Some Unsolved and Unsolvable Problems in Mathematics

Uli Fahrenberg

EPITA Rennes, France

20 June 2021

The Collatz Problem

The Collatz Conjecture

Definition

The Collatz function f is defined on natural numbers, by

$$f(x) = egin{cases} x/2 & ext{if } x ext{ is even} \\ 3x+1 & ext{if } x ext{ is odd} \end{cases}$$

Define $f_2(x) = f(f(x)), f_3(x) = f(f(f(x)));$ in general,

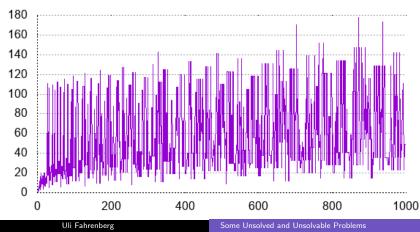
$$f_n(x) = \underbrace{f(f(f(\cdots (x) \cdots)))}_{n \text{ times}}$$

Collatz Conjecture

For every natural number x there is an index n for which $f_n(x) = 1$.

```
def collatz(x):
    if x \% 2 == 0:
         return x // 2
    else:
         return 3 * \times + 1
def collatz_sequence(x):
    while x != 1:
         print (x, "_", end="")
        x = collatz(x)
    print(x)
```

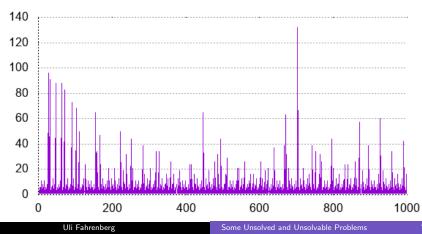
```
collatz_sequence(27)
```


Collatz 27

uli@sibelius: ~/Talks/2022/StAubin – 🗆 🧕
uli@sibelius:~/Talks/2022/StAubin\$./collatz1.py
27 82 41 124 62 31 94 47 142 71 214 107 322 161
484 242 121 364 182 91 274 137 412 206 103 310
155 466 233 700 350 175 526 263 790 395 1186 593
1780 890 445 1336 668 334 167 502 251 754 377 1
132 566 283 850 425 1276 638 319 958 479 1438 719
2158 1079 3238 1619 4858 2429 7288 3644 1822 911
2734 1367 4102 2051 6154 3077 9232 4616 2308 1154
577 1732 866 433 1300 650 325 976 488 244 122 61
184 92 46 23 70 35 106 53 160 80 40 20 10 5
16 8 4 2 1
uli@sibelius:~/Talks/2022/StAubin\$

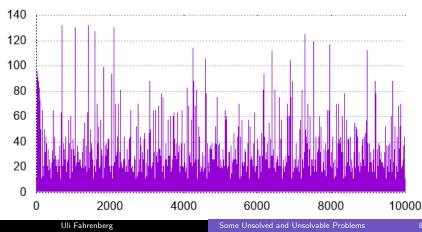
Collatz Numbers

$$f(x) = \begin{cases} x/2 & \text{if } x \text{ is even} \\ 3x+1 & \text{if } x \text{ is odd} \end{cases}$$


• the Collatz number of x: smallest index n for which $f_n(x) = 1$

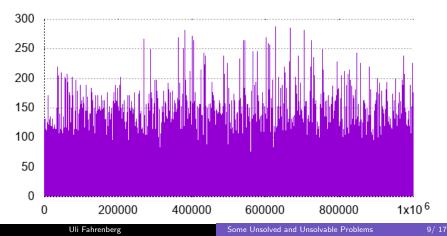
Flying Times

$$f(x) = \begin{cases} x/2 & \text{if } x \text{ is even} \\ 3x+1 & \text{if } x \text{ is odd} \end{cases}$$


• the flying time of x: smallest index n for which $f_n(x) \le x$

Flying Times

$$f(x) = egin{cases} x/2 & ext{if } x ext{ is even} \\ 3x+1 & ext{if } x ext{ is odd} \end{cases}$$


• the flying time of x: smallest index n for which $f_n(x) \le x$

Flying Times

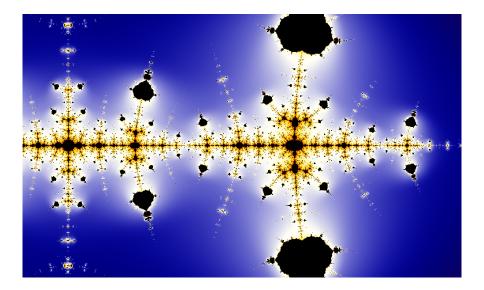
$$f(x) = egin{cases} x/2 & ext{if } x ext{ is even} \ 3x+1 & ext{if } x ext{ is odd} \end{cases}$$

• the flying time of x: smallest index n for which $f_n(x) \le x$

The Collatz Conjecture: Summing Up

Definition (recall)

The Collatz function f is defined on natural numbers, by


$$f(x) = egin{cases} x/2 & ext{if } x ext{ is even} \ 3x+1 & ext{if } x ext{ is odd} \end{cases}$$

Collatz Conjecture (recall)

For every natural number x there is an index n for which $f_n(x) = 1$.

- open since 1937
- "Mathematics may not be ready for such problems."
- "An extraordinarily difficult problem, completely out of reach of present day mathematics."

The Collatz Fractal

Part II

Unsolvable Problems

```
def collatz(x):
    if x \% 2 == 0:
         return x // 2
    else:
         return 4 * \times + 1
def collatz_sequence(x):
    while x != 1:
         print (x, "_", end="")
        x = collatz(x)
    print(x)
```

```
collatz_sequence(27)
```

Fact of life

All programs contain mistakes (bugs).

How to find bugs?

- Can we write programs which can find bugs in other programs?
 - Yes! Plenty exist.
- Can we write programs which can find all bugs in other programs?
 No!

Theorem

There exists no program which, when given another program Q as input, can decide whether Q ever finishes.

- So it is undecidable whether a program ever stops.
- That is, the *Halting problem* is unsolvable.
- (And so are plenty of other problems in mathematics!)

Theorem

There exists no program "halts" which, when given another program Q as input, can decide whether Q ever finishes.

Proof: Assume halts exists.

- The Collatz problem: simple to state, but unsolved
- The Halting problem: simple to state, but unsolvable
- Uli Fahrenberg, EPITA Rennes: any questions?