## An Invitation to Higher-Dimensional Automata Theory

Uli Fahrenberg

LRE & EPITA Rennes, France

10 February 2023







## Languages of higher-dimensional automata

- Generating Posets Beyond N. RAMiCS 2020
- Languages of Higher-Dimensional Automata. MSCS 2021
- Posets with Interfaces as a Model for Concurrency. I&C 2022
- A Kleene Theorem for Higher-Dimensional Automata. CONCUR 2022
- A Myhill-Nerode Theorem for Higher-Dimensional Automata. arxiv 2022

#### Today:

- What are HDAs (and why should I be interested)?
- What are languages of HDAs (and why should I be interested)?
- What can I do with languages of HDAs (that I cannot do with other models)?

### Nice people

- Christian Johansen, NTNU
- Georg Struth, Sheffield
- Krzysztof Ziemiański, Warsaw
- Amazigh Amrane, Hugo Bazille, EPITA
- Safa Zouari, NTNU
- Eric Goubault, LIX
- See https://ulifahrenberg.github.io/pomsetproject/ for more

semantics of "a parallel b":



# Higher-dimensional automata

#### semantics of "a parallel b":





a and b are independent

## Higher-dimensional automata & concurrency

#### HDAs as a model for concurrency:

- points: states
- edges: transitions
- squares, cubes etc.: independency relations (concurrently executing events)
- two-dimensional automata ≅ asynchronous transition systems [Bednarczyk]

[van Glabbeek 2006, TCS]: Up to history-preserving bisimilarity, HDAs "generalize the main models of concurrency proposed in the literature" (notably, event structures and Petri nets)

## Examples



no concurrency

two out of three

full concurrency

An loset is a finite, ordered and  $\Sigma$ -labelled set.

(a list of events)

A precubical set X consists of:

- A set of cells X
- Every cell  $x \in X$  has an loset ev(x)

(list of events active in x)

• We write  $X[U] = \{x \in X \mid ev(x) = U\}$  for an loset U

(cells of type U)

• For every loset U and  $A \subseteq U$  there are: upper face map  $\delta^1_A : X[U] \to X[U-A]$ 

lower face map  $\delta^0_A: X[U] \to X[U-A]$ 

(terminating events A) ("unstarting" events A)

• Precubical identities:  $\delta^{\nu}_{A}\delta^{\nu}_{B} = \delta^{\nu}_{B}\delta^{\mu}_{A}$  for  $A \cap B = \emptyset$  and  $\mu, \nu \in \{0, 1\}$ 

A higher dimensional automaton (HDA) is a finite precubical set X with start cells  $\bot \subseteq X$  and accept cells  $\top \subseteq X$  (not necessarily vertices)

## Example



$$X[\emptyset] = \{v, w, x, y\}$$

$$X[a] = \{e, f\}$$

$$X[b] = \{g, h\}$$

$$X[ab] = \{q\}$$

$$\bot_X = \{v\}$$

$$T_X = \{h, y\}$$

# More interesting



# More interesting





### Precubical sets as presheaves

A presheaf over a category  $\mathcal C$  is a functor  $\mathcal C^\mathsf{op} \to \mathsf{Set}$ 

HDAs

(contravariant functor on C)

The precube category  $\square$  has (iso classes of) losets as objects.

Morphisms are coface maps  $d_{A,B}: U \to V$ , where

- $A, B \subseteq V$  are disjoint subsets,
- $U \simeq V (A \cup B)$  are isomorphic losets,
- $d_{A,B}: U \to V$  is a unique order and label preserving map with image  $V (A \cup B)$ .

Composition of coface maps  $d_{A,B}: U \to V$  and  $d_{C,D}: V \to W$  is

$$d_{\partial(A)\cup C,\partial(B)\cup D}:U\to W,$$

where  $\partial: V \to W - (C \cup D)$  is the loset isomorphism.

