Languages of Higher-Dimensional Automata

Uli Fahrenberg

EPITA Rennes, France

Highlights 2022

Friends

- Christian Johansen, Gjøvik, Norway
- Georg Struth, Sheffield, UK & Lyon, France
- Krzysztof Ziemiański, Warsaw, Poland

Higher-dimensional automata

a in parallel with b:

a and b are independent

Higher-dimensional automata & concurrency

HDA as a model for concurrency:

- points: states
- edges: transitions
- squares, cubes etc.: independency relations (concurrently executing events)
- two-dimensional automata ≅ asynchronous transition systems
 [Bednarczyk]

[van Glabbeek 2006, TCS]: Up to history-preserving bisimilarity, HDA "generalize the main models of concurrency proposed in the literature" (notably, event structures and Petri nets)

Another example

- no cubes, all faces except middle horizontal
- a and b independent; c introduces conflict; d releases conflict

- Automata have languages
- HDA don't (hitherto)
- (focus has been on operational and topological aspects)

$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$L_3 = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \dots \right\}$$

$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$\begin{aligned} L_2 &= \left\{ \begin{pmatrix} a \\ b \to c \end{pmatrix}, \begin{pmatrix} a \\ c \to b \end{pmatrix}, \begin{pmatrix} b \\ a \to c \end{pmatrix}, \\ \begin{pmatrix} b \\ c \to a \end{pmatrix}, \begin{pmatrix} c \\ a \to b \end{pmatrix}, \begin{pmatrix} c \\ b \to a \end{pmatrix} \right\} \cup L_1 \end{aligned}$$
 sets of pomsets

 $L_3 = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right\} \cup L_2 \swarrow$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

not series-parallel!

Are all pomsets generated by HDA?

No, only (labeled) interval orders

- Poset (P, \leq) is an interval order iff it has an interval representation:
 - a set $I = \{[I_i, r_i]\}$ of real intervals
 - with order $[I_i, r_i] \leq [I_i, r_i]$ iff $r_i \leq I_i$
 - and an order isomorphism $(P, \leq) \leftrightarrow (I, \preceq)$
- [Fishburn 1970]

$$\frac{a}{c} - \frac{b}{d}$$

$$\begin{pmatrix} a \rightarrow b \\ c \rightarrow d \end{pmatrix}$$

Pomsets with interfaces

Definition (Ipomset)

A pomset with interfaces (and event order): $(P, <, --+, S, T, \lambda)$:

- finite set P;
- two partial orders < (precedence order), --→ (event order)
 - s.t. $< \cup --\rightarrow$ is a total relation;
- $S, T \subseteq P$ source and target interfaces
 - s.t. S is <-minimal, T is <-maximal.

Composition of ipomsets

- Gluing P * Q: P before Q, except for interfaces (which are identified)
- Parallel composition $P \parallel Q$: P above Q (disjoint union)

- For an HDA X, L(X) is
 - a set of interval-order ipomsets
 - closed under subsumption
- For any interval order P, \exists HDA \square^P for which $L(\square^P) = \{P\} \downarrow$
 - and then for any HDA X, $P \in L(X)$ iff $\exists f : \Box^P \to X$

Definition (Rational Languages over Σ)

- Generated by \emptyset , $\{\epsilon\}$, and all $\{[a]\}$, $\{[\bullet \ a]\}$, $\{[a \bullet]\}$, $\{[\bullet \ a \bullet]\}$ for $a \in \Sigma$
- under operations ∪, *, || and (Kleene plus) +

Theorem (à la Kleene)

A language is rational iff it is recognized by an HDA.

Some papers

[1] Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański.

Languages of higher-dimensional automata. *Mathematical Structures in Computer Science*, 31(5):575–613, 2021.

[2] Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański.

A Kleene theorem for higher-dimensional automata. *CoRR*, abs/2202.03791, 2022. Accepted for CONCUR 2022. https://arxiv.org/abs/2202.03791.

[3] Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański.

Posets with interfaces as a model for concurrency. *Information and Computation*, 285(2):104914, 2022.