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Claus T: Quantitative Quantitative Quantitative Analysis

Quantitative Models
x≥4

**

x :=0
jj

Quantitative Logics

Pr≤.1(♦error)

Quantitative Verification

JφK(s) = 3.14
d(s, t) = 42

Boolean world “Quantification”
Trace equivalence ≡ Linear distances dL
Bisimilarity ∼ Branching distances dB
s ∼ t implies s ≡ t dL(s, t) ≤ dB(s, t)
s |= φ or s 6|= φ JφK(s) is a quantity
s ∼ t iff ∀φ : s |= φ⇔ t |= φ dB(s, t) = supφ d

(
JφK(s), JφK(t)

)
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Compositional Verification

Mod

model

Spec

specification

|=

Mod |= Spec1 & Spec1 ≤ Spec2 =⇒ Mod |= Spec2
Mod |= Spec1 & Mod |= Spec2 =⇒ Mod |= Spec1 ∧ Spec2
Mod1 |= Spec1 & Mod2 |= Spec2 =⇒ Mod1‖Mod2 |= Spec1‖Spec2
Mod1 |= Spec1 & Mod2 |= Spec/Spec1 =⇒ Mod1‖Mod2 |= Spec

bottom-up and top-down
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Quantitative Compositional Verification?

Mod

quantitative model

Spec

quantitative specification

|=ε

Mod |=ε Spec1 & Spec1 ≤ε Spec2 =⇒ Mod |=ε Spec2
Mod |=ε Spec1 & Mod |=ε Spec2 =⇒ Mod |=ε Spec1 ∧ Spec2
Mod1 |=ε Spec1 & Mod2 |=ε Spec2 =⇒ Mod1‖Mod2 |=ε Spec1‖Spec2
Mod1 |=ε Spec1&Mod2 |=ε Spec/Spec1 =⇒ Mod1‖Mod2 |=ε Spec

surely not the same ε everywhere!?
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User Stories

“In your quantitative verification, what type of distances do you use?”

point-wise D(σ, τ) = supi |σi − τi |

accumulating D(σ, τ) =
∑

i |σi − τi |

limit-average D(σ, τ) = lim supN
1
N
∑N

i=0 |σi − τi |

discounted D(σ, τ) =
∑

i λ
i |σi − τi |

maximum-lead D(σ, τ) = supN
∣∣∑N

i=0(σi − τi )
∣∣

Cantor D(σ, τ) = 1/(1 + inf{j | σj 6= τj})

discrete D(σ, τ) = 0 if σ = τ ; ∞ otherwise
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Challenge (ca. 2009)

In quantitative verification, lots of different distances
Develop theory to cover all/most of them

idea: use bisimulation games

⇒ The Quantitative Linear-Time–Branching-Time Spectrum
QAPL 2011, FSTTCS 2011, TCS 2014

Challenge (ca. 2012):
How to make this compositional?
Still not satisfied!
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The Linear-Time–Branching-Time Spectrum

van Glabbeek, 2001 (excerpt):

bisimulation eq.

nested simulation eq.

ready simulation eq.
possible-futures eq.

simulation eq.
readiness eq.

trace eq.
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Spoiler Duplicator

Spoiler wins

s t

a

b c

a a

b c

Uli Fahrenberg A Generic Approach to Quantitative Verification 15/ 37



Introduction QLTBT Compositional Verification Conclusion

The Simulation Game

Spoiler Duplicator

Spoiler wins

s t

a

b c

a a

b c

Uli Fahrenberg A Generic Approach to Quantitative Verification 16/ 37



Introduction QLTBT Compositional Verification Conclusion

The Simulation Game

Spoiler Duplicator

Spoiler wins

s t

a

b c

a a

b c

Uli Fahrenberg A Generic Approach to Quantitative Verification 17/ 37



Introduction QLTBT Compositional Verification Conclusion

The Simulation Game

Spoiler Duplicator

Spoiler wins

s t

a

b c

a a

b c

Uli Fahrenberg A Generic Approach to Quantitative Verification 18/ 37



Introduction QLTBT Compositional Verification Conclusion

The Simulation Game

Spoiler Duplicator

Spoiler wins

s t

a

b c

a a

b c

Uli Fahrenberg A Generic Approach to Quantitative Verification 19/ 37



Introduction QLTBT Compositional Verification Conclusion

The Simulation Game

Spoiler Duplicator

Spoiler wins

s t

a

b c

a a

b c

Uli Fahrenberg A Generic Approach to Quantitative Verification 20/ 37



Introduction QLTBT Compositional Verification Conclusion

The LTBT Spectrum, Game Version

bisimulation eq.

3-nested simulation pr.

2-nested simulation eq.