Intuitively,  $d_{A,B}$  terminates events B and "unstarts" events A.

precubical sets: presheaves over □

augmented presimplex category A

#### Context

| augmented presimplex eategory A            | large augmented presimplex category A      |
|--------------------------------------------|--------------------------------------------|
| objects $\{1 < \cdots < n\}$ for $n \ge 0$ | objects totally ordered sets               |
| morphisms order injections                 | morphisms order injections                 |
| skeletal                                   | isos are unique                            |
| $\Delta\hookrightarrow\Delta$ equivale     | ence with unique left inverse              |
|                                            |                                            |
| (augmented) precube category $\square$     | large (augmented) precube category $\odot$ |
| objects $\{0,1\}^n$ for $n \ge 0$          | objects totally ordered sets               |
| morphisms 0-1 injections                   | morphisms distinguished order injections   |
| skeletal                                   | isos are unique                            |

 $\square \hookrightarrow \square$  equivalence with unique left inverse

- presimplicial sets:  $Set^{\Delta^{op}}$  or  $Set^{\Delta^{op}}$ ; makes no difference
- precubical sets: Set or Set or Set makes no difference

large augmented presimplex category A

- Introduction
- 2 Higher-Dimensional Automata
- 3 Languages of Higher-Dimensional Automata
- 4 Properties

## Languages of HDAs

- automata have languages
- HDAs don't (hitherto)
- (focus has been on geometric and topological aspects)
- automata and language theory is the very basis of computer science
- happy mix of operational and algebraic theory
- glue provided by Kleene and Myhill-Nerode theorems (among others)
- Let's go!

### Examples



$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

Languages of HDAs

$$L_3 = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \dots \right\}$$

### **Examples**



$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$L_{2} = \left\{ \begin{pmatrix} a \\ b \to c \end{pmatrix}, \begin{pmatrix} a \\ c \to b \end{pmatrix}, \begin{pmatrix} b \\ a \to c \end{pmatrix}, \begin{pmatrix} b \\ c \to a \end{pmatrix}, \begin{pmatrix} c \\ a \to b \end{pmatrix}, \begin{pmatrix} c \\ b \to a \end{pmatrix} \right\} \cup L_{1}$$

$$L_3 = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right\} \cup L_2$$

sets of pomsets

# Computations of HDAs

A path on an HDA X is a sequence  $(x_0, \phi_1, x_1, \dots, x_{n-1}, \phi_n, x_n)$ such that for every k,  $(x_{k-1}, \phi_k, x_k)$  is either

- $(\delta^0_A(x_k), \nearrow^A, x_k)$  for  $A \subseteq ev(x_k)$  or
- $(x_{k-1}, \setminus_B, \delta_B^1(x_{k-1}))$  for  $B \subseteq ev(x_{k-1})$

(upstep: start A)

(downstep: terminate B)



downstep:



## Example



$$(x_1 \nearrow^a x_2 \searrow_a x_3 \nearrow^{\{b,c,d\}} x_4 \searrow_{\{c,d\}} x_5 \nearrow^e x_6)$$



Lifetimes of events



#### Lifetimes of events

























### Are all pomsets generated by HDAs?

No, only (labeled) interval orders

- Poset  $(P, \leq)$  is an interval order iff it has an interval representation:
  - a set  $I = \{[I_i, r_i]\}$  of real intervals
  - with order  $[I_i, r_i] \leq [I_j, r_j]$  iff  $r_i \leq I_j$
  - and an order isomorphism  $(P, \leq) \leftrightarrow (I, \preceq)$
- [Fishburn 1970]



### Pomsets with interfaces

Introduction

### Definition (Ipomset)

A pomset with interfaces (and event order):  $(P, <, -\rightarrow, S, T, \lambda)$ :

- finite set *P*;
- two partial orders < (precedence order), --→ (event order)</li>
  - s.t. < ∪ --→ is a total relation:</li>
- $S, T \subseteq P$  source and target interfaces
  - s.t. S is <-minimal, T is <-maximal.

### Composition of ipomsets



- Gluing P \* Q: P before Q, except for interfaces (which are identified)
- Parallel composition  $P \parallel Q$ : P above Q (disjoint union)

### **Subsumption**



*P* refines Q / Q subsumes  $P / P \sqsubseteq Q$  iff

- P and Q have same interfaces
- P has more < than Q</li>
- Q has more --+ than P

### Languages of HDAs

#### Definition

The language of an HDA X is the set of event ipomsets of all accepting paths:

$$L(X) = \{ ev(\pi) \mid \pi \in Paths(X), src(\pi) \in \bot_X, tgt(\pi) \in \top_X \}$$

- L(X) contains only interval-order ipomsets
- and is closed under subsumption

### Path objects

Important tool:

#### **Proposition**

For any interval-order ipomset P there exists an HDA  $\square^P$  for which  $L(\square^P) = \{P\} \downarrow$ .

#### Lemma

For any HDA X and ipomset P,  $P \in L(X)$  iff  $\exists f : \Box^P \to X$ .

