Posets with Interfaces as a Model for Concurrency

Uli Fahrenberg

EPITA Rennes, France

68nqrt, 16 November 2021

- Christian Johansen, Gjøvik, Norway
- Georg Struth, Sheffield, UK
- Krzysztof Ziemiański, Warsaw, Poland
- Cameron Calk, Paris, France
- James Cranch, Sheffield, UK
- Eric Goubault, Paris, France

 \leftarrow

→ C 🔿 A https://ulifahrenberg.github.io/poms 🎕 ★ 👱 🔍 Search

The (i)Po(m)set Project

> What	What
> Who	The (I)Po(m)set Project is a research project at the crossroads of concurrency theory, algebra, and geometry. It aims to understand the basics of concurrency theory and develop its foundations.
> When	
> How	Who
> What	Members:
> Contact	 Uli Fahrenberg, EPITA Rennes, France Christian Johansen, Norwegian University of Science and Technology, Gjøvik, Norway Georg Struth, University of Sheffield, UK Krzysztof Ziemiański, University of Warsaw, Poland
	Associates:
	 Cameron Calk, École polytechnique, Paris, France James Cranch, University of Sheffield, UK Eric Goubault, École polytechnique, Paris, France

 \gg

B

Former members or associates:

- Julia code related to [6]
- Inosets and gp-inosets on up to 8 points, and forbidden substructures on up to 10 points.

HDA	lposets	Higher-Dimensional Timed Automata	Conclusion
0000000			
Higher dimon	cional automat		

Higher-dimensional automata

HDA	lposets	Higher-Dimensional Timed Automata	Conclusion
●0000000	00000000		O
TP I P	1		

HDA	Iposets	Higher-Dimensional Timed Automata	Conclusion
●0000000	00000000		0
	متعامد المسام		

Higher-dimensional automata

Higher-dimensional automata & concurrency

HDA as a model for concurrency:

- points: states
- edges: transitions
- squares, cubes etc.: independency relations (concurrently executing events)
- two-dimensional automata \cong asynchronous transition systems [Bednarczyk 1987, PhD]

[van Glabbeek 2006, TCS]: Up to history-preserving bisimilarity, HDA "generalize the main models of concurrency proposed in the literature"

HDA	lposets	Higher-Dimensional Timed Automata	Conclusion
00●00000	00000000	0000000	O
Another exam	nple		

• no cubes, all faces except middle horizontal

• a and b independent; c introduces conflict; d releases conflict

HDA 0000000	lposets 000000000	Higher-Dimensional Timed Automata	Conclusion O
Languages	s of HDA		
b			
b			
b			

HDA	lposets	Higher-Dimensional Timed Automata	Conclusion
0000000	00000000	0000000	O

Lan ъ

Languages of	HDA		
HDA	Iposets	Higher-Dimensional Timed Automata	Conclusion
000●0000	00000000		O

$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$L_3 = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \dots \right\}$$

Uli Fahrenberg

HDA	lposets	Higher-Dimensional Timed Automata	Conclusion
0000000	00000000		0

Languages of HDA

 $L_1 = \{ \textit{abc}, \textit{acb}, \textit{bac}, \textit{bca}, \textit{cab}, \textit{cba} \}$

$$L_{2} = \left\{ \begin{pmatrix} a \\ b \to c \end{pmatrix}, \begin{pmatrix} a \\ c \to b \end{pmatrix}, \begin{pmatrix} b \\ a \to c \end{pmatrix}, \begin{pmatrix} c \\ b \to a \end{pmatrix}, \begin{pmatrix} c \\ b \to a \end{pmatrix}, \begin{pmatrix} c \\ b \to a \end{pmatrix}, \dots \right\}$$

$$L_3 = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \dots \right\}$$

Uli Fahrenberg

HDA	lposets	Higher-Dimensional Timed Automata	Conclusion
0000000	00000000		0

Languages of HDA

 $L_1 = \{abc, acb, bac, bca, cab, cba\}$

а

- A (finite) pomset ("partially ordered multiset") (P, \leq, ℓ) :
 - a finite partially ordered set (P, \leq)
 - with labeling $\ell: P \to \Sigma$
 - (AKA labeled partial order)
 - (up to isomorphism: don't care about identity of points)
 - [Winkowski 1977, IPL], [Lamport 1978, CACM], etc.

