Some Unsolved and Unsolvable Problems in Mathematics

Uli Fahrenberg

EPITA Rennes, France

20 June 2021

The Collatz Problem

The Collatz Conjecture

Definition

The Collatz function f is defined on natural numbers, by

$$
f(x)= \begin{cases}x / 2 & \text { if } x \text { is even } \\ 3 x+1 & \text { if } x \text { is odd }\end{cases}
$$

Define $f_{2}(x)=f(f(x)), f_{3}(x)=f(f(f(x)))$; in general,

$$
f_{n}(x)=\underbrace{f(f(f(\cdots(x) \cdots))}_{n \text { times }}
$$

Collatz Conjecture

For every natural number x there is an index n for which $f_{n}(x)=1$.

Collatz in Python

def collatz(x):
if $\mathrm{x} \% 2=0$:
return $x / / 2$
else:
return $3 * x+1$
def collatz_sequence (x):
while x ! $=1$:
print (x," -", end="")
$x=$ collatz (x)
print (x)
collatz_sequence (27)

Collatz 27

uli@sibelius: ~/Talks/2022/StAubin

uli@sibelius:~/Talks/2022/StAubin\$./collatz1.py
$\begin{array}{llllllllllllll}27 & 82 & 41 & 124 & 62 & 31 & 94 & 47 & 142 & 71 & 214 & 107 & 322 & 161\end{array}$ $\begin{array}{llllllllllll}484 & 242 & 121 & 364 & 182 & 91 & 274 & 137 & 412 & 206 & 103 & 310\end{array}$ $\begin{array}{llllllllllll}155 & 466 & 233 & 700 & 350 & 175 & 526 & 263 & 790 & 395 & 1186 & 593\end{array}$ $\begin{array}{llllllllllll}1780 & 890 & 445 & 1336 & 668 & 334 & 167 & 502 & 251 & 754 & 377 & 1\end{array}$ $\begin{array}{llllllllllll}132 & 566 & 283 & 850 & 425 & 1276 & 638 & 319 & 958 & 479 & 1438 & 719\end{array}$ $\begin{array}{llllllllll}2158 & 1079 & 3238 & 1619 & 4858 & 2429 & 7288 & 3644 & 1822 & 911\end{array}$ $\begin{array}{llllllllll}2734 & 1367 & 4102 & 2051 & 6154 & 3077 & 9232 & 4616 & 2308 & 1154\end{array}$ $\begin{array}{llllllllllll}577 & 1732 & 866 & 433 & 1300 & 650 & 325 & 976 & 488 & 244 & 122 & 61\end{array}$ $\begin{array}{llllllllllllll}184 & 92 & 46 & 23 & 70 & 35 & 106 & 53 & 160 & 80 & 40 & 20 & 10 & 5\end{array}$ $\begin{array}{lllll}16 & 8 & 4 & 2\end{array}$ uli@sibelius:~/Talks/2022/StAubin\$

Collatz Numbers

$$
f(x)= \begin{cases}x / 2 & \text { if } x \text { is even } \\ 3 x+1 & \text { if } x \text { is odd }\end{cases}
$$

- the Collatz number of x : smallest index n for which $f_{n}(x)=1$

Flying Times

$$
f(x)= \begin{cases}x / 2 & \text { if } x \text { is even } \\ 3 x+1 & \text { if } x \text { is odd }\end{cases}
$$

- the flying time of x : smallest index n for which $f_{n}(x) \leq x$

Flying Times

$$
f(x)= \begin{cases}x / 2 & \text { if } x \text { is even } \\ 3 x+1 & \text { if } x \text { is odd }\end{cases}
$$

- the flying time of x : smallest index n for which $f_{n}(x) \leq x$

Flying Times

$$
f(x)= \begin{cases}x / 2 & \text { if } x \text { is even } \\ 3 x+1 & \text { if } x \text { is odd }\end{cases}
$$

- the flying time of x : smallest index n for which $f_{n}(x) \leq x$

The Collatz Conjecture: Summing Up

Definition (recall)

The Collatz function f is defined on natural numbers, by

$$
f(x)= \begin{cases}x / 2 & \text { if } x \text { is even } \\ 3 x+1 & \text { if } x \text { is odd }\end{cases}
$$

Collatz Conjecture (recall)

For every natural number x there is an index n for which $f_{n}(x)=1$.

- open since 1937
- "Mathematics may not be ready for such problems."
- "An extraordinarily difficult problem, completely out of reach of present day mathematics."

The Collatz Fractal

Part II

Unsolvable Problems

Programmers Make Mistakes

def collatz(x):
if $\mathrm{x} \% 2=0$:
return $x / / 2$
else:
return $4 * x+1$
def collatz_sequence (x): while x ! $=1$:
print (x," -", end="")
$x=$ collatz (x)
print (x)
collatz_sequence (27)

Programs Have Bugs

Fact of life

All programs contain mistakes (bugs).

How to find bugs?

- Can we write programs which can find bugs in other programs?
- Yes! Plenty exist.
- Can we write programs which can find all bugs in other programs?
- No!

The Halting Problem

Theorem

There exists no program which, when given another program Q as input, can decide whether Q ever finishes.

- So it is undecidable whether a program ever stops.
- That is, the Halting problem is unsolvable.
- (And so are plenty of other problems in mathematics!)

The Halting Problem: Proof

Theorem

There exists no program "halts" which, when given another program Q as input, can decide whether Q ever finishes.

Proof: Assume halts exists.
def liar ():
if halts (liar) = true:
loop_forever()

Conclusion

- The Collatz problem: simple to state, but unsolved
- The Halting problem: simple to state, but unsolvable
- Uli Fahrenberg, EPITA Rennes: any questions?