- Introduction
- 2 Higher-Dimensional Automata
- 3 Languages of Higher-Dimensional Automata
- Properties

Introduction

#### Definition (Rational Languages over $\Sigma$ )

- Generated by  $\emptyset$ ,  $\{\epsilon\}$ , and all  $\{[a]\}$ ,  $\{[\bullet a]\}$ ,  $\{[a \bullet]\}$ ,  $\{[\bullet a \bullet]\}$  for  $a \in \Sigma$
- under operations ∪, \*, || and (Kleene plus) +

#### Theorem (à la Kleene)

A language is rational iff it is recognized by an HDA.

#### Theorem (à la Myhill-Nerode)

A language is rational iff it has finite prefix quotient.

## Kleene theorem: easy parts

• regular ⇒ rational: by reduction to automata



• rational ⇒ regular: generators:

rational ⇒ regular: ∪ and ||

$$L(X) \cup L(Y) = L(X \sqcup Y)$$

$$L(X) \parallel L(Y) = L(X \otimes Y)$$

# Kleene theorem: gluing of HDAs

Introduction

• miss to see: gluings and iterations of regular languages are regular:

$$L(X) * L(Y) = L(X * Y)$$
  $L(X)^{+} = L(X^{+})$ 

- much more difficult
- uses inspiration from topology
- showing here: only gluing, no +

# Gluing composition: naive attempt

### Assumptions:

Introduction

- X. Y: HDAs.
- X, Y are simple, i.e., have one start and one accept cell each
- $ev(x^{\top}) = ev(y_{\perp}) =: U$ .

The gluing composition of X and Y is the HDA

$$X * Y = \operatorname{colim} \left( X \xleftarrow{X^{\top}} \Box^U \xrightarrow{y_{\perp}} Y \right)$$

(identifying the accept cell of X with the start cell of Y) with  $(X * Y)_{\perp} = X_{\perp}$ ,  $(X * Y)^{\top} = Y^{\top}$ .

#### Lemma

$$L(X) * L(Y) \subseteq L(X * Y).$$

## Gluing composition: problems

Do we have L(X \* Y) = L(X) \* L(Y)? No.

Problem 1:

Introduction

$$\left(\begin{array}{c} a \nearrow^{\top} \\ \end{array}\right) * \left(\begin{array}{c} \top \\ \bot \\ \end{array}\right) = \left(\begin{array}{c} a \nearrow^{\top} \\ \end{array}\right)$$

but  $a^* * b^* \neq (a + b)^*$ .

## Gluing composition: problems

Do we have L(X \* Y) = L(X) \* L(Y)? No.

Problem 1:

Introduction

$$\left(\begin{array}{c} a \nearrow^{\top} \\ \end{array}\right) * \left(\begin{array}{c} \top \\ \bot \\ \end{array}\right) = \left(\begin{array}{c} a \nearrow^{\top} \\ \bot \\ \end{array}\right)$$

but  $a^* * b^* \neq (a + b)^*$ .

Problem 2:

$$\begin{pmatrix} b & \uparrow & \uparrow \\ \bot & a & \uparrow \end{pmatrix} * \begin{pmatrix} \bot & \downarrow & b \\ \hline & c & \uparrow \end{pmatrix} = \begin{pmatrix} b & \downarrow & \downarrow \\ \bot & a & c & \uparrow \end{pmatrix}$$

$$\Rightarrow ac$$

We need to prepare X and Y to avoid these problems

### Tools: HDAs with interfaces

An loset with interfaces (iloset) is an loset U with subsets  $S \subseteq U \supseteq T$  (notation:  ${}_SU_T$ ). (events in T cannot be terminated; events in S cannot be "unstarted")

A precubical set with interfaces (ipc-set) X consists of a set of cells X such that:

- Every cell  $x \in X$  has an iloset ev(x)
- We write  $X[_SU_T] = \{x \in X \mid ev(x) = _SU_T\}.$
- For every  $A \subseteq U S$  there is a lower face map  $\delta_A^0 : X[U] \to X[SU_T A]$ .
- For every  $B \subseteq U T$  there is an upper face map  $\delta_B^1 : X[U] \to X[SU_T b]$ .
- Precubical identities:  $\delta^{\mu}_{A}\delta^{\nu}_{B}=\delta^{\nu}_{B}\delta^{\mu}_{A}$  for  $A\cap B=\emptyset$  and  $\mu,\nu\in\{0,1\}$

An HDA with interfaces (iHDA) is a finite ipc-set with start and accept cells.

#### Extra conditions:

If  $x \in X[_S U_T]$  is a start cell, then S = U. If  $x \in X[_S U_T]$  is an accept cell, then T = U.