2-nested simulation pr.

simulation eq.

simulation pr.

2-nested ready sim. eq.

2-nested ready sim. pr.

ready simulation eq.

ready simulation pr.

Uli Fahrenberg A Generic Approach to Quantitative Verification 21/ 37



Introduction QLTBT Compositional Verification Conclusion

The LTBT Spectrum, Game Version

bisimulation eq.

3-nested simulation pr.

2-nested simulation eq.

2-nested simulation pr.

simulation eq.

simulation pr.

2-nested ready sim. eq.

2-nested ready sim. pr.

ready simulation eq.

ready simulation pr.

3-nested trace inc.

2-nested trace eq.

2-nested trace inc.

trace eq.

trace inc.

2-nested readiness eq.

2-nested readiness pr.

readiness eq.

readiness pr.

Uli Fahrenberg A Generic Approach to Quantitative Verification 22/ 37



Introduction QLTBT Compositional Verification Conclusion

The Simulation Game, Revisited

1. Player 1 chooses edge from s (leading to s ′)
2. Player 2 chooses matching edge from t (leading to t ′)
3. Game continues from configuration s ′, t ′

ω. If Player 2 can always answer: YES, t simulates s.
Otherwise: NO

Or, as an Ehrenfeucht-Fraïssé game (“delayed evaluation”):
1. Player 1 chooses edge from s (leading to s ′)
2. Player 2 chooses edge from t (leading to t ′)
3. Game continues from new configuration s ′, t ′

ω. At the end (maybe after infinitely many rounds!),
compare the chosen traces:
If the trace chosen by t matches the one chosen by s: YES
Otherwise: NO
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Quantitative Ehrenfeucht-Fraïssé Games

The quantitative setting:
Assume we have a way, possibly application-determined, to measure
distances of (finite or infinite) traces
a hemimetric D : (σ, τ) 7→ D(σ, τ) ∈ R≥0 ∪ {∞}

The quantitative Ehrenfeucht-Fraïssé game:
1. Player 1 chooses edge from s (leading to s ′)
2. Player 2 chooses edge from t (leading to t ′)
3. Game continues from new configuration s ′, t ′

ω. At the end, compare the chosen traces σ, τ :
The simulation distance from s to t is defined to be D(σ, τ)
Player 1 plays to maximize D(σ, τ); Player 2 plays to minimize

This can be generalized to all the games in the LTBT spectrum.
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The Quantitative Linear-Time–Branching-Time Spectrum
For any trace distance D : (σ, τ) 7→ D(σ, τ) ∈ R≥0 ∪ {∞}:
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Quantitative EF Games: Some Details

Configuration of the game: (π, ρ): π the Player-1 choices up to
now; ρ the Player-2 choices
Strategy: mapping from configurations to next moves

Θi : set of Player-i strategies
Simulation strategy: Player-1 moves allowed from end of π
Bisimulation strategy: Player-1 moves allowed from end of π
or end of ρ

(hence π and ρ are generally not paths – “mingled paths”)
Pair of strategies =⇒ (possibly infinite) sequence of configurations
Take the limit; unmingle =⇒ pair of (possibly infinite) traces (σ, τ)
Bisimulation distance: sup

θ1∈Θ1

inf
θ2∈Θ2

dT (σ, τ)

Simulation distance: sup
θ1∈Θ0

1

inf
θ2∈Θ2

dT (σ, τ) (restricting Player 1’s
capabilities)
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Quantitative EF Games: Some Details – II

Blind Player-1 strategies: depend only on the end of ρ
(“cannot see Player-2 moves”)
Θ̃1: set of blind Player-1 strategies

Trace inclusion distance: sup
θ1∈Θ̃0

1

inf
θ2∈Θ2

dT (σ, τ)

For nesting: count the number of times Player 1 switches between
end of π and end of ρ

Θk
1 : k switches allowed

Nested simulation distance: sup
θ1∈Θ1

1

inf
θ2∈Θ2

dT (σ, τ)

Nested trace inclusion distance: sup
θ1∈Θ̃1

1

inf
θ2∈Θ2

dT (σ, τ) (!)

For ready: allow extra “I’ll see you” Player-1 transition from end of ρ
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Transfer Theorem

Theorem
Given two equivalences or preorders which are inequivalent in the
qualitative setting,
and a separating trace distance,
then the corresponding QLTBT distances are topologically inequivalent.
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Recursive Characterization

Theorem
If the trace distance D : (σ, τ) 7→ d(σ, τ) has a decomposition
d = g ◦ f : Tr× Tr→ L→ R≥0 ∪ {∞} through a complete lattice L,
and f has a recursive characterization, i.e. such that
f (a.σ, b.τ) = F (a, b, f (σ, τ)) for some F : Σ× Σ× L→ L which is
monotone in the third coordinate,
then all distances in the corresponding QLTBT are given as least fixed
points of some functionals using F .

