Behavioral Specification Theories

Uli Fahrenberg Axel Legay

EPITA Research and Development Laboratory (LRDE), France

Université Catholique de Louvain, Belgium

ISoLA X-by-C 2020/21

Motivation

Not so easy...

Motivation

Not so easy...

Incremental certification / Compositional verification

bottom-up and top-down

Wish list:

- $\mathsf{Mod} \models \mathsf{Spec}_1 \& \mathsf{Spec}_1 \leq \mathsf{Spec}_2 \Longrightarrow \mathsf{Mod} \models \mathsf{Spec}_2$
- $\bullet \; \mathsf{Mod} \models \mathsf{Spec}_1 \, \& \, \mathsf{Mod} \models \mathsf{Spec}_2 \implies \mathsf{Mod} \models \mathsf{Spec}_1 \wedge \mathsf{Spec}_2$
- $\bullet \; \mathsf{Mod}_1 \models \mathsf{Spec}_1 \; \& \; \mathsf{Mod}_2 \models \mathsf{Spec}_2 \Longrightarrow \; \mathsf{Mod}_1 \| \mathsf{Mod}_2 \models \mathsf{Spec}_1 \| \mathsf{Spec}_2$
- $\mathsf{Mod}_1 \models \mathsf{Spec}_1 \& \mathsf{Mod}_2 \models \mathsf{Spec}/\mathsf{Spec}_1 \Longrightarrow \mathsf{Mod}_1 || \mathsf{Mod}_2 \models \mathsf{Spec}$

Compositional Verification

- $\mathsf{Mod} \models \mathsf{Spec}_1 \& \mathsf{Spec}_1 \leq \mathsf{Spec}_2 \Longrightarrow \mathsf{Mod} \models \mathsf{Spec}_2$
 - incrementality
- $\mathsf{Mod} \models \mathsf{Spec}_1 \& \mathsf{Mod} \models \mathsf{Spec}_2 \Longrightarrow \mathsf{Mod} \models \mathsf{Spec}_1 \land \mathsf{Spec}_2$
 - conjunction
- $\bullet \; \mathsf{Mod}_1 \models \mathsf{Spec}_1 \; \& \; \mathsf{Mod}_2 \models \mathsf{Spec}_2 \implies \mathsf{Mod}_1 \| \mathsf{Mod}_2 \models \mathsf{Spec}_1 \| \mathsf{Spec}_2$
 - compositionality
- $\bullet \; \mathsf{Mod}_1 \models \mathsf{Spec}_1 \,\&\, \mathsf{Mod}_2 \models \mathsf{Spec}/\mathsf{Spec}_1 \implies \mathsf{Mod}_1 \| \mathsf{Mod}_2 \models \mathsf{Spec}$
 - quotient

Not so easy - but easier than model checking?

Motivation

Acceptance Automata

Conclusion

Acceptance Automata

Let Σ be a finite alphabet.

Definition

A (nondeterministic) acceptance automaton (AA) is a structure $\mathcal{A}=(S,S^0,\mathsf{Tran})$, with $S\supseteq S^0$ finite sets of states and initial states and $\mathsf{Tran}:S\to 2^{2^{\Sigma\times S}}$ an assignment of *transition constraints*.

- standard labeled transition system (LTS): Tran : $S \to 2^{\Sigma \times S}$ (coalgebraic view)
- (for AA:) Tran(s) = $\{M_1, M_2, \dots\}$: provide M_1 or M_2 or ...
- a disjunctive choice of conjunctive constraints
- J.-B. Raclet 2008 (but deterministic)
- note multiple initial states

(init)

Refinement

Definition

Let $A_1 = (S_1, S_1^0, \mathsf{Tran}_1)$ and $A_2 = (S_2, S_2^0, \mathsf{Tran}_2)$ be AA.

A relation $R \subseteq S_1 \times S_2$ is a modal refinement if:

$$(a, t_2) \in M_2 : \exists (a, t_1) \in M_1 : (t_1, t_2) \in R$$

Write $A_1 \leq A_2$ if there exists such a modal refinement.

