Posets With and Without Interfaces

Uli Fahrenberg

EPITA Rennes, France

13 June 2021

Posets	Iposets	GPS-Iposets

2 Posets With interfaces

Series-Parallel Posets

Posets

0000

 a poset: finite set P plus partial order ≤: reflexive, transitive, antisymmetric

posets

• parallel composition of posets (P_1, \leq_1) , (P_2, \leq_2) :

$$P_1 \otimes P_2 = (P_1 \sqcup P_2, \leq_1 \cup \leq_2)$$
$$\uparrow\uparrow \text{ disjoint union}$$

• serial composition:

$$P_1 * P_2 = (P_1 \sqcup P_2, \leq_1 \cup \leq_2 \cup P_1 \times P_2)$$

$$\uparrow P_1 \text{ before } P_2$$

GPS-Iposets

Series-Parallel Posets

Posets

0000

 a poset: finite set P plus partial order ≤: reflexive, transitive, antisymmetric

posets

• parallel composition of posets (P_1, \leq_1) , (P_2, \leq_2) :

$$P_1 \otimes P_2 = (P_1 \sqcup P_2, \leq_1 \cup \leq_2)$$

• serial composition:

$$P_1 * P_2 = (P_1 \sqcup P_2, \leq_1 \cup \leq_2 \cup P_1 \times P_2)$$

Series-Parallel Posets

Definition (Winkowski '77, Grabowski '81)

A poset is series-parallel (sp) if it is empty or can be obtained from the singleton poset by a finite number of serial and parallel compositions.

Theorem (Grabowski '81)

A poset is sp iff it does not contain N as an induced subposet.

The equational theory of sp-posets is well-understood: [Gischer 1988, TCS], [Bloom-Esik 1996, MSCS]

- already in [Wiener 1914], then [Winkowski '77], [Lamport '86], [van Glabbeek '90], [Vogler '91], [Janicky '93], etc.
- interval orders: posets which have representation as (real) intervals, ordered by $max_1 \leq min_2$
- Lemma (Fishburn '70): A poset is interval iff it does not contain $2+2 = \begin{pmatrix} \vdots \longrightarrow \vdots \\ \vdots \longrightarrow \vdots \end{pmatrix}$ as induced subposet.
- intuitively: if $a \longrightarrow b$ and $c \longrightarrow d$, then also $a \longrightarrow d$ or $c \longrightarrow b$

- interval orders are used in Petri net theory and distributed computing
- but have no algebraic representation (so far)
- sp-posets are used in concurrency theory & have nice algebraic theory
- Concurrent Kleene algebra
- int. orders are 2+2-free; sp-posets are N-free
- incomparable: 2+2 is sp; N is interval
- \Rightarrow [F.-Johansen-Struth-Thapa 2020, RAMiCS]

sets 000	Iposets ●000	GPS-Iposets 00000
Posets With Interfaces		

Definition

A poset with interfaces (iposet) is a poset P plus two injections

$$[n] \xrightarrow{s} P \xleftarrow{t} [m]$$

such that s[n] is minimal and t[m] is maximal in P.

- $([n] = \{1, \ldots, n\})$
- s: starting interface ; t: terminating interface
- events in t[m] are unfinished ; events in s[n] are "unstarted"

Gluing Composition

Definition

The gluing composition of iposets $s_1 : [n] \to (P_1, \leq_1) \leftarrow [m] : t_1$ and $s_2 : [m] \to (P_2, \leq_2) \leftarrow [k] : t_2$:

$$P_1 * P_2 = \begin{cases} (P_1 \sqcup P_2)/t_1(i) = s_2(i) \\ \leq_1 \cup \leq_2 \cup (P_1 \setminus t_1[m]) \times (P_2 \setminus s_2[m]) \end{cases}$$

only defined if terminating int. of P₁ is equal to starting int. of P₂
iposets form category (with gluing as composition)

Uli Fahrenberg

Gluing Composition

Definition

The gluing composition of iposets $s_1 : [n] \to (P_1, \leq_1) \leftarrow [m] : t_1$ and $s_2 : [m] \to (P_2, \leq_2) \leftarrow [k] : t_2$:

$$P_1 * P_2 = \begin{cases} (P_1 \sqcup P_2)/t_1(i) = s_2(i) \\ \leq_1 \cup \leq_2 \cup (P_1 \setminus t_1[m]) \times (P_2 \setminus s_2[m]) \end{cases}$$

only defined if terminating int. of P₁ is equal to starting int. of P₂
iposets form category (with gluing as composition)

Uli Fahrenberg

Gluing-Parallel Iposets

ullet recall *sp-posets*: freely generated from \bigcirc using * and \otimes

Iposets

• the four singleton iposets:

