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The Collatz Problem
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The Collatz Conjecture

Definition

The Collatz function f is defined on natural numbers, by

f (x) =

{
x/2 if x is even

3 x + 1 if x is odd

Define f2(x) = f (f (x)), f3(x) = f (f (f (x))); in general,

fn(x) = f (f (f (· · · (︸ ︷︷ ︸
n times

x ) · · · ))

Collatz Conjecture

For every natural number x there is an index n for which fn(x) = 1.

Uli Fahrenberg Some Unsolved and Unsolvable Problems 3/ 17



Collatz in Python

def c o l l a t z ( x ) :
i f x % 2 == 0 :

return x // 2
e l s e :

return 3 ∗ x + 1

def c o l l a t z s e q u e n c e ( x ) :
whi le x != 1 :

p r i n t ( x , ” ” , end=”” )
x = c o l l a t z ( x )

p r i n t ( x )

c o l l a t z s e q u e n c e ( 2 7 )
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Collatz 27
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Collatz Numbers

f (x) =

{
x/2 if x is even

3 x + 1 if x is odd

the Collatz number of x : smallest index n for which fn(x) = 1
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Flying Times

f (x) =

{
x/2 if x is even

3 x + 1 if x is odd

the flying time of x : smallest index n for which fn(x) ≤ x
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The Collatz Conjecture: Summing Up

Definition (recall)

The Collatz function f is defined on natural numbers, by

f (x) =

{
x/2 if x is even

3 x + 1 if x is odd

Collatz Conjecture (recall)

For every natural number x there is an index n for which fn(x) = 1.

open since 1937

“Mathematics may not be ready for such problems.”

“An extraordinarily difficult problem, completely out of reach of
present day mathematics.”
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The Collatz Fractal
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Part II

Unsolvable Problems
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Programmers Make Mistakes

def c o l l a t z ( x ) :
i f x % 2 == 0 :

return x // 2
e l s e :

return 4 ∗ x + 1

def c o l l a t z s e q u e n c e ( x ) :
whi le x != 1 :

p r i n t ( x , ” ” , end=”” )
x = c o l l a t z ( x )

p r i n t ( x )

c o l l a t z s e q u e n c e ( 2 7 )
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Programs Have Bugs

Fact of life

All programs contain mistakes (bugs).

How to find bugs?

Can we write programs which can find bugs in other programs?

Yes! Plenty exist.

Can we write programs which can find all bugs in other programs?

No!
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The Halting Problem

Theorem

There exists no program which, when given another program Q as input,
can decide whether Q ever finishes.

So it is undecidable whether a program ever stops.

That is, the Halting problem is unsolvable.

(And so are plenty of other problems in mathematics!)
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The Halting Problem: Proof

Theorem

There exists no program “halts” which, when given another program Q
as input, can decide whether Q ever finishes.

Proof: Assume halts exists.

def l i a r ( ) :
i f h a l t s ( l i a r ) == t r u e :

l o o p f o r e v e r ( )
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Conclusion

The Collatz problem: simple to state, but unsolved

The Halting problem: simple to state, but unsolvable

Uli Fahrenberg, EPITA Rennes: any questions?
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