Generating Posets beyond N

Uli Fahrenberg¹ Christian Johansen² Georg Struth³ Ratan Bahadur Thapa²

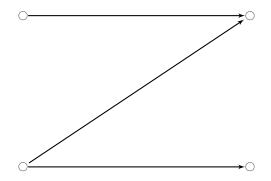
École Polytechnique, Palaiseau, France

University of Oslo, Norway

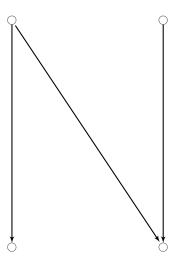
University of Sheffield, UK

Cosynus / P&A, 2021-02

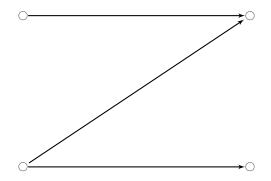
Introduction •0000	Series-Parallel Posets 000000	Interval Orders	Posets with Interfaces	Gluing-Parallel Iposets	Conclusion 00
Motiva	tion				



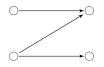
Introduction •0000	Series-Parallel Posets 000000	Interval Orders	Posets with Interfaces	Gluing-Parallel Iposets	Conclusion 00
Motiva	tion				



Introduction •0000	Series-Parallel Posets 000000	Interval Orders	Posets with Interfaces	Gluing-Parallel Iposets	Conclusion 00
Motiva	tion				

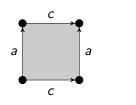


Introduction 00000	Series-Parallel Posets 000000	Interval Orders	Gluing-Parallel Iposets 00000	Conclusion 00
Motiva	ation			



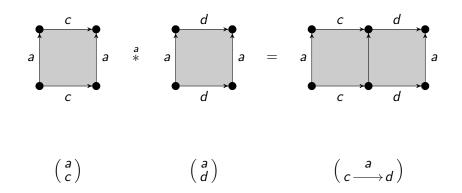
- Kleene algebra is nice and useful
 - ▶ also its extensions: semimodules, tests, domain, ...
- Concurrent Kleene algebra: extension of KA for concurrency
 - [Hoare, Möller, O'Hearn, Struth, van Staden, Villard, Wehrman, Zhu '09, '11, '16]
- Kleene algebra plus parallel composition
- the free CKA (minus some details): sets of series-parallel pomsets
 - labeled posets with concatenation & parallel composition
- Something's amiss in concurrent Kleene algebra

Example, Using Higher-Dimensional Automata

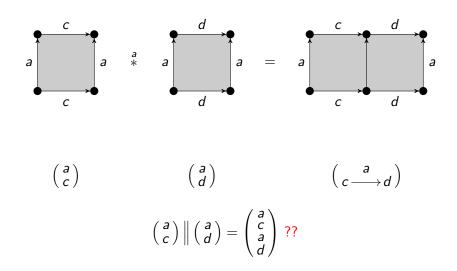


 $\begin{pmatrix} a \\ c \end{pmatrix} \qquad \qquad \begin{pmatrix} a \\ d \end{pmatrix}$

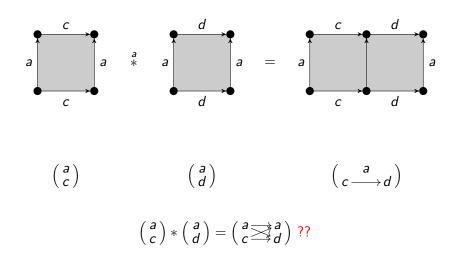
Example, Using Higher-Dimensional Automata



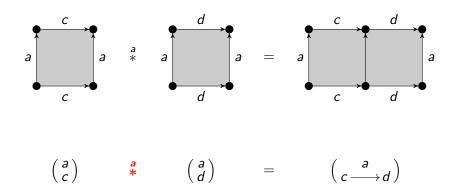
Example, Using Higher-Dimensional Automata