# Example

### Slogan: iHDAs are consistent partial HDAs





# Example

### Slogan: iHDAs are consistent partial HDAs





### About iHDAs

- ullet ipc-sets are presheaves over a category I $\square$ .
- paths on iHDAs and their event ipomsets are defined the same way as for HDAs
- There is a pair of adjoint functors

Res : HDA 
$$\rightarrow$$
 iHDA CI : iHDA  $\rightarrow$  HDA.

• (induced by the geometric morphism Res :  $Set^{\square^{op}} \subseteq Set^{\square^{op}} : Cl$ )

#### Lemma

For 
$$X \in HDA$$
 and  $Y \in iHDA$ ,  $L(Res(X)) = L(X)$  and  $L(Cl(Y)) = L(Y)$ .

#### Theorem

Finite HDAs and finite iHDAs recognize the same class of languages.

# Preparing iHDAs

Introduction

#### Definitions:

- an ipc-subset  $Y \subseteq X$  is initial if no path in X may enter Y
- an ipc-subset  $Y \subseteq X$  is final if no path in X may leave Y
- $f: Y \to X$  is an initial/final inclusion if it is injective and  $f(Y) \subset X$  is initial/final.
- an iHDA X is start proper if the canonical ipc-map  $\prod \mathbb{I} \square^{\text{ev}(x)} \to X$  is an initial inclusion  $x \in \bot_X$
- (all start cells are initial, disjoint and non-self-linked)
- (accept proper: defined similarly)

## Cylinders

Let X, Y, Z be ipc-sets and  $f: Y \to X$ ,  $g: Z \to X$  ipc-maps such that  $f(Y) \cap g(Z) = \emptyset$ . There is a diagram of ipc-sets



#### such that

- $\tilde{f}$  is an initial inclusion;
- $\tilde{g}$  is a final inclusion;
- all paths in X from f(Y) to g(Z) lift to paths in C(f,g).

# Cylinders: construction

X, Y, Z: ipc-sets,  $f: Y \to X$ ,  $g: Z \to X$ : ipc-maps with  $f(Y) \cap g(Z) = \emptyset$ . For  $\varsigma U_T \in I \square$  let

$$C(f,g)[sU_T] = \{(x,K,L,\phi,\psi)\}$$

such that

Introduction

- $x \in X[_S U_T]$ ;
- $K \subseteq I \square^U$  is an initial subset;
- $L \subseteq I \square^U$  is a final subset:
- $\phi: K \to Y, \ \psi: L \to Z$  are ipc-maps satisfying  $f \circ \phi = \iota_x|_K$  and  $g \circ \psi = \iota_x|_L$ :

# Proper iHDAs for simple languages

#### Definition:

• A language L is simple if it is recognized by an iHDA with one start and one accept cell.

#### Lemma

Any regular language is a finite union of simple languages.

#### Proposition

If L is simple, then

- L is recognized by a start proper iHDA with one start cell.
- L is recognized by an accept proper iHDA with one accept cell.

(usually, one cannot have both)

#### Theorem

If X is an accept proper iHDA with one accept cell, and Y is a start proper iHDA with one start cell, then L(Cl(X) \* Cl(Y)) = L(X) \* L(Y).

# Collecting the pieces

#### Theorem

Gluing compositions of regular languages are regular.

**Proof:** Let *L* and *M* be regular languages.

• We may assume that L and M are simple, i.e., L = L(X), M = L(Y) for iHDAs X and Y having one start and one accept cell each.

Languages of HDAs

- ② We may replace X and Y by X' and Y', such that X' is accept proper, Y' is start proper, L(X') = L(X), and L(Y') = L(Y).
- Go back to HDAs and glue:

$$L(CI(X') * CI(Y')) = L(X') * L(Y') = L * M.$$

L \* M is recognized by a finite HDA, hence regular.

## Myhill-Nerode

Introduction

### Prefix quotients:

- $P \setminus L := \{Q \in \mathsf{iiPoms} \mid PQ \in L\}$
- $suff(L) := \{P \setminus L \mid P \in iiPoms\}$

#### Theorem

L is rational iff suff (L) is finite.

**Proof**  $\Rightarrow$ : Let L = L(X) be rational.

- For  $x \in X$  denote  $Pre(x) = L(X_{\perp}^{x})$  and  $Post(x) = L(X_{x}^{\top})$ .
- Lemma: for all P,  $P \setminus L = \bigcup \{ Post(x) \mid x \in X, P \in Pre(x) \}$ .
- **③** And then  $\{P \setminus L \mid P \in iiPoms\} \subseteq \{\bigcup_{x \in Y} Post(x) \mid Y \subseteq X\}$  which is finite.