- for any constraint choice M_1 there is a bisimilar choice M_2
- A_1 has fewer choices than A_2
- no more choices $\hat{=}$ only one $M \in \text{Tran}(s) \hat{=} \text{LTS}$
- formally: an embedding $\chi: LTS \hookrightarrow AA$ such that $\chi(\mathcal{L}_1) \leq \chi(\mathcal{L}_2)$ iff \mathcal{L}_1 and \mathcal{L}_2 are bisimilar

A Step Back

Let Mod be a set of models with an equivalence \sim .

Definition

A (behavioral) specification theory for (Mod, \sim) consists of

- a set Spec,
- a preorder \leq \subseteq Spec \times Spec, and
- ullet a mapping $\chi:\mathsf{Mod}\to\mathsf{Spec}$,

such that $\forall \mathcal{M}_1, \mathcal{M}_2 \in \mathsf{Mod} : \mathcal{M}_1 \sim \mathcal{M}_2 \iff \chi(\mathcal{M}_1) \leq \chi(\mathcal{M}_2)$.

- write $\mathcal{M} \models \mathcal{S}$ for $\chi(\mathcal{M}) \leq \mathcal{S}$
- $\chi(\mathcal{M})$: characteristic formula for \mathcal{M} : $\mathcal{M}' \models \chi(\mathcal{M}) \iff \mathcal{M}' \sim \mathcal{M}$
- incrementality: $\mathcal{M} \models \mathcal{S}_1 \& \mathcal{S}_1 \leq \mathcal{S}_2 \Longrightarrow \mathcal{M} \models \mathcal{S}_2$
- \bullet acceptance automata $\hat{=}$ disjunctive modal transition systems $\hat{=}$ Hennessy-Milner logic with maximal fixed points
- safety properties

Logical Operations

Let
$$A_1 = (S_1, S_1^0, Tran_1)$$
 and $A_2 = (S_2, S_2^0, Tran_2)$ be AA.

Disjunction:
$$A_1 \lor A_2 = (S_1 \overset{\dagger}{\cup} S_2, S_1^0 \overset{\dagger}{\cup} S_2^0, \mathsf{Tran}_1 \overset{\dagger}{\cup} \mathsf{Tran}_2)$$

Conjunction: define
$$\pi_i: 2^{\Sigma \times S_1 \times S_2} \to 2^{\Sigma \times S_i}$$
 by

$$\pi_1(M) = \{(a, s_1) \mid \exists s_2 \in S_2 : (a, s_1, s_2) \in M\}$$

 $\pi_2(M) = \{(a, s_2) \mid \exists s_1 \in S_1 : (a, s_1, s_2) \in M\}$

Let
$$A_1 \wedge A_2 = (S_1 \times S_2, S_1^0 \times S_2^0, Tran)$$
 with

$$\mathsf{Tran}((s_1,s_2)) = \{ M \subseteq \Sigma \times S_1 \times S_2 \mid \\ \pi_1(M) \in \mathsf{Tran}_1(s_1), \pi_2(M) \in \mathsf{Tran}_2(s_2) \}$$

Theorem (for all LTS $\mathcal L$ and AA $\mathcal A_1,\mathcal A_2$)

$$\mathcal{L} \models \mathcal{A}_1 \lor \mathcal{A}_2 \iff \mathcal{L} \models \mathcal{A}_1 \text{ or } \mathcal{L} \models \mathcal{A}_2$$
$$\mathcal{L} \models \mathcal{A}_1 \land \mathcal{A}_2 \iff \mathcal{L} \models \mathcal{A}_1 \& \mathcal{L} \models \mathcal{A}_2$$

Another Step Back

Let Mod be a set of models with an equivalence \sim .

Definition

A specification theory (Spec, \leq , χ) for (Mod, \sim) is logical if (Spec, \leq) forms a bounded distributive lattice up to \leq \cap \geq .