Example, Using Higher-Dimensional Automata

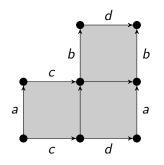


Example, Using Higher-Dimensional Automata



• new gluing operation on pomsets, to *continue events across compositions*

	Series-Parallel Posets		Gluing-Parallel Iposets 00000	Conclusion 00
Anothe	r Example			



$$\begin{pmatrix} a \\ c \end{pmatrix} \overset{a}{*} \begin{pmatrix} a \\ d \end{pmatrix} \overset{d}{*} \begin{pmatrix} b \\ d \end{pmatrix} = \begin{pmatrix} a \xrightarrow{b} b \\ c \xrightarrow{b} d \end{pmatrix}$$

- \bullet this is the N pomset, which is not series-parallel
- hence our title, Generating Posets beyond N

Introduction	Series-Parallel Posets	Interval Orders	Posets with Interfaces	Gluing-Parallel Iposets	Conclusion
00000					

- 2 Series-Parallel Posets
- 3 Interlude: Interval Orders
- 4 Posets with Interfaces
- 5 Gluing-Parallel Iposets

Introduction Series-Parallel Posets Interval Orders 0000 Posets with Interfaces 00000 Conclusion 0000 Conclusi

- a poset: finite set P plus partial order ≤: reflexive, transitive, antisymmetric
- parallel composition of posets (P_1, \leq_1) , (P_2, \leq_2) :

• serial composition:

$$P_1 * P_2 = (P_1 \sqcup P_2, \leq_1 \cup \leq_2 \cup P_1 \times P_2)$$

$$\uparrow P_1 \text{ before } P_2$$

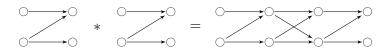
Introduction Series-Parallel Posets Interval Orders 0000 Posets with Interfaces 00000 Conclusion 0000 Conclusi

- a poset: finite set P plus partial order ≤: reflexive, transitive, antisymmetric
- parallel composition of posets (P_1, \leq_1) , (P_2, \leq_2) :

$$P_1 \otimes P_2 = (P_1 \sqcup P_2, \leq_1 \cup \leq_2)$$

• serial composition:

$$P_1 * P_2 = (P_1 \sqcup P_2, \leq_1 \cup \leq_2 \cup P_1 \times P_2)$$



Series-Parallel Posets Interval Orders Posets with Interfaces Gluing-Parallel Iposets Conclusion 00000 Series-Parallel Posets

Definition (Winkowski '77, Grabowski '81)

A poset is series-parallel (sp) if it is empty or can be obtained from the singleton poset by a finite number of serial and parallel compositions.

Theorem (Grabowski '81)

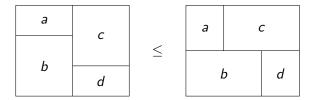
A poset is sp iff it does not contain **N** as an induced subposet.

The equational theory of sp-posets is well-understood: Gischer '88, [Bloom-Esik '96]

Definition (Gischer '88, Hoare et al. '11)

A concurrent monoid is an ordered bimonoid $(S, \leq, *, \|, 1)$ with shared *- $\|$ -unit 1 which satisfies weak interchange:

$$(a\|b)*(c\|d)\leq (a*c)\|(b*d)$$



• subsumption on posets: $P \preceq Q$ if P "has more order" than Q

Theorem (Gischer '88, Bloom-Esik '96)

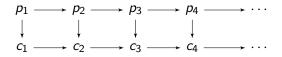
The set of sp-posets under subsumption is the free concurrent monoid.

Background: Concurrent Kleene Algebra

- concurrent monoids: basic algebraic structure for concurrent Kleene algebra
- Kleene algebra is useful in language theory (compilers!), verification, etc. etc.
- concurrent Kleene algebra: quest to extend that success to parallel programming
- distributed systems; weak memory; etc. etc.
- Tony Hoare, Bernhard Möller, Peter O'Hearn, Georg Struth, Huibiao Zhu 2009++
- process algebra with + (non-determinism), \cdot (concatenation), \parallel (parallelism), * (iteration), and † (parallel iteration)
- (in this talk, no iterations!)
- problem: no Ns!