# Myhill-Nerode ←

Assume suff(L) finite. Construct HDA M(L):

- Write  $P \sim_{I} Q$  if  $P \setminus L = Q \setminus L$ 
  - standard Myhill-Nerode equivalence: doesn't work for us
  - but implies  $S_P = S_O$  and  $T_P = T_O$
- Write  $P \approx_L Q$  if  $P \sim_L Q$  and  $\forall A \subseteq T_P S_P : (P A) \setminus L = (Q A) \setminus L$
- cells of M(L):  $M(L)[U] = iiPoms_U / \approx_L \cup \{w_U\} \leftarrow$  subsidiary "completion" cells
- face maps:  $\delta^1_A(\langle P \rangle) = \langle P * U \downarrow_A \rangle$  (terminate A)
  - $\delta_A^0(\langle P \rangle) = \langle P A \rangle$  if  $A \subseteq T_P S_P$  (unstart A)
  - $\delta^0_A(\langle P \rangle) = w_{U-A}$  otherwise;  $\delta^0_A(w_U) = \delta^1_A(w_U) = w_{U-A}$
- $\perp_{M(L)} = \{\langle id_U \rangle\}_{U \in \square} \text{ and } \top_{M(L)} = \{\langle P \rangle \mid P \in L\}$

### Proposition

The essential part of M(L) is finite and L(M(L)) = L.

• essential part: reachable and co-reachable cells plus all their faces

## Example

$$L = \{ \begin{bmatrix} a \\ b \end{bmatrix}, ab, ba, abc \}$$



| $M(L)[\emptyset]$                      |                   |
|----------------------------------------|-------------------|
| P                                      | $P \setminus L$   |
| $\epsilon$                             | L                 |
| a                                      | $\{b,bc\}$        |
| b                                      | {a}               |
| ab                                     | $\{\epsilon, c\}$ |
| $\begin{bmatrix} a \\ b \end{bmatrix}$ | $\{\epsilon\}$    |



| M(L)[c] |                      |
|---------|----------------------|
| P       | $P \setminus L$      |
| abc •   | <b>{•</b> <i>c</i> } |
|         |                      |

$$\begin{array}{c|c} M(L)[\left[\begin{smallmatrix} a \\ b \end{smallmatrix}\right]] \\ \hline P & P \setminus L \\ \hline \left[\begin{smallmatrix} a \bullet \\ b \bullet \end{smallmatrix}\right] & \{\left[\begin{smallmatrix} \bullet & a \\ \bullet & b \end{smallmatrix}\right]\} \end{array}$$

| M(L)[b]    |                                                                       |
|------------|-----------------------------------------------------------------------|
| Р          | $P \setminus L$                                                       |
| <i>b</i> • | $\{[\begin{smallmatrix} \bullet \ b \end{smallmatrix}], \bullet ba\}$ |
| ab∙        | $\{ ullet b, ullet bc \}$                                             |
| [ a b • ]  | {• <i>b</i> }                                                         |

A 4/1\[1]

### **Properties**

Introduction

- M(L) may be non-deterministic
- if L is determinizable, then M(L) is deterministic (and minimal (?))
- but there exist non-determinizable ipomset languages
- in fact, there are languages of unbounded ambiguity
  - for example  $L = (\begin{bmatrix} a \\ b \end{bmatrix} cd + ab \begin{bmatrix} c \\ d \end{bmatrix})^+$

#### Further:

- regular languages are closed under (∪, \*, ||, +, and) ∩
- but not under complement
  - L regular  $\Rightarrow$  L has finite width  $\Rightarrow$  (iiPoms L) $\downarrow$  has infinite width
- width-bounded complement:  $\overline{L}^k = \{P \in iiPoms L \mid wid(P) \leq k\} \downarrow$
- regular languages are closed under  $^{-k}$  (for all k)

#### Further:

emptiness and inclusion of regular languages are decidable

Languages of HDAs

### Conclusion & Further Work

#### Higher-Dimensional Automata Theory for Fun and Profit!

- Kleene and Myhill-Nerode: a good start
- are HDAs learnable?
- trouble with determinization and non-ambiguity: history-determinism to the rescue?
- logical characterization? Büchi-Elgot theorem?
- relation to trace theory?
- languages vs homotopy?
- presheaf automata?
- coalgebra?
- higher-dimensional timed automata
- Distributed Hybrid Systems

Merci à Krzysztof pour des planches et à Amazigh pour les relire