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Higher-dimensional automata & concurrency

HDA as a model for concurrency:

points: states

edges: transitions

squares, cubes etc.: independency relations (concurrently executing
events)

two-dimensional automata ∼= asynchronous transition systems
[Bednarczyk 1987, PhD]

[van Glabbeek 2006, TCS]: Up to history-preserving bisimilarity, HDA
“generalize the main models of concurrency proposed in the literature”
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Another example

a

c

d

b

no cubes, all faces except middle horizontal

a and b independent; c introduces conflict; d releases conflict
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Languages of HDA
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Languages of HDA
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Languages of HDA

sets of pomsets
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Pomsets

A (finite) pomset (“partially ordered multiset”) (P,≤, `):

a finite partially ordered set (P,≤)

with labeling ` : P → Σ

(AKA labeled partial order)

(up to isomorphism: don’t care about identity of points)

[Winkowski 1977, IPL], [Lamport 1978, CACM], etc.
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Example

c d
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Are all pomsets generated by HDA?

No, only (labeled) interval orders

Poset (P,≤) is an interval order iff it does not contain
(
# //#
# //#

)
(iff it is “2+2-free”)

iff it has an interval representation:
a set I = {[li , ri ]} of real intervals
with order [li , ri ] � [lj , rj ] iff ri ≤ lj
and an order isomorphism (P,≤)↔ (I ,�)

[Fishburn 1970, J. Math. Psych.]
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Concatenation of HDA
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Series-Parallel Posets

a poset: finite set P plus partial order ≤: reflexive, transitive,
antisymmetric

parallel composition of posets (P1,≤1), (P2,≤2):

P1 ⊗ P2 = (P1 t P2,≤1 ∪ ≤2)

� disjoint union
serial composition:

P1 ∗ P2 = (P1 t P2,≤1 ∪ ≤2 ∪ P1 × P2)

� P1 before P2

# #

# #
∗

# #

# #
=

# # # #

# # # #
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Series-Parallel Posets

Definition (Winkowski ’77, Grabowski ’81)

A poset is series-parallel (sp) if it is empty or can be obtained from the
singleton poset by a finite number of serial and parallel compositions.

Theorem (Grabowski ’81)

A poset is sp iff it does not contain N as an induced subposet.

The equational theory of sp-posets is well-understood: [Gischer 1988,
TCS], [Bloom-Esik 1996, MSCS]
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Interval Orders vs Series-Parallel Posets

# #

# #

# #

# #

interval orders are used in Petri net theory and distributed computing

but have no algebraic representation (so far)

sp-posets are used in concurrency theory & have nice algebraic
theory

Concurrent Kleene algebra

int. orders are 2+2-free; sp-posets are N-free

incomparable: 2+2 is sp; N is interval

⇒ [F.-Johansen-Struth-Thapa 2020, RAMiCS]
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Posets with interfaces

# #

# #

H1 G1

# #

H1 G1

H2 G2

H1 G2

H2 G1

Definition

A poset with interfaces (iposet) is a poset P plus two injections

[n]
s−→ P

t←− [m]

such that s[n] is minimal and t[m] is maximal in P.

([n] = {1, . . . , n})
s: starting interface ; t: terminating interface

events in t[m] are unfinished ; events in s[n] are “unstarted”
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Gluing composition

Definition

The gluing composition of iposets s1 : [n]→ (P1,≤1)← [m] : t1 and
s2 : [m]→ (P2,≤2)← [k] : t2:

P1 ∗ P2 =

{
(P1 t P2)/t1(i) = s2(i)

≤1 ∪ ≤2 ∪ (P1 \ t1[m])× (P2 \ s2[m])

# #

# #
∗

# #

# #
=

# # # #

# # # #

# G1

# #
∗

H1 #

# #
=

# # #

# # # #

only defined if terminating int. of P1 is equal to starting int. of P2

iposets form category (with gluing as composition)
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Gluing-Parallel Iposets

recall sp-posets: freely generated from # using ∗ and ⊗
the four singleton iposets:

# H1 G1 H1 G1

gp-iposets: generated from # , H1 , G1 , H1 G1 using ∗ and ⊗

Fact

Gp-iposets are not freely generated, for example:(
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Forbidden substructures

sp-posets =̂ N-free

interval orders =̂ 2+2-free

gluing-parallel posets ⇒ free of
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•
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•
•
•

•
•

•
•
• •
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Some numbers

n P(n) SP(n) IO(n) GP(n) IP(n) GPI(n)
0 1 1 1 1 1 1
1 1 1 1 1 4 4
2 2 2 2 2 17 16
3 5 5 5 5 86 74
4 16 15 15 16 532 419
5 63 48 53 63 4068 2980
6 318 167 217 313 38.933 26.566
7 2045 602 1014 1903 474.822 289.279
8 16.999 2256 5335 13.943 7.558.620 3.726.311
9 183.231 8660 31.240 120.442