- ⇒ have least upper bound ∨ and greatest lower bound ∧
- \Rightarrow bottom specification $\mathsf{ff}\ (orall \mathcal{M} \in \mathsf{Mod} : \mathcal{M}
 ot\models \mathsf{ff})$
- \Rightarrow top specification **tt** $(\forall \mathcal{M} \in \mathsf{Mod} : \mathcal{M} \models \mathsf{tt})$
- ⇒ double distributivity
 - everything up to modal equivalence $\equiv \leq \cap \geq$
 - holds for acceptance automata, disjunctive modal transition systems, and Hennessy-Milner logic with maximal fixed points

Structural Operations: Composition

Let $A_1 = (S_1, S_1^0, Tran_1)$ and $A_2 = (S_2, S_2^0, Tran_2)$ be AA.

For $M_1 \subseteq \Sigma \times S_1$ and $M_2 \subseteq \Sigma \times S_2$, define

$$M_1 || M_2 = \{(a, (t_1, t_2)) | (a, t_1) \in M_1, (a, t_2) \in M_2\}$$

(assumes CSP synchronization, but can be generalized)

Let
$$A_1 || A_2 = (S_1 \times S_2, S_1^0 \times S_2^0, \text{Tran})$$
 with

$$\mathsf{Tran}((s_1, s_2)) = \{M_1 | M_2 \mid M_1 \in \mathsf{Tran}_1(s_1), M_2 \in \mathsf{Tran}_2(s_2)\}$$

Theorem (independent implementability)

For all AA \mathcal{A}_1 , \mathcal{A}_2 , \mathcal{A}_3 , \mathcal{A}_4 :

$$A_1 \leq A_3 \& A_2 \leq A_4 \implies A_1 || A_2 \leq A_3 || A_4$$

Structural Operations: Quotient

Let $A_1 = (S_1, S_1^0, Tran_1)$ and $A_2 = (S_2, S_2^0, Tran_2)$ be AA.

Define $A_1/A_2 = (S, S^0, Tran)$:

- $S = 2^{S_1 \times S_2}$
- write $S_2^0=\{s_2^{0,1},\ldots,s_2^{0,p}\}$ and let $S^0=\{\{(s_1^{0,q},s_2^{0,q})\mid q\in\{1,\ldots,p\}\}\mid \forall q:s_1^{0,q}\in S_1^0\}$
- Tran =

Structural Operations: Quotient

Let $A_1 = (S_1, S_1^0, Tran_1)$ and $A_2 = (S_2, S_2^0, Tran_2)$ be AA.

Define $A_1/A_2 = (S, S^0, Tran)$:

- $S = 2^{S_1 \times S_2}$
- write $S_2^0 = \{s_2^{0,1}, \dots, s_2^{0,p}\}$ and let $S^0 = \{\{(s_1^{0,q}, s_2^{0,q}) \mid q \in \{1, \dots, p\}\} \mid \forall q : s_1^{0,q} \in S_1^0\}$
- Tran =

Structural Operations: Quotient

Let $A_1 = (S_1, S_1^0, \mathsf{Tran}_1)$ and $A_2 = (S_2, S_2^0, \mathsf{Tran}_2)$ be AA.

Define $A_1/A_2 = (S, S^0, Tran)$:

- $S = 2^{S_1 \times S_2}$
- write $S_2^0 = \{s_2^{0,1}, \dots, s_2^{0,p}\}$ and let $S^0 = \{\{(s_1^{0,q}, s_2^{0,q}) \mid q \in \{1, \dots, p\}\} \mid \forall q : s_1^{0,q} \in S_1^0\}$
- Tran = ...

Theorem

For all AA A_1 , A_2 , A_3 :

$$A_1 \parallel A_2 < A_3 \iff A_2 < A_3 / A_1$$

• up to \equiv , / is the adjoint (or residual) of \parallel

A Step Back, Again

Let Mod be a set of models with an equivalence \sim .

Definition

A complete specification theory for (Mod, \sim) is $(\mathsf{Spec}, \leq, \parallel, \chi)$ such that $(\mathsf{Spec}, \leq, \chi)$ is a specification theory for (Mod, \sim) and $(\mathsf{Spec}, \leq, \parallel)$ forms a bounded distribute commutative residuated lattice up to \equiv .