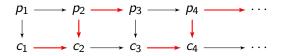
Introduction Series-Parallel Posets Interval Orders 00000 Posets with Interfaces 00000 Conclusion 00000 Posets with Interfaces 00000 Conclusion 0000 Conclusion 00000 Conclusion 0000 Conclusion 0000 Conclusion 00000 Conclusion 0

- $\bullet\,$ we like the N poset, but it's not series-parallel
- in fact, N's are everywhere: for example, producer-consumer:



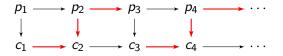
Introduction Series-Parallel Posets Interval Orders 00000 Posets with Interfaces 00000 Conclusion 00000 Posets with Interfaces 00000 Conclusion 0000 Conclusion 00000 Conclusion 0000 Conclusion 0000 Conclusion 00000 Conclusion 0

- $\bullet\,$ we like the N poset, but it's not series-parallel
- in fact, N's are everywhere: for example, producer-consumer:



Introduction Series-Parallel Posets Interval Orders 00000 Posets with Interfaces 00000 Conclusion 00000 Posets with Interfaces 00000 Conclusion 0000 Conclusion 00000 Conclusion 0000 Conclusion 00000 Conclusion 0000 Conclusion 00000 Conclusion 0000 Conclusion 0000 Conclusion 00000 Conclusion 0000 Conclusion 0000 Conclusion 00000

- $\bullet\,$ we like the N poset, but it's not series-parallel
- in fact, N's are everywhere: for example, producer-consumer:



Problem

Find a class of posets which includes \mathbf{N} (and sp-posets) and which has good algebraic properties.

Our Proposal

Posets with interfaces with parallel and gluing composition.

Introduction	Series-Parallel Posets	Interval Orders	Posets with Interfaces	Gluing-Parallel Iposets	Conclusion
	000000				

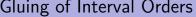
- 2 Series-Parallel Posets
- 3 Interlude: Interval Orders
- Posets with Interfaces
- 5 Gluing-Parallel Iposets

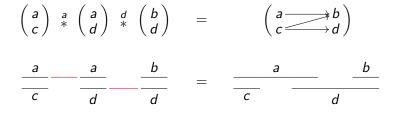
Introduction Series-Parallel Posets Interval Orders Posets with Interfaces Gluing-Parallel Iposets Conclusion ocooc Interlude: Interval Orders

- posets which are good for concurrency?
- already in [Wiener 1914], then [Winkowski '77], [Lamport '86], [van Glabbeek '90], [Vogler '91], [Janicky '93], etc.
- interval orders: posets which have representation as (real) intervals, ordered by max₁ ≤ min₂
- Lemma (Fishburn '70): A poset is interval iff it does not contain $II = (\stackrel{\cdot}{:} \xrightarrow{\longrightarrow} \stackrel{\cdot}{:})$ as induced subposet.

• intuitively: if $a \longrightarrow b$ and $c \longrightarrow d$, then also $a \longrightarrow d$ or $c \longrightarrow b$

Cluing	of Interval (Jrdore			
		0000			
Introduction	Series-Parallel Posets	Interval Orders	Posets with Interfaces	Gluing-Parallel Iposets	Conclusion





- interval orders are used in Petri net theory and distributed computing
- but have no algebraic representation (so far)
- sp-posets are used in concurrency theory & have nice algebraic theory
- but applicativity is doubtful!
- int. orders are I I-free; sp-posets are N-free
- incomparable: **II** is sp; **N** is interval
- goal: marriage

Introduction	Series-Parallel Posets	Interval Orders	Posets with Interfaces	Gluing-Parallel Iposets	Conclusion
		0000			

- 2 Series-Parallel Posets
- 3 Interlude: Interval Orders
- 4 Posets with Interfaces
- 5 Gluing-Parallel Iposets

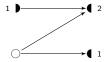
Posote	with Interfa	CO5			
Introduction 00000	Series-Parallel Posets 000000		Posets with Interfaces	Gluing-Parallel Iposets	Conclusion

A poset with interfaces (iposet) is a poset P plus two injections

$$[n] \xrightarrow{s} P \xleftarrow{t} [m]$$

such that s[n] is minimal and t[m] is maximal in P.

- $([n] = \{1, \ldots, n\}; S \subseteq P \text{ minimal if } p \not< s \text{ for all } p \in P, s \in S)$
- (there are 25 non-isomorphic iposets with underlying N)



Def.: Iposet $s : [n] \to P \leftarrow [m] : t$; $s[n] \subseteq P_{\min}$, $t[m] \subseteq P_{\max}$.

