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Motivation
# #

# #

Kleene algebra is nice and useful
I also its extensions: semimodules, tests, domain, . . .

Concurrent Kleene algebra: extension of KA for concurrency
I [Hoare, Möller, O’Hearn, Struth, van Staden, Villard,
Wehrman, Zhu ’09, ’11, ’16]

Kleene algebra plus parallel composition
the free CKA (minus some details): sets of series-parallel pomsets

I labeled posets with concatenation & parallel composition
Something’s amiss in concurrent Kleene algebra
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Example, Using Higher-Dimensional Automata
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new gluing operation on pomsets, to continue events across
compositions
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Another Example
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this is the N pomset, which is not series-parallel
hence our title, Generating Posets beyond N
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Series-Parallel Posets

a poset: finite set P plus partial order ≤: reflexive, transitive,
antisymmetric
parallel composition of posets (P1,≤1), (P2,≤2):

P1 ⊗ P2 = (P1 t P2,≤1 ∪ ≤2)
� disjoint unionserial composition:

P1 ∗ P2 = (P1 t P2,≤1 ∪ ≤2 ∪ P1 × P2)
� P1 before P2

# #

# #
∗

# #

# #
=

# # # #

# # # #
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Series-Parallel Posets

Definition (Winkowski ’77, Grabowski ’81)
A poset is series-parallel (sp) if it is empty or can be obtained from the
singleton poset by a finite number of serial and parallel compositions.

Theorem (Grabowski ’81)
A poset is sp iff it does not contain N as an induced subposet.

The equational theory of sp-posets is well-understood: [Gischer ’88],
[Bloom-Esik ’96]
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Concurrent Monoids

Definition (Gischer ’88, Hoare et al. ’11)
A concurrent monoid is an ordered bimonoid (S,≤, ∗, ‖, 1) with shared
∗-‖-unit 1 which satisfies weak interchange:

(a‖b) ∗ (c‖d) ≤ (a ∗ c)‖(b ∗ d)

a

b

c

d

≤
a

b

c

d

subsumption on posets: P � Q if P “has more order” than Q

Theorem (Gischer ’88, Bloom-Esik ’96)
The set of sp-posets under subsumption is the free concurrent monoid.
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Background: Concurrent Kleene Algebra

concurrent monoids: basic algebraic structure for concurrent
Kleene algebra
Kleene algebra is useful in language theory (compilers!),
verification, etc. etc.
concurrent Kleene algebra: quest to extend that success to
parallel programming
distributed systems; weak memory; etc. etc.
Tony Hoare, Bernhard Möller, Peter O’Hearn, Georg Struth,
Huibiao Zhu 2009++

process algebra with + (non-determinism), · (concatenation),
‖ (parallelism), ∗ (iteration), and † (parallel iteration)
(in this talk, no iterations!)
problem: no Ns!
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Problem & Solution

we like the N poset, but it’s not series-parallel
in fact, N’s are everywhere: for example, producer-consumer:

p1 p2 p3 p4

c1 c2 c3 c4

· · ·

· · ·

Problem
Find a class of posets which includes N (and sp-posets) and which has
good algebraic properties.

Our Proposal
Posets with interfaces with parallel and gluing composition.
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Interlude: Interval Orders

# #

# #

posets which are good for concurrency?
already in [Wiener 1914], then [Winkowski ’77], [Lamport ’86],
[van Glabbeek ’90], [Vogler ’91], [Janicky ’93], etc.
interval orders: posets which have representation as (real)
intervals, ordered by max1 ≤ min2
Lemma (Fishburn ’70): A poset is interval iff it does not contain
I I =

( · // ·
· // ·

)
as induced subposet.

intuitively: if a −→ b and c −→ d , then also a −→ d or c −→ b
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Gluing of Interval Orders
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Interval Orders vs Series-Parallel Posets
# #

# #

# #

# #

interval orders are used in Petri net theory and distributed
computing
but have no algebraic representation (so far)
sp-posets are used in concurrency theory & have nice algebraic
theory
but applicativity is doubtful!
int. orders are I I-free; sp-posets are N-free
incomparable: I I is sp; N is interval
goal: marriage
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Posets with Interfaces

# #

# #

H1 G1

# #

H1 G1

H2 G2

H1 G2

H2 G1

Definition
A poset with interfaces (iposet) is a poset P plus two injections

[n] s−→ P t←− [m]

such that s[n] is minimal and t[m] is maximal in P.