- \Rightarrow || distributes over \lor and has a unit U, up to \equiv
- \Rightarrow || has a residual /, up to \equiv
 - a compositional algebra of specifications: for example,

$$\begin{split} (\mathcal{S}_1 \wedge \mathcal{S}_2)/\mathcal{S}_3 &\equiv \mathcal{S}_1/\mathcal{S}_3 \wedge \mathcal{S}_2/\mathcal{S}_3 \\ \mathcal{S}_1 \| (\mathcal{S}_2/\mathcal{S}_1) \leq \mathcal{S}_2 & (\mathcal{S}_1 \| \mathcal{S}_2)/\mathcal{S}_1 \leq \mathcal{S}_2 \\ \bot \| \mathcal{S} &\equiv \bot & \mathcal{S}/\mathrm{U} \equiv \mathcal{S} & \mathrm{U} \leq \mathcal{S}/\mathcal{S} & \mathrm{U} \equiv \bot/\bot \\ & (\mathcal{S}_1/\mathcal{S}_2)/\mathcal{S}_3 \equiv \mathcal{S}_1/(\mathcal{S}_2 \| \mathcal{S}_3) \\ & (\mathrm{U}/\mathcal{S}_1) \| (\mathrm{U}/\mathcal{S}_2) < \mathrm{U}/(\mathcal{S}_1 \| \mathcal{S}_2) \end{split}$$

A Step Back, Again

Let Mod be a set of models with an equivalence \sim .

Definition

A complete specification theory for (Mod, \sim) is (Spec, \leq , \parallel , χ) such that (Spec, \leq , χ) is a specification theory for (Mod, \sim) and (Spec, \leq , \parallel) forms a bounded distribute commutative residuated lattice up to \equiv .

- \Rightarrow || distributes over \lor and has a unit U, up to \equiv
- \Rightarrow || has a residual /, up to \equiv
 - a compositional algebra of specifications
 - relation to linear logic and Girard quantales

Some Extensions

Specifications	Models	L	С	Q	Notes
HML ^R , DMTS, AA	LTS, bisim.	1	1	✓	bisimulation
HML ^R , DMTS, AA	LTS, any	X	X	X	LTBT spectrum
DMTS	LTS, fail./div.				failure/divergence equivalence; no disjunction
MECS					timed bisim.; no disjunction
TIOA	TIOA, t.bisim.	\approx	1	\approx	no disjunction; weak quotient
IMC	PA, p.bisim.	X	X	X	probabilistic bisim. no disjunction
APA	PA, p.bisim.	\approx	1	X	no disjunction

(Logical; Compositional; Qomplete)

Conclusion?

- incrementality: $\mathcal{M} \models \mathcal{S}_1 \& \mathcal{S}_1 \leq \mathcal{S}_2 \Longrightarrow \mathcal{M} \models \mathcal{S}_2$
- conjunction: $\mathcal{M} \models \mathcal{S}_1 \& \mathcal{M} \models \mathcal{S}_2 \iff \mathcal{M} \models \mathcal{S}_1 \land \mathcal{S}_2$
- disjunction: $\mathcal{M} \models \mathcal{S}_1$ or $\mathcal{M} \models \mathcal{S}_2 \iff \mathcal{M} \models \mathcal{S}_1 \vee \mathcal{S}_2$
- compositionality: $\mathcal{M}_1 \models \mathcal{S}_1 \& \mathcal{M}_2 \models \mathcal{S}_2 \Longrightarrow \mathcal{M}_1 \| \mathcal{M}_2 \models \mathcal{S}_1 \| \mathcal{S}_2$
- quotient: $\mathcal{M}_1 \models \mathcal{S}_1 \& \mathcal{M}_2 \models \mathcal{S}/\mathcal{S}_1 \Longrightarrow \mathcal{M}_1 || \mathcal{M}_2 \models \mathcal{S}$
- safety properties
- Are these all the properties we want?
- What about real time, probabilities, hybrid systems?
- Adding concatenation into the mix → some type of residuated concurrent Kleene algebra: further work
- Robust specification theories, with refinement replaced by distance:
 OK; but what is the algebra?