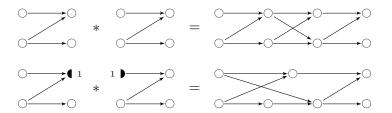
- s: starting interface ; t: terminating interface
- events in t[m] are unfinished ; events in s[n] are "unstarted"

Definition

$$P_1 * P_2 = \begin{cases} (P_1 \sqcup P_2)/t_1(i) = s_2(i) \\ \leq_1 \cup \leq_2 \cup (P_1 \setminus t_1[m]) \times (P_2 \setminus s_2[m]) \end{cases}$$

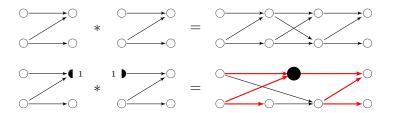
Gluing	Compositio	n			
	Series-Parallel Posets 000000		Posets with Interfaces	Gluing-Parallel Iposets 00000	Conclusion

$$P_1 * P_2 = \begin{cases} (P_1 \sqcup P_2)/t_1(i) = s_2(i) \\ \leq_1 \cup \leq_2 \cup (P_1 \setminus t_1[m]) \times (P_2 \setminus s_2[m]) \end{cases}$$



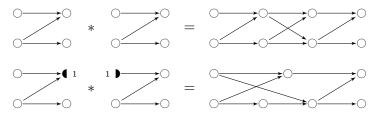
Gluing	Compositio	n			
	Series-Parallel Posets 000000		Posets with Interfaces	Gluing-Parallel Iposets 00000	Conclusion

$$P_1 * P_2 = \begin{cases} (P_1 \sqcup P_2)/t_1(i) = s_2(i) \\ \leq_1 \cup \leq_2 \cup (P_1 \setminus t_1[m]) \times (P_2 \setminus s_2[m]) \end{cases}$$



Gluing	Compositio	n			
	Series-Parallel Posets 000000		Posets with Interfaces	Gluing-Parallel Iposets	Conclusion 00

$$P_1 * P_2 = \begin{cases} (P_1 \sqcup P_2)/t_1(i) = s_2(i) \\ \leq_1 \cup \leq_2 \cup (P_1 \setminus t_1[m]) \times (P_2 \setminus s_2[m]) \end{cases}$$



- only defined if terminating int. of P_1 is equal to starting int. of P_2
- iposets form category (with gluing as composition)

	Series-Parallel Posets		 Gluing-Parallel Iposets 00000	Conclusion 00
Parallel	Compositio	on		

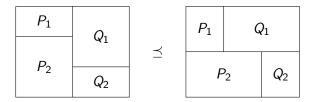
- parallel composition of iposets: put posets in parallel and renumber interfaces
- for $[n_1] \rightarrow P_1 \leftarrow [m_1]$ and $[n_2] \rightarrow P_2 \leftarrow [m_2]$, have $[n_1 + n_2] \rightarrow P_1 \otimes P_2 \leftarrow [m_1 + m_2]$
- not commutative ; only "lax tensor" ; not a PROP

- parallel composition of iposets: put posets in parallel and renumber interfaces
- for $[n_1] \rightarrow P_1 \leftarrow [m_1]$ and $[n_2] \rightarrow P_2 \leftarrow [m_2]$, have $[n_1 + n_2] \rightarrow P_1 \otimes P_2 \leftarrow [m_1 + m_2]$

	Series-Parallel Posets 000000	Interval Orders	Posets with Interfaces 000●0	Gluing-Parallel Iposets	Conclusion 00				
Parallel	Parallel Composition								

- parallel composition of iposets: put posets in parallel and renumber interfaces
- for $[n_1] \rightarrow P_1 \leftarrow [m_1]$ and $[n_2] \rightarrow P_2 \leftarrow [m_2]$, have $[n_1 + n_2] \rightarrow P_1 \otimes P_2 \leftarrow [m_1 + m_2]$
- not commutative ; only "lax tensor" ; not a PROP $$\Uparrow$$

 $(P_1 \otimes P_2) * (Q_1 \otimes Q_2) \preceq (P_1 * Q_1) \otimes (P_2 * Q_2)$



Introduction	Series-Parallel Posets	Interval Orders	Posets with Interfaces	Gluing-Parallel Iposets	Conclusion
			00000		