([n] = {1, . . . , n} ; S ⊆ P minimal if p 6< s for all p ∈ P, s ∈ S)

(there are 25 non-isomorphic iposets with underlying N)
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Interfaces
H1 G2

# G1

Def.: Iposet s : [n]→ P ← [m] : t ; s[n] ⊆ Pmin, t[m] ⊆ Pmax.

s: starting interface ; t: terminating interface
events in t[m] are unfinished ; events in s[n] are “unstarted”

Definition
The gluing composition of iposets s1 : [n]→ (P1,≤1)← [m] : t1 and
s2 : [m]→ (P2,≤2)← [k] : t2:

P1 ∗ P2 =
{

(P1 t P2)/t1(i) = s2(i)
≤1 ∪ ≤2 ∪ (P1 \ t1[m])× (P2 \ s2[m])
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Gluing Composition

Definition
The gluing composition of iposets s1 : [n]→ (P1,≤1)← [m] : t1 and
s2 : [m]→ (P2,≤2)← [k] : t2:

P1 ∗ P2 =
{

(P1 t P2)/t1(i) = s2(i)
≤1 ∪ ≤2 ∪ (P1 \ t1[m])× (P2 \ s2[m])

# #

# #
∗

# #

# #
=

# # # #

# # # #

# G1

# #
∗

H1 #

# #
=

# # #

# # # #

only defined if terminating int. of P1 is equal to starting int. of P2
iposets form category (with gluing as composition)

Fahrenberg, Johansen, Struth, Bahadur Thapa Generating Posets beyond N 28/ 47



Introduction Series-Parallel Posets Interval Orders Posets with Interfaces Gluing-Parallel Iposets Conclusion

Gluing Composition

Definition
The gluing composition of iposets s1 : [n]→ (P1,≤1)← [m] : t1 and
s2 : [m]→ (P2,≤2)← [k] : t2:

P1 ∗ P2 =
{

(P1 t P2)/t1(i) = s2(i)
≤1 ∪ ≤2 ∪ (P1 \ t1[m])× (P2 \ s2[m])

# #

# #
∗

# #

# #
=

# # # #

# # # #

# G1

# #
∗

H1 #

# #
=

# # #

# # # #

only defined if terminating int. of P1 is equal to starting int. of P2
iposets form category (with gluing as composition)

Fahrenberg, Johansen, Struth, Bahadur Thapa Generating Posets beyond N 29/ 47



Introduction Series-Parallel Posets Interval Orders Posets with Interfaces Gluing-Parallel Iposets Conclusion

Gluing Composition

Definition
The gluing composition of iposets s1 : [n]→ (P1,≤1)← [m] : t1 and
s2 : [m]→ (P2,≤2)← [k] : t2:

P1 ∗ P2 =
{

(P1 t P2)/t1(i) = s2(i)
≤1 ∪ ≤2 ∪ (P1 \ t1[m])× (P2 \ s2[m])

# #

# #
∗

# #

# #
=

# # # #

# # # #

# G1

# #
∗

H1 #

# #
=

# # #

# # # #

only defined if terminating int. of P1 is equal to starting int. of P2
iposets form category (with gluing as composition)

Fahrenberg, Johansen, Struth, Bahadur Thapa Generating Posets beyond N 30/ 47



Introduction Series-Parallel Posets Interval Orders Posets with Interfaces Gluing-Parallel Iposets Conclusion

Parallel Composition

parallel composition of iposets: put posets in parallel and
renumber interfaces
for [n1]→ P1 ← [m1] and [n2]→ P2 ← [m2], have
[n1 + n2]→ P1 ⊗ P2 ← [m1 + m2]
not commutative ; only “lax tensor” ; not a PROP
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Gluing-Parallel Iposets

recall sp-posets: freely generated from # using ∗ and ⊗
the four singleton iposets:

# H1 G1 H1 G1

gp-iposets: generated from # , H1 , G1 , H1 G1 using ∗ and ⊗

Proposition
Gp-iposets are freely generated, except for the relations(

G1

P

)
∗
(

H1

Q

)
=
(

#

P ∗ Q

) (
G1

P

)
∗
(

H1 G1

Q

)
=
(

G1

P ∗ Q

)
(

H1 G1

P

)
∗
(

H1

Q

)
=
(

H1

P ∗ Q

) (
H1 G1

P

)
∗
(

H1 G1

Q

)
=
(

H1 G1

P ∗ Q

)
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Forbidden Substructures

recall: P is sp iff P is N-free

Proposition
If P is gp, then it does not contain any of the following as induced
subposets:

#

#

#

#

#

#

#

#

#

#

# #

# #

#

#

#

#

#

#

#

#

#

#

# # #

# # #

unlike for sp-posets, that’s not an iff (we don’t know)
but these five are the only posets on ≤ 6 points which are not gp
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Some Counting, up to Isomorphism

n P(n) SP(n) GP(n) IP(n) GPI(n)
0 1 1 1 1 1
1 1 1 1 4 4
2 2 2 2 17 16
3 5 5 5 86 74
4 16 15 16 532 419
5 63 48 63 ??? 2980
6 318 167 313 ??? 26566
7 2045 602 ??? ??? ???

OEIS A000112 A003430 n.a. n.a. n.a.
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Some Counting, up to Isomorphism

n P(n) SP(n) GP(n) IP(n) GPI(n)
0 1 1 1 1 1
1 1 1 1 4 4
2 2 2 2 17 16
3 5 5 5 86 74
4 16 15 16 532 419
5 63 48 63 ??? 2980
6 318 167 313 ??? 26566
7 2045 602 ??? ??? ???