HDA	lposets	Higher-Dimensional Timed Automata	Conclusion
00000●00	00000000	0000000	0
Example			

 $\begin{pmatrix} a \rightarrow b \\ c \rightarrow d \end{pmatrix}$

• an N-shaped pomset, which is not series-parallel

Are all pomsets generated by HDA?

No, only (labeled) interval orders

HDA

- Poset (P, \leq) is an interval order iff it does not contain $\begin{pmatrix} \bigcirc \longrightarrow \bigcirc \\ \bigcirc \longrightarrow \bigcirc \end{pmatrix}$
 - (iff it is "2+2-free")
- iff it has an interval representation:
 - a set $I = \{[l_i, r_i]\}$ of real intervals
 - with order $[I_i, r_i] \preceq [I_i, r_i]$ iff $r_i \leq I_i$
 - and an order isomorphism $(P, \leq) \leftrightarrow (I, \preceq)$
- [Fishburn 1970, J. Math. Psych.]

Are all pomsets generated by HDA?

No, only (labeled) interval orders

- Poset (P, \leq) is an interval order iff it does not contain $\begin{pmatrix} \bigcirc \longrightarrow \bigcirc \\ \bigcirc \longrightarrow \bigcirc \end{pmatrix}$
 - (iff it is "2+2-free")
- iff it has an interval representation:
 - a set $I = \{[I_i, r_i]\}$ of real intervals
 - with order $[I_i, r_i] \leq [I_j, r_j]$ iff $r_i \leq I_j$
 - and an order isomorphism $(P, \leq) \leftrightarrow (I, \preceq)$

HDA 00000000	lposets 00000000	Higher-Dimensional Timed Automata	Conclusion O
Concatenatio	n of HDA		
ç → a	o o →o a a	$\begin{pmatrix} a \\ b \end{pmatrix}$	$\begin{pmatrix} a \\ c \end{pmatrix}$

С

b

Two possible compositions:

HDA 0000000●	lposets 00000000	Higher-Dimensional Timed Automata	Conclusion O
Concatenatio	on of HDA		
a b	a c c	$\begin{pmatrix} a \\ b \end{pmatrix}$	$\begin{pmatrix} a \\ c \end{pmatrix}$
Two possible c	ompositions:		

<u> </u>			
0000000			
HDA	Iposets	Higher-Dimensional Timed Automata	Conclusion

Concatenation of HDA

 $\begin{pmatrix} a \\ b \end{pmatrix} \qquad \begin{pmatrix} a \\ c \end{pmatrix}$

Two possible compositions:

- not clear whether the two a are the same event
- idea: let the objects specify how they may be composed
- \Rightarrow pomsets with interfaces

HDA	Iposets	Higher-Dimensional Timed Automata	Conclusion
	00000000		

Languages of Higher-dimensional automata

2 Posets with interfaces

Higher-Dimensional Timed Automata

- a poset: finite set P plus partial order ≤: reflexive, transitive, antisymmetric
- parallel composition of posets (P_1, \leq_1) , (P_2, \leq_2) :

$$P_1 \otimes P_2 = (P_1 \sqcup P_2, \leq_1 \cup \leq_2)$$
$$\uparrow\uparrow \text{ disjoint union}$$

• serial composition:

$$P_1 * P_2 = (P_1 \sqcup P_2, \leq_1 \cup \leq_2 \cup P_1 \times P_2)$$

$$\uparrow P_1 \text{ before } P_2$$

- a poset: finite set P plus partial order ≤: reflexive, transitive, antisymmetric
- parallel composition of posets (P_1, \leq_1) , (P_2, \leq_2) :

$$P_1 \otimes P_2 = (P_1 \sqcup P_2, \leq_1 \cup \leq_2)$$

serial composition:

$$P_1 * P_2 = (P_1 \sqcup P_2, \leq_1 \cup \leq_2 \cup P_1 \times P_2)$$

HDA Iposets		Higher-Dimensional Timed Automata	Conclusion
00000000 00000000		0000000	O
с · р			

Series-Parallel Posets

Definition (Winkowski '77, Grabowski '81)

A poset is series-parallel (sp) if it is empty or can be obtained from the singleton poset by a finite number of serial and parallel compositions.