• gp-iposets: generated from \bigcirc , 1) , (1 , 1) using * and \otimes

Fact

Posets

Gp-iposets are not freely generated, for example:

$$\begin{pmatrix} \P^{1} \\ P \end{pmatrix} * \begin{pmatrix} 1 \\ Q \end{pmatrix} = \begin{pmatrix} \bigcirc \\ P * Q \end{pmatrix} \qquad \begin{pmatrix} \P^{1} \\ P \end{pmatrix} * \begin{pmatrix} 1 \\ M \end{pmatrix} = \begin{pmatrix} \P^{1} \\ P * Q \end{pmatrix}$$
$$\begin{pmatrix} 1 \\ P * Q \end{pmatrix} = \begin{pmatrix} 1 \\ P * Q \end{pmatrix} \qquad \begin{pmatrix} 1 \\ P * Q \end{pmatrix} = \begin{pmatrix} 1 \\ P * Q \end{pmatrix} \qquad \begin{pmatrix} 1 \\ P & P \end{pmatrix} * \begin{pmatrix} 1 \\ Q & P & P \end{pmatrix} = \begin{pmatrix} 1 \\ P & Q \end{pmatrix}$$

Forbidden Substructures

- sp-posets $\stackrel{\frown}{=}$ **N**-free
- interval orders $\stackrel{\circ}{=} 2+2$ -free
- gluing-parallel posets \Rightarrow free of

Forbidden Substructures

- sp-posets $\stackrel{\circ}{=}$ **N**-free
- interval orders $\stackrel{\circ}{=} 2+2$ -free
- gluing-parallel posets \Rightarrow free of

Forbidden Substructures

- sp-posets $\hat{=}$ **N**-free
- interval orders $\stackrel{\circ}{=} 2+2$ -free
- gluing-parallel posets \Rightarrow free of

Posets	Iposets	GPS-Iposets
		00000

The 8-Point Forbidden Substructure is Decomposable?!?

- second iposet is not gp "for the wrong reasons"
- interfaces "permuted wrong"
- same for all 10-point forbidden substructures: all "decomposable up to interface permutation"

Posets	lposets	GPS-Iposets
		0000

The 8-Point Forbidden Substructure is Decomposable?!?

- second iposet is not gp "for the wrong reasons"
- interfaces "permuted wrong"
- same for all 10-point forbidden substructures: all "decomposable up to interface permutation"
 - what does that even mean?

Gluing-Parallel-Symmetric Iposets

 recall gp-iposets: generated from ○ , 1 ▶ , (1 , and 1 № 1 (using * and ⊗)

posets

- let ${}^1_2 \bigotimes_{1}^2 = (s, [2], t) : 2 \rightarrow 2$ be the non-trivial symmetry on 2
- gps-iposets: generated from ○, 1 ▶, (1, 1 №1, and ¹ №2 (using * and ⊗)

First lemma

Posets

An iposet is gps iff its underlying poset is.

• so all interface permutations included!

GPS-Iposets

osets	Iposets	GPS-Iposets
		0000

Somo numbo	vc
опе пппре	

п	P(<i>n</i>)	GP(<i>n</i>)	GPS(n)	IP(n)	GPI(n)	GPSI(n)
0	1	1	1	1	1	1
1	1	1	1	4	4	4
2	2	2	2	17	16	17
3	5	5	5	86	74	86
4	16	16	16	532	419	532
5	63	63	63	4068	2980	4068
6	318	313	313	38.933	26.566	38.447
7	2045	1903	1903	474.822	289.279	
8	16.999	13.943	13.944	7.558.620	3.726.311	
9	183.231	120.442	120.465			
10	201.608	1.206.459				

Gps-Posets Without Interfaces

Definition

Let P_1 and P_2 be posets.

- The right-interior gluing composition $P_1 \triangleright^i P_2$: carrier set $P_1 \sqcup P_2$, $(p,i) < (q,j) \Leftrightarrow (i = j \land p <_i q) \lor (i < j \land q \notin P_2^{\min})$
- The left-interior gluing composition $P_1 \stackrel{i}{\triangleright} P_2$: carrier set $P_1 \sqcup P_2$, $(p,i) < (q,j) \Leftrightarrow (i = j \land p <_i q) \lor (i < j \land p \notin P_1^{\max})$
- The Winkowski multi-composition $P_1 \ge P_2$: defined if $|P_1^{\max}| = |P_2^{\min}|$, and then $P_1 \ge P_2 = \{P_1 \ge_f P_2 \mid f \text{ bijection} P_1^{\max} \rightarrow P_2^{\min}\}$, where $P_1 \ge_f P_2$ is the poset with carrier set $(P_1 \sqcup P_2)_{/x=f(x)}$ and order $(p, i) < (q, j) \Leftrightarrow (i = j \land p <_i q) \lor (i < j \land p \notin P_1^{\max} \land q \notin P_2^{\min})$

Proposition

Gps-posets are generated from \bigcirc using \otimes , *, \triangleright^i , $i \triangleright$, and \ge .

$\mathsf{Gps} = \mathsf{Sp}$ -Intervals

Definition

Let P, V be posets. An interval representation of P in V is a pair of functions $f, g: P \to V$ such that:

- $f(p) \leq g(p)$ for all $p \in P$,
- 2 p < q iff g(p) < f(q) for all $p, q \in P$.

Proposition

A poset is gps iff it admits an interval representation in an sp-poset.

Conjecture

A poset is gps iff it does not contain any of the Small Forbidden Five.