- 2 Series-Parallel Posets
- 3 Interlude: Interval Orders
- Posets with Interfaces
- 5 Gluing-Parallel Iposets

Introduction Series-Parallel Posets Interval Orders 00000 Posets with Interfaces 00000 Conclusion 0000 Conclusion 00000 Conclusion 0000 Conclusion 00000 Conclusion 0000 Conclusion 0

- \bullet recall *sp-posets*: freely generated from $\ \bigcirc$ using * and \otimes
- the four singleton iposets:
- gp-iposets: generated from \bigcirc , 1), (1, 1) using * and \otimes

1

1 1 1

Gp-iposets are freely generated, except for the relations

1

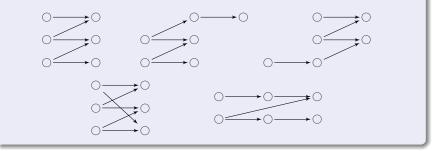


Forbid	den Substruc	tures			
00000	000000	0000	00000	0000	00
Introduction	Series-Parallel Posets	Interval Orders	Posets with Interfaces	Gluing-Parallel Iposets	Conclusion

• recall: P is sp iff P is **N**-free

Proposition

If P is gp, then it does not contain any of the following as induced subposets:



- unlike for *sp*-posets, that's not an iff (we don't know)
- \bullet but these five are the only posets on ≤ 6 points which are not gp

Introduction Series-Parallel Posets Interval Orders 0000 Posets with Interfaces 0000 Counting up to loo posets 0000 Counting Up to loo

Some Counting, up to Isomorphism

п	P(<i>n</i>)	SP(n)	GP(n)	IP(n)	GPI(n)
0	1	1	1	1	1
1	1	1	1	4	4
2	2	2	2	17	16
3	5	5	5	86	74
4	16	15	16	532	419
5	63	48	63	???	2980
6	318	167	313	???	26566
7	2045	602	???	???	???
OEIS	A000112	A003430	n.a.	n.a.	n.a.

Introduction Series-Parallel Posets Interval Orders 0000 Posets with Interfaces 0000 Counting up to loop problems cool 0000 Counting up to loop problems

Some Counting, up to Isomorphism

п	P(<i>n</i>)	SP(<i>n</i>)	GP(n)	IP(n)	GPI(n)
0	1	1	1	1	1
1	1	1	1	4	4
2	2	2	2	17	16
3	5	5	5	86	74
4	16	15	16	532	419
5	63	48	63	???	2980
6	318	167	313	???	26566
7	2045	602	???	???	???
OEIS	A000112	A003430	n.a.	n.a.	n.a.

- slow Python implementation
- bottleneck is isomorphism checking
- new Julia implementation coming up!

Some Counting, up to Isomorphism

п	P(<i>n</i>)	SP(n)	GP(n)	IP(n)	GPI(n)			
0	1	1	1	1	1			
1	1	1	1	4	4			
2	2	2	2	17	16			
3	5	5	5	86	74			
4	16	15	16	532	419			
5	63	48	63	???	2980			
6	318	167	313	???	26566			
7	2045	602	???	???	???			
OEIS	A000112	A003430	n.a.	n.a.	n.a.			
• $P(6) - GP(6) = 5$: $\bigcirc \circ $								

Introduction Series-Parallel Posets Interval Orders 0000 Posets with Interfaces 0000 Conclusion 0000 Conclusi

Some Counting, up to Isomorphism

n	P(<i>n</i>)	SP(n)	GP(n)	IP(n)	GPI(n)
0	1	1	1	1	1
1	1	1	1	4	4
2	2	2	2	17	16
3	5	5	5	86	74
4	16	15	16	532	419
5	63	48	63	???	2980
6	318	167	313	???	26566
7	2045	602	???	???	???
OEIS	A000112	A003430	n.a.	n.a.	n.a.