Theorem (Grabowski '81)

A poset is sp iff it does not contain N as an induced subposet.

The equational theory of sp-posets is well-understood: [Gischer 1988, TCS], [Bloom-Esik 1996, MSCS]

- interval orders are used in Petri net theory and distributed computing
- but have no algebraic representation (so far)
- sp-posets are used in concurrency theory & have nice algebraic theory
- Concurrent Kleene algebra
- int. orders are 2+2-free; sp-posets are N-free
- incomparable: 2+2 is sp; **N** is interval
- \Rightarrow [F.-Johansen-Struth-Thapa 2020, RAMiCS]

- $([n] = \{1, \ldots, n\})$
- s: starting interface ; t: terminating interface
- events in t[m] are unfinished ; events in s[n] are "unstarted"

HDA	lposets	Higher-Dimensional Timed Automata	Conclusion
00000000	00000●000	0000000	O
Gluing compo	osition		

Definition

The gluing composition of iposets $s_1 : [n] \to (P_1, \leq_1) \leftarrow [m] : t_1$ and $s_2 : [m] \to (P_2, \leq_2) \leftarrow [k] : t_2$:

$$P_1 * P_2 = \begin{cases} (P_1 \sqcup P_2)/t_1(i) = s_2(i) \\ \leq_1 \cup \leq_2 \cup (P_1 \setminus t_1[m]) \times (P_2 \setminus s_2[m]) \end{cases}$$

only defined if terminating int. of P₁ is equal to starting int. of P₂
iposets form category (with gluing as composition)

Uli Fahrenberg

HDA	lposets	Higher-Dimensional Timed Automata	Conclusion
00000000	00000●000	0000000	O
Gluing compo	osition		

Definition

The gluing composition of iposets $s_1 : [n] \to (P_1, \leq_1) \leftarrow [m] : t_1$ and $s_2 : [m] \to (P_2, \leq_2) \leftarrow [k] : t_2$:

$$P_1 * P_2 = \begin{cases} (P_1 \sqcup P_2)/t_1(i) = s_2(i) \\ \leq_1 \cup \leq_2 \cup (P_1 \setminus t_1[m]) \times (P_2 \setminus s_2[m]) \end{cases}$$

only defined if terminating int. of P₁ is equal to starting int. of P₂
iposets form category (with gluing as composition)

Uli Fahrenberg

HDA	lposets	Higher-Dimensional Timed Automata	Conclusion
00000000	000000€00		O
Gluing-Pa	rallel Iposets		

 \bullet recall sp-posets: freely generated from $\ \bigcirc$ using * and \otimes

1

• the four singleton iposets:

4 1

• gp-iposets: generated from \bigcirc , 1) , (1 , 1) using * and \otimes

Fact

Gp-iposets are not freely generated, for example:

$$\begin{pmatrix} \P^{1} \\ P \end{pmatrix} * \begin{pmatrix} 1 \\ Q \end{pmatrix} = \begin{pmatrix} \bigcirc \\ P * Q \end{pmatrix} \qquad \begin{pmatrix} \P^{1} \\ P \end{pmatrix} * \begin{pmatrix} 1 \\ M \end{pmatrix} = \begin{pmatrix} \P^{1} \\ P * Q \end{pmatrix}$$
$$\begin{pmatrix} 1 \\ P * Q \end{pmatrix} = \begin{pmatrix} 1 \\ P * Q \end{pmatrix} \qquad \begin{pmatrix} 1 \\ P * Q \end{pmatrix} = \begin{pmatrix} 1 \\ P * Q \end{pmatrix}$$

HDA	lposets	Higher-Dimensional Timed Automata	Conclusion
00000000	0000000●0	0000000	O
Forbidden	substructures		

- sp-posets $\hat{=}$ **N**-free
- interval orders $\hat{=}$ 2+2-free
- gluing-parallel posets \Rightarrow free of

HDA	lposets	Higher-Dimensional Timed Automata	Conclusion
00000000	0000000●0	0000000	O
Forbidden s	substructures		

- sp-posets $\hat{=}$ **N**-free
- interval orders $\hat{=}$ 2+2-free
- gluing-parallel posets \Rightarrow free of

HDA	lposets	Higher-Dimensional Timed Automata	Conclusion
00000000	0000000●0		O
Forbidden si	ubstructures		

