerset lifting to P(X 0 1]) satisfies the properties
of Lemma but even weak locality fails due to the absence of associativity in
X101 and, accordingly, P(X 1), This leads to modal prequantales.

Yet path composition is associative up-to homotopy. The associated local
partial fr-semigroup then lifts to a modal quantale like any other category. Al-
ternatively, categories of paths can be defined on intervals of arbitrary length [1].

Higher path algebras. A 2-polygraph is a quiver X = (30,%p : X1 — Xo),
whose edges (or 1-cells) are equipped with a cellular extension. This consists of
a quiver (51,t1 : I' — X*), where X* is the free category generated by X and
I' is a set of globular 2-cells relating parallel 1-cells. A 2-polygraph generates a
2-category pictured in the following diagram:

\\T

Here, s;,t; are the source and target maps induced by the free category con-
struction, and the globular equations sgt1 = sps1 and tot; = tgs; hold, see [16]
for details. In the example of abstract rewriting systems, Y is a carrier set, X
a set of generating rewrite rules, I' a set of relations between these rules.

For i € {0,1}, the set I'* of freely generated 2-cells forms a local partial
fr-semigroup (I'™*, ®;,4;, 1), where ®; is forward i-composition of 2-cells and

273
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l; =84, 7; =t;. By Theorem (PI™*,C,®;, E;, dom;, cod;) is a modal quantale
with By = {11, | # € o} and By = {1, | u € X1 }. Beyond Theorem [18] we get a
globular 2-quantale [2] when combining the two structures. For all A, A’, B, B’ €
PI'*, a lax interchange law (A ®1 B) ©®¢ (A’ ®1 B') C (A©p A") ®1 (B ®o B’)
holds, and also E; ®¢ F1 = E;1. The absorption laws dom, o domg = domg and
cody o cody = cody hold as well. Finally, we recover the globularity conditions that
domg o cody = domg, that cody o domy = cody and that dom; as well as cod; are
morphisms for ®g. This construction generalises to n-polygraphs and globular
n-quantales |2]. Applications include higher dimensional algebraic rewriting [16].

A-sets. A presimplicial set [27] K is a sequence of sets (K )n>0, called sim-
plices, equipped with face maps d; ,, : K, = Kp—1, 1 € {0,...,n}, satisfying the
simplicial identities d; ,—1 0 dj,, = dj—_1,n—1 © dip, for all i < j < n (we omit the
extra indices n from now). The set K = | |, -, K, forms an ¢r-multisemigroup
(K,®,¢,r) with

TEYOz & Fy=si(zx) Nz ="1,_i(x)

and f(z) = so(x), r(x) = to(x), where s;(z) = (dj41 0 diy2 0+ ody,)(z) and
ti(x) = (dyodyo---0d,_;—1)(x) stand for the initial and the final i—face of
x € K, respectively. In general, (K, ®, ¢, r) is neither local nor partial. Locality
and partiality hold if K is the nerve of a category (we omit degeneracies).

Also, the set of triples (s;(x),z,t;(x)) (x € K,, 0 <1i,j < n), called simplices
with interfaces, forms an £r-multisemigroup Int(K) with

(sp(2), 2, t4(7)) € (5:(y), ¥, t5(y) © (sk(2), 2, t1(2))
& sp(x) = si(y) At (y) = su(2) Atg(x) = t(2) ANy = su(T) A2 = tp—uyj(2),

for x € K, y € Ky, 2 € Kj_y4j. There is an obvious embedding K > z —
(so(x),x,to(x)) € Int(K) of ¢r-multisemigroups. Hence Int(K) is again neither
partial nor local in general.

Precubical sets. A precubical set X [15] is a sequence of sets (X, ), >0 equipped
with face maps d5 : X,, = X,,—1, 1 <1i < n, e € {0,1}, satisfying the identities
di od] = dj jod; fori < jand ¢,n € {0,1}. Denote d3 = d; o---odg,
for A= {a1 < --- < ag} C [n] and € € {0,1}. The precubical set X forms an
£r-semigroup (X, ®, ¢, r) with

r€y®z < JAC [n]. y=d%(z) /\zzd[ln]\A(x),

U(z) = dp, (z) € Xo, r(z) = dj, € Xy for all z € X,,. Like the previous
example, tﬂle Lr- multlsemlgroup is nelther partial nor local.