• the only iposet on 2 points which is not gp:

Generating Posets Up to Isomorphism

- with Olavi Äikäs, 3rd year BSc student in internship
- convert slow Python code to fast Julia code
- be clever about isomorphisms:

Gluing-Parallel Iposets Introduction Series-Parallel Posets Interval Orders Posets with Interfaces Conclusion 00000

Generating Posets Up to Isomorphism

- with Olavi Äikäs, 3rd year BSc student in internship
- convert slow Python code to fast Julia code
- be clever about isomorphisms:
 - canonical labeling:

$$P \cong Q \iff f(P) = f(Q)$$

isomorphism invariant:

$$P\cong Q\implies f(P)=f(Q)$$

- number of out
- same numbers
- filtration level

-edges; number of in-edges	
, but in Hasse diagram	

n

6

7

8

P(n)

318

2045

16999

SP(n)

167

602

2256

GP(n)

313

???

???

Generating Posets Up to Isomorphism

- with Olavi Äikäs, 3rd year BSc student in internship
- convert slow Python code to fast Julia code
- be clever about isomorphisms:
 - canonical labeling:

$$P \cong Q \iff f(P) = f(Q) \quad 7$$

isomorphism invariant:

$$P\cong Q \implies f(P)=f(Q)$$

- number of out-edges; number of in-edges
- same numbers, but in Hasse diagram
- filtration level
- ...?
- P(n): known up to n = 16: [Brinkmann-McKay, Order 2002]
- SP(n): generating formula; Ex. I.46 in [Flajolet-Sedgewick 2009]
- GP(*n*): ???

P(n)

318

2045

16999

n |

6

8

SP(n)

167

602

2256

GP(n)

313

???

???

Generating Posets Up to Isomorphism

- with Olavi Äikäs, 3rd year BSc student in internship
- convert slow Python code to fast Julia code
- be clever about isomorphisms:
 - canonical labeling:

$$P \cong Q \iff f(P) = f(Q)$$
 7

isomorphism invariant:

$$P\cong Q \implies f(P)=f(Q)$$

- number of out-edges; number of in-edges
- same numbers, but in Hasse diagram
- filtration level
- ...?
- P(n): known up to n = 16: [Brinkmann-McKay, Order 2002]
- SP(n): generating formula; Ex. I.46 in [Flajolet-Sedgewick 2009]
- GP(*n*): ???

P(n)

318

2045

16999

n |

6

8

SP(n)

167

602

2256

GP(n)

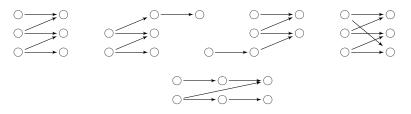
313

1903

???

Introduction 00000	Series-Parallel Posets 000000	Interval Orders	Posets with Interfaces	Gluing-Parallel Iposets 0000●	Conclusion 00
New Re	esults				

- with Olavi Äikäs, 3rd year BSc student in internship
- recall Proposition: If *P* is gp, then it does not contain any of the following as induced subposets:



- New: there are 1903 gp-posets on 7 points
- hence 142 posets on 7 points which are not gp
- no new forbidden substructures! : for $|P| \le 7$, P is gp iff it has no induced subposets as above.

		Posets with Interfaces	Gluing-Parallel Iposets	Conclusion ●0
Conclu	sion			

- posets with interfaces for concurrency
- instead of concurrent monoid, small category with lax tensor
 - a "multi-object concurrent monoid"
- gluing-parallel iposets include sp-posets and interval orders
- generation is "almost free"
- characterization by forbidden substructures?

Introduction Series-Parallel Posets Interval Orders 00000 Posets with Interfaces 00000 Conclusion 0000 Conclusion 00000 Conclusion 00000CONCLUSION 00000CONCLUSION 00000 Conclus

- Concurrent Kleene algebra:
 - ► concurrent monoid ~→ concurrent Kleene algebra
 - ► concurrent category ~> bicategory with lax tensors?
 - CKA with domain:
 - domain elements are "structure-less" iposets
 - relation to higher-dimensional modal logic?
 - higher-dimensional modal Kleene algebra
 - Languages of higher-dimensional automata:
 - sets of interval orders
 - concatenation of HDA \approx gluing of (sets of) interval orders
 - theory of regular languages for concurrency?
 - Real-time concurrency:
 - higher-dimensional timed automata
 - Ianguages are sets of real-time interval orders?
 - relation to real-time Petri nets?