Featured Games

Uli Fahrenberg¹ Axel Legay²

École Polytechnique, Palaiseau, France

Université Catholique de Louvain, Belgium

TASE 2021

- Model checking is useful
- ... and often done by solving two-player games
- ... but hampered by state-space explosion
- For software product lines: featured model checking
- ... replacing the boolean codomain by the lattice of products
- ... but scant literature about featured games
- \Rightarrow Let's do this!

Introduction	Contributions	Featured Discounted Games	Conclusion

1 Introduction

Introduction Contributions Conclusion Conclu

A coffee machine SPL, as a featured transition system (FTS)

- two features, \in and $\$ \Rightarrow$ four products: \emptyset , $\{\in\}$, $\{\$\}$, $\{\in,\$\}$
- energy annotations:
 - brewing std coffee uses $1\pm10\%$ enery units
 - brewing xxl coffee uses $2 \pm 10\%$ enery units
- Our concern: how robust is this, depending on the product?

Minimal and maximal energy consumption:

Example:

- infinite run (ins, std, ins, std, ...)
- consumption difference (0, 0.2, 0, 0.2, ...)
- standard trick: apply discounting; here $\lambda = 0.99$
- accumulated difference: $0 + \lambda \cdot 0.2 + \lambda^2 \cdot 0 + \lambda^3 \cdot 0.2 + \cdots = 9.95$

• to describe general robustness of a model under the discounted semantics, use discounted bisimulation distance:

$$d(s_1, s_2) = \max \begin{cases} \max_{s_1 \xrightarrow{a, x} t_1} \min_{s_2 \xrightarrow{a, y} t_2} |x - y| + \lambda \cdot d(t_1, t_2) \\ \max_{s_2 \xrightarrow{a, y} t_2} \min_{s_1 \xrightarrow{a, x} t_1} |x - y| + \lambda \cdot d(t_1, t_2) \end{cases}$$

- to compute discounted bisimulation distance, use discounted games
- and now extend this to FTS

	0		0
Introduction	Contributions	Featured Discounted Games	Conclusion

- We introduce featured extensions of
 - reachability games
 - minimum reachability games
 - discounted games
 - energy games
 - parity games
- For each type, we show how to solve games by computing featured attractors
- For each type, we show how to compute optimal featured strategies
- Related work: ter Beek, van Loo, de Vink, Willemse: Familybased SPL model checking using parity games with variability, FASE 2020: featured μ -calculus for FTS; translation to featured parity games; but different algorithm for solving these

Showing one of our contributions in detail.

- $\bullet\,$ Remember there are others $\ddot{-}$
- Developments are quite similar for the different game types (reachability; minimum reachability; discounted; energy; parity)
- but no uniform setting exists
 - \Rightarrow Future work
 - See Gimbert, Zielonka: Games where you can play optimally without any memory, CONCUR 2005 and Bouyer, Le Roux, Oualhadj, Randour, Vandenhove: Games where you can play optimally with arena-independent finite memory, CONCUR 2020 for first steps in that direction

Introduction	Contributions	Featured Discounted Games	Conclusion
0000	O	○●○○○○	O
Discounted	Games		

- a weighted game structure: $G = (S_1, S_2, i, T)$
 - S_1 , S_2 states of players 1 and 2
 - $S_1 \cap S_2 = \emptyset$; $S := S_1 \cup S_2$
 - $i \in S$ initial
 - $T \subseteq S \times \mathbb{Z} \times S$ transitions
- $\lambda \in]0,1[$ discounting factor
- intuition:
 - players cooperate to create infinite path in G starting in i
 - when $s \in S_i$, player *i* determines next transition
 - value of infinite path $\pi = s_1 \xrightarrow{x_1} s_2 \xrightarrow{x_2} s_3 \xrightarrow{x_3} \cdots$:

$$\operatorname{val}(\pi) = x_1 + \lambda x_2 + \lambda^2 x_3 + \cdots$$

 goal of player 1 is to create an infinite path with maximal value; player 2: minimal