A special case of this example is the shuffle multimonoid (Example @ Let
2 be a finite alphabet, X,, the set of all words of length n, and d; : X,, = X,,_1
the map that removes the i—th letter. Then X = (X, d5) is a precubical set and
the associated ¢r-multisemigroup (X, ®,¢,r) is the shuffle multimonoid on X.
The domain/codomain structure of the quantale of shuffle languages is trivial,
as there is no element between () and the set containing the empty word.
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Assertions quantales of separation logic. The non-local partial ¢r-semi-
groups of heaplets lift to weakly local modal powerset quantales, but once again
with trivial domain/codomain structure. The set {¢} containing the empty heap-
let is the only unit. These form the assertion quantales of separation logic. The
modal structure is again trivial as there is no element between () and {e}.

10 Discussion

We summarise some additional results and generalisations in this section. See
[12] for details.

Extension to convolution algebras. The powerset lifting in Section [7] can
be seen as a lifting to function spaces X — 2 and generalised to X — @ for
an arbitrary (modal) quantale Q. The composition ® : 2% x 2X — 2% then
generalises to a convolution * : QX — QX — QX with \/ and - taken in Q:

(fx9)@) =\ f)-g(2).

reEYO2

Theorem also generalises: if X is a local ¢r-multisemigroup and @ a modal
quantale, then Q¥ is a modal quantale with

Dom(f) = \/ dom(f(x)) - dp(),

zeX

where 0,(y) is 1 if = y and L otherwise, and Cod given by duality. The
monoidal identity in Q, idg(x) is 1 if # € E and L otherwise. Beyond lifting,
there is now a triangle of correspondences between identities in X, Q and Q.
The results in this text thus generalise to modal quantales of weighted languages
or weighted relations, and towards group, incidence or category algebras.

Finite decomposability. Some ¢r-multisemigroups in our examples are finitely
decomposable: for every z the fiber ©® 1 (z) = {(y,2) | * € y® 2} is finite. Exam-
ples are shuffle quantales, where each word can only be decomposed into finitely
many pairs of words, or quantales of n X m-matrices, where multiplications sum
over finitely many indices. The sups in convolutions can then be replaced by
sums and quantales by semirings. In modal settings, one can then use modal
semirings |7] and, if X is a finitely decomposable local ¢r-multisemigroup and S
a modal semiring, then SX forms again a modal semiring.

Modal concurrent quantales. Concurrent semirings and quantales [18] can
be constructed as convolution algebras from concurrent relational semigroups [3],
hence from concurrent local ¢r-multisemigroups equipped with two multiopera-
tions that satisfy a weak interchange law. In combination with the corresponding
results for modal structures we can construct modal concurrent semirings and
quantales as convolution algebras. Target models are categories of pomsets with
interfaces, with applications in concurrency theory [10,29], and n-polygraphs [2].
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Algebras of modalities. The domain and codomain operations in convolution
algebras support definitions of modal box and diamond operators along the lines
of modal semirings |7] as | f)m = Dom(f * ), where f € Q% and 7 € (QX) pom,
and dually (f|m = Cod(m * f). In modal quantales, diamonds preserve arbitrary
sups and box operators exist as right adjoints, even if (QX ) Dom is N0t a boolean
algebra. For box and diamond modalities, locality in ¢r-multisemigroups is cru-
cial. Without it, the action laws |f x g) = |f) o |g), {f *x g| = (g] o (f] and their
analogues for boxes would not exist. Our results thus lead to uniform construc-
tion principles for dynamic algebras and predicate transformer algebras based
on more general semantics than Kripke frames, including arbitrary categories,
and weighted variants.

11 Conclusion

We have introduced ¢r-multisemigroups, related them with categories, and shown
how their source and target operations give rise to the domain and codomain
operations studied previously in the contexts of function systems, modal semi-
groups, modal semirings and modal quantales. In particular, we have explained
how the typical composition pattern of categories corresponds to the well-known
locality axioms that appear in such modal algebras. This analysis is based on
a generic lifting construction from ¢r-multisemigroups to modal quantales and
the modal correspondences to which it leads. It captures most known models
of computational interest of modal semirings and quantales, and explains how
additional models for them could be built, including modal-concurrent ones.
For every local #r-multisemigroup we find, we get a dual modal quantale for
free. The approach extends to modal convolution algebras that seem relevant
to quantitative verification, but this requires concepts and proofs beyond these
pages [12].
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