10 2.567.284 33.958 201.608 1.206.459
11 46.749.427 135.292 1.422.074

EIS 112 3430 22493 345673 331158 331159

Uli Fahrenberg Posets with Interfaces as a Model for Concurrency 37/ 45



HDA Iposets Higher-Dimensional Timed Automata Conclusion

1 Languages of Higher-dimensional automata

2 Posets with interfaces

3 Higher-Dimensional Timed Automata

4 Conclusion

Uli Fahrenberg Posets with Interfaces as a Model for Concurrency 38/ 45



HDA Iposets Higher-Dimensional Timed Automata Conclusion

Higher-Dimensional Timed Automata

Definition

A HDTA is a structure (L, l0, Lf , λ,C , inv, exit), where (L, l0, Lf , λ) is a
finite HDA, C is a finite set of clocks, and inv : L→ Φ(C ), exit : L→ 2C

give invariant and exit conditions for each n-cube.

Intuition:

inv(l): conditions on the clock values while delaying in l
exit(l): clocks to be reset to 0 when leaving l .

x , y ← 0 x ≥ 2; y ← 0

y ≥ 1; x ← 0 x ≥ 2 ∧ y ≥ 1

x ≤ 4; y ← 0

a

y ≤ 3; x ← 0 b x ≥ 2 ∧ y ≤ 3b

x ≤ 4 ∧ y ≥ 1

a

x ≤ 4 ∧ y ≤ 3
ab
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Examples

x , y ← 0 x ≥ 2; y ← 0

y ≥ 1; x ← 0 x ≥ 2 ∧ y ≥ 1

x ≤ 4; y ← 0

a

y ≤ 3
x ← 0

b x ≥ 2 ∧ y ≤ 3b

x ≤ 4 ∧ y ≥ 1

a

x ≤ 4 ∧ y ≤ 3
ab

a takes [2, 4] time units, b takes [1, 3] time units
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Examples

x , y ← 0 x ≥ 2; y ← 0

y ≥ 1; x ← 0 x ≥ 2 ∧ y ≥ 1

x ≤ 4; y ← 0

a

x ≥ 1 ∧ y ≤ 3
x ← 0

b x ≥ 2 ∧ y ≤ 3b

x ≤ 5 ∧ y ≥ 1

a

1 ≤ x ≤ 4 ∧ y ≤ 3
ab

a takes [2, 4] time units, b takes [1, 3] time units

unless b is done before a

b can only start 1 time unit after a
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Examples

x , y ← 0 x ≥ 2 ∧ z ≥ 1; y ← 0

y ≥ 1; x ← 0 x ≥ 2 ∧ y ≥ 1 ∧ z ≥ 1

x ≤ 4; y ← 0

a

x ≥ 1 ∧ y ≤ 3
x , z ← 0

b
x ≥ 2 ∧ y ≤ 3 ∧ z ≥ 1
z ← 0

b

x ≤ 5 ∧ y ≥ 1

a

1 ≤ x ≤ 4 ∧ y ≤ 3
z ← 0; ab

a takes [2, 4] time units, b takes [1, 3] time units

b can only start 1 time unit after a

b has to finish 1 time unit before a
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Good News

Reachability for HDTA is PSPACE-complete

and can be checked using zone-based algorithms

(Everything works like for timed automata)

Universality probably still undecidable

⇒ [F. 2021, LITES]
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Actions Take Time?

[Cardelli 1982, ICALP]: Actions take time.

‘We read p
a
−→
t

q as “p moves to q performing a for an
interval t”’

since [Alur-Dill 1994, TCS] (even before?): Actions are immediate.

(l , v)
d; (l , v + d)

s; (l ′, v + d)

Kim G. Larsen (many personal discussions): Actions are immediate
because of technical resaons only. (“We know how to do.”)

[Chatain-Jard 2013, FORMATS]: In the concurrent semantics for
time Petri nets, time has to (locally) be allowed to run backwards??

[F. 2018, ADHS]: In real-time concurrency, actions cannot be
immediate.

and it appears that the “technical reasons” argument is quite
weak!
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Conclusion

Higher-dimensional automata: nice model for concurrency

Languages of HDA: sets of labeled interval orders

[F.-Johansen-Struth-Ziemiański 2021, MSCS]

Po(m)sets with interfaces for compositionality / algebra

Open / coming up:

Higher-dimensional regular languages

2-categories with lax tensors: algebraic setting for iposets

Combinatorial characterization of gluing-parallel iposets

Languages of higher-dimensional timed automata

. . .
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