- sp-posets $\hat{=}$ **N**-free
- interval orders $\hat{=}$ 2+2-free
- gluing-parallel posets \Rightarrow free of

00000000	00000000	0000000	0
HDA	Iposets	Higher-Dimensional Timed Automata	Conclusion

Some numbers

п	P(<i>n</i>)	SP(n)	IO(n)	GP(<i>n</i>)	IP(n)	GPI(n)
0	1	1	1	1	1	1
1	1	1	1	1	4	4
2	2	2	2	2	17	16
3	5	5	5	5	86	74
4	16	15	15	16	532	419
5	63	48	53	63	4068	2980
6	318	167	217	313	38.933	26.566
7	2045	602	1014	1903	474.822	289.279
8	16.999	2256	5335	13.943	7.558.620	3.726.311
9	183.231	8660	31.240	120.442		
10	2.567.284	33.958	201.608	1.206.459		
11	46.749.427	135.292	1.422.074			
EIS	112	3430	22493	345673	331158	331159

Languages of Higher-dimensional automata

2 Posets with interfaces

Higher-Dimensional Timed Automata

Higher-Dimensional Timed Automata

Definition

A HDTA is a structure $(L, I^0, L^f, \lambda, C, \text{inv}, \text{exit})$, where (L, I^0, L^f, λ) is a finite HDA, C is a finite set of clocks, and inv : $L \to \Phi(C)$, exit : $L \to 2^C$ give invariant and exit conditions for each *n*-cube.

Intuition:

- inv(1): conditions on the clock values while delaying in 1
- exit(*I*): clocks to be reset to 0 when leaving *I*.

$$y \ge 1; x \leftarrow 0 \qquad x \le 4 \land y \ge 1$$

$$y \le 3; x \leftarrow 0 \qquad b \qquad x \le 4 \land y \le 3 \qquad b \qquad x \ge 2 \land y \ge 1$$

$$x, y \leftarrow 0 \qquad x \le 4; y \leftarrow 0 \qquad x \ge 2; y \leftarrow 0$$

Examples

• a takes [2, 4] time units, b takes [1, 3] time units

HDA	lposets	Higher-Dimensional Timed Automata	Conclusion
		000000	

Examples

- a takes [2,4] time units, b takes [1,3] time units
- unless b is done before a
- b can only start 1 time unit after a

HDA	lposets	Higher-Dimensional Timed Automata	Conclusion
00000000	oooooooo		O

Examples

- a takes [2,4] time units, b takes [1,3] time units
- b can only start 1 time unit after a
- b has to finish 1 time unit before a

Uli Fahrenberg

- Reachability for HDTA is PSPACE-complete
- and can be checked using zone-based algorithms
- (Everything works like for timed automata)
- Universality probably still undecidable
- \Rightarrow [F. 2021, LITES]

HDA	lposets	Higher-Dimensional Timed Automata	Conclusion
00000000	00000000	000000●	O
Actions Take	Time?		

- [Cardelli 1982, ICALP]: Actions take time.
 - 'We read $p \xrightarrow[t]{a} q$ as "p moves to q performing a for an interval t",
- since [Alur-Dill 1994, TCS] (even before?): Actions are immediate.

•
$$(I, v) \stackrel{d}{\sim} (I, v+d) \stackrel{s}{\sim} (I', v+d)$$

- Kim G. Larsen (many personal discussions): Actions are immediate because of technical resaons only. ("We know how to do.")
- [Chatain-Jard 2013, FORMATS]: In the concurrent semantics for time Petri nets, time has to (locally) be allowed to run backwards??
- [F. 2018, ADHS]: In real-time concurrency, actions cannot be immediate.
 - and it appears that the "technical reasons" argument is quite weak!

HDA	lposets	Higher-Dimensional Timed Automata	Conclusion
00000000	00000000	0000000	
Conclusion			

- Higher-dimensional automata: nice model for concurrency
- Languages of HDA: sets of labeled interval orders
 - [F.-Johansen-Struth-Ziemiański 2021, MSCS]
- Po(m)sets with interfaces for compositionality / algebra

Open / coming up:

- Higher-dimensional regular languages
- 2-categories with lax tensors: algebraic setting for iposets
- Combinatorial characterization of gluing-parallel iposets
- Languages of higher-dimensional timed automata

• . . .