0000	0	00000	0
Disco	unted Games, contd.		
	$G = (S_1, S_2, i, T) \text{ weighter players cooperate to creat when } s \in S_i, \text{ player } i \text{ detervalue of infinite path } \pi = goal of player 1: create an configurations for player i: \Theta_istrategies for player i: \Theta_ioutcome of strategy pair \ellout(\theta_1, \theta_2) = s_1 \xrightarrow{x_1} s_2 \xrightarrow{x_2} \ell$	d game structure, $\lambda \in]0, 1[$ e infinite path in <i>G</i> starting rmines next transition $s_1 \xrightarrow{x_1} s_2 \xrightarrow{x_2} s_3 \xrightarrow{x_3} \cdots$: val $(\pi) = x_1 + \lambda x_2 + \lambda^2 x_3 + \lambda^2 x_3$	disc. factor in i + \cdots value d $(\pi) \in S_i$ } $(\pi)_2) \in T$ } and if $s_k \in S_1$ if $s_k \in S_2$
•	$\theta_1 \in \Theta$	$\begin{array}{c} & & \\$	

Featured Discounted Games

Solving Discour	nted Games		
Introduction	Contributions	Featured Discounted Games	Conclusion
0000	0	000●00	0

Zwick, Paterson: The complexity of mean payoff games on graphs, TCS 1996:

- For $G = (S_1, S_2, i, T)$ a weighted game structure, define attr : $(S \to \mathbb{R}) \to (S \to \mathbb{R})$ by attr $(U)(s) = \begin{cases} \max_{s \to s'} x + \lambda U(s') & \text{if } s \in S_1 \\ \min_{s \to s'} x + \lambda U(s') & \text{if } s \in S_2 \end{cases}$
- Theorem: The equation system V = attr(V) has a unique solution attr^{*}: S → ℝ, and val(G) = attr^{*}(i)
- Say that a strategy θ_1 is locally optimal if $\operatorname{attr}^*(s) = \theta_1(s)_1 + \lambda \operatorname{attr}^*(\theta_1(s)_2)$ for all $s \in S_1$
- Theorem: Any locally optimal strategy is optimal, and any discounted game admits a locally optimal strategy. Also, locally optimal strategies are easy to compute.

Featured Discounted Games

- a featured weighted game structure: $G = (S_1, S_2, i, T, \gamma)$
 - $G = (S_1, S_2, i, T)$ a weighted game structure; $\gamma : T \to \mathbb{B}(N)$
 - N finite set of features; $\mathbb{B}(N)$ boolean expressions over N
- the projection of G to product $p \subseteq N$: the weighted game structure $\text{proj}_p(G) = (S_1, S_2, i, T')$ with $T' = \{t \in T \mid p \models \gamma(t)\}$
- Goal: solve discounted games proj_p(G) = (S₁, S₂, i, T') for all products p simultaneously

Introduction Contributions Contributions Conclusion Conclusion

Featured Discounted Games: Our Results

• for $G = (S_1, S_2, i, T, \gamma)$ a featured weighted game structure, define fattr : $(S \to (\mathbb{B}(N) \to \mathbb{R})) \to (S \to (\mathbb{B}(N) \to \mathbb{R}))$ by

$$fattr(U)(s)(\phi) = \begin{cases} \max_{s \to s'} x + \lambda U(s')(\gamma((s, x, s')) \land \phi) \\ s \to s' & \text{if } s \in S_1 \\ \min_{s \to s'} x + \lambda U(s')(\gamma((s, x, s')) \land \phi) \\ s \to s' & \text{if } s \in S_2 \end{cases}$$

- Theorem: The equation system V = fattr(V) has a unique solution $fattr^* : S \to (\mathbb{B}(N) \to \mathbb{R})$, and for any $p \subseteq N$, $val(proj_p(G)) = fattr^*(i)(\gamma_p)$
- Theorem: Any featured discounted game admits a locally optimal featured strategy. If ξ₁ is locally optimal, then ξ₁(γ_p) is optimal in proj_p(G) for every p ⊆ N.

Conclusion			
Introduction	Contributions	Featured Discounted Games	Conclusion
0000	0		●

- We have introduced featured extensions of
 - reachability games
 - minimum reachability games
 - discounted games
 - energy games
 - parity games
- We have shown how to solve games of each type:
 - featured attractors
 - optimal featured strategies
- Extend to mean-payoff games by reduction to energy and discounted games
- Algorithms using guard partitions, late splitting and BDDs
- Featured timed games; featured stochastic games