OEIS A000112 A003430 n.a. n.a. n.a.

slow Python implementation
bottleneck is isomorphism checking
new Julia implementation coming up!
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Some Counting, up to Isomorphism

n P(n) SP(n) GP(n) IP(n) GPI(n)
0 1 1 1 1 1
1 1 1 1 4 4
2 2 2 2 17 16
3 5 5 5 86 74
4 16 15 16 532 419
5 63 48 63 ??? 2980
6 318 167 313 ??? 26566
7 2045 602 ??? ??? ???

OEIS A000112 A003430 n.a. n.a. n.a.

P(6)−GP(6) = 5:
◦
◦
◦

◦
◦
◦

◦
◦
◦
◦
◦ ◦

◦ ◦
◦
◦
◦
◦

◦
◦
◦

◦
◦
◦

◦ ◦ ◦
◦ ◦ ◦
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Some Counting, up to Isomorphism

n P(n) SP(n) GP(n) IP(n) GPI(n)
0 1 1 1 1 1
1 1 1 1 4 4
2 2 2 2 17 16
3 5 5 5 86 74
4 16 15 16 532 419
5 63 48 63 ??? 2980
6 318 167 313 ??? 26566
7 2045 602 ??? ??? ???

OEIS A000112 A003430 n.a. n.a. n.a.

the only iposet on 2 points which is not gp:
H1 G2

H2 G1
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Generating Posets Up to Isomorphism

with Olavi Äikäs, 3rd year BSc student in internship
convert slow Python code to fast Julia code
be clever about isomorphisms:

n P(n) SP(n) GP(n)
6 318 167 313
7 2045 602 ???
8 16999 2256 ???

I canonical labeling:
P ∼= Q ⇐⇒ f (P) = f (Q)

I isomorphism invariant:
P ∼= Q =⇒ f (P) = f (Q)

I number of out-edges; number of in-edges
I same numbers, but in Hasse diagram
I filtration level
I . . . ?

P(n): known up to n = 16: [Brinkmann-McKay, Order 2002]
SP(n): generating formula; Ex. I.46 in [Flajolet-Sedgewick 2009]
GP(n): ???
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Generating Posets Up to Isomorphism

with Olavi Äikäs, 3rd year BSc student in internship
convert slow Python code to fast Julia code
be clever about isomorphisms: n P(n) SP(n) GP(n)

6 318 167 313
7 2045 602 ???
8 16999 2256 ???

I canonical labeling:
P ∼= Q ⇐⇒ f (P) = f (Q)

I isomorphism invariant:
P ∼= Q =⇒ f (P) = f (Q)

I number of out-edges; number of in-edges
I same numbers, but in Hasse diagram
I filtration level
I . . . ?

P(n): known up to n = 16: [Brinkmann-McKay, Order 2002]
SP(n): generating formula; Ex. I.46 in [Flajolet-Sedgewick 2009]
GP(n): ???
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Generating Posets Up to Isomorphism

with Olavi Äikäs, 3rd year BSc student in internship
convert slow Python code to fast Julia code
be clever about isomorphisms: n P(n) SP(n) GP(n)

6 318 167 313
7 2045 602 1903
8 16999 2256 ???

I canonical labeling:
P ∼= Q ⇐⇒ f (P) = f (Q)

I isomorphism invariant:
P ∼= Q =⇒ f (P) = f (Q)

I number of out-edges; number of in-edges
I same numbers, but in Hasse diagram
I filtration level
I . . . ?

P(n): known up to n = 16: [Brinkmann-McKay, Order 2002]
SP(n): generating formula; Ex. I.46 in [Flajolet-Sedgewick 2009]
GP(n): ???
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New Results

with Olavi Äikäs, 3rd year BSc student in internship
recall Proposition: If P is gp, then it does not contain any of the
following as induced subposets:

#
#
#

#
#
#

#
#

#
#
# #

# #
#
#

#
#

#
#
#

#
#
#

# # #
# # #

New: there are 1903 gp-posets on 7 points
hence 142 posets on 7 points which are not gp
no new forbidden substructures! : for |P| ≤ 7, P is gp iff it has
no induced subposets as above.
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Conclusion

posets with interfaces for concurrency
instead of concurrent monoid, small category with lax tensor

I a “multi-object concurrent monoid”
gluing-parallel iposets include sp-posets and interval orders
generation is “almost free”
characterization by forbidden substructures?

Fahrenberg, Johansen, Struth, Bahadur Thapa Generating Posets beyond N 46/ 47



Introduction Series-Parallel Posets Interval Orders Posets with Interfaces Gluing-Parallel Iposets Conclusion

Ongoing and Future Work

Concurrent Kleene algebra:
I concurrent monoid ; concurrent Kleene algebra
I concurrent category ; bicategory with lax tensors?

CKA with domain:
I domain elements are “structure-less” iposets
I relation to higher-dimensional modal logic?
I higher-dimensional modal Kleene algebra

Languages of higher-dimensional automata:
I sets of interval orders
I concatenation of HDA ≈ gluing of (sets of) interval orders
I theory of regular languages for concurrency?

Real-time concurrency:
I higher-dimensional timed automata
I languages are sets of real-time interval orders?
I relation to real-time Petri nets?
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