All trace distances we know can be expressed recursively like this.
L is “memory”
also gives “relation family” characterization
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Specification Theories

Let Mod be a set of models with an equivalence ∼.

Definition
A complete specification theory for (Mod,∼) is (Spec,≤, ‖, χ) such that

≤ is a refinement preorder on Spec
χ : Mod→ Spec picks out characteristic specifications

⇐= ∀M1,M2 ∈ Mod :M1 ∼M2 ⇐⇒ χ(M1) ≤ χ(M2)
(Spec,≤, ‖) forms a bounded commutative distributive residuated
lattice up to ≤ ∩≥

⇒ ∨ and ∧ on Spec; double distributivity; ⊥,> ∈ Spec
everything up to modal equivalence ≡ = ≤ ∩≥

⇒ ‖ distributes over ∨, has unit U, has residual / (up to ≡)
S1‖S2 ≤ S3 ⇐⇒ S2 ≤ S3/S1
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Examples

Disjunctive modal transition systems
Acceptance automata
Hennessy-Milner logic with maximal fixed points

CONCUR 2013, ICTAC 2014, I&C 2020 (all with ∼ = bisimulation)

Uli Fahrenberg A Generic Approach to Quantitative Verification 31/ 37



Introduction QLTBT Compositional Verification Conclusion

Quantitative Specification Theories?

Definition (recall)
A complete specification theory for (Mod,∼) is (Spec,≤, ‖, χ) such that

≤ is a refinement preorder on Spec
M1 ∼M2 ⇐⇒ χ(M1) ≤ χ(M2)
(Spec,≤, ‖) forms a b.c.d. residuated lattice up to ≡

generalize ∼ by pseudometric dMod
dMod(M1,M2) = 0 iffM1 ∼M2

generalize ≤ by hemimetric d
dMod(M1,M2) = d(χ(M1), χ(M2))
d(M,S) = d(χ(M),S)

still want (Spec,≤, ‖) to be a b.c.d. residuated lattice up to ≡
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Example: Disjunctive Modal Transition Systems

For DMTS/AA/HMLmax:
dMod: any bisimulation distance
d : corresponding modal refinement distance
transitivity ⇒ triangle ineq.: d(S1,S2) + d(S2,S3) ≥ d(S1,S3)
d(S,S1 ∧ S2) = max(d(S,S1), d(S,S2)) or ∞
d(S1 ∨ S2,S) = max(d(S1,S), d(S2,S)) or ∞
quotient is quantitative residual: d(S1‖S2,S3) = d(S2,S3/S1)
for ‖ itself, uniform continuity: a function P : R≥0 ×R≥0 → R≥0
such that d(S1‖S2,S3‖S4) ≤ P(d(S1,S3), d(S2,S4))
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Recent Related Work

Mardare, Panangaden, Plotkin: Quantitative equational logics
Sprunger, Katsumata, Dubut, Hasuo: Fibrational bisimulations and
quantitative reasoning
Beohar, Ford, König, Milius, Schröder: Graded monads and
behavioural equivalence games
. . .
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Conclusion

A general theory of quantitative verification 3

A general theory of compositional quantitative verification_
\_( ") )_/

_

algebraic properties
for bisimulation 3

for LTBT spectrum 7

quantitative algebraic properties 7
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More generally

All of this is based on transition systems
. . . at least all my examples are

What about real-time systems? probabilistic systems? hybrid
systems?

lots of work on compositional verification for these
. . . and on quantitative verification
. . . but on compositional quantitative verification??

I don’t know how to make the connection to my work
What about non-interleaving concurrency?!

I believe this is necessary
higher-dimensional automata to the rescue?

Coalgebra is nice; but seems to have some the same problems?
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Thank you!

Jo Atlee, Sebastian S. Bauer, Nikola Beneš, Patricia Bouyer-Decitre,
Benoît Delahaye, Manfred Droste, Jérémy Dubut, Zoltán Ésik, Ignacio
Fábregas, Lisbeth Fajstrup, Martin Fränzle, Eric Goubault, Emmanuel
Haucourt, Christian Johansen, Jan Křetínský, Alexander Kurz, Kim G.
Larsen, Axel Legay, Nicolas Markey, Samuel Mimram, Dejan Ničković,
Rafael Olaechea, Karin Quaas, Martin Raussen, Jiří Srba, Georg Struth,
Claus Thrane, Louis-Marie Traonouez, Andrzej Wąsowski, Rafał
Wisniewski

Aline, Martin & Ionas
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