A Myhill-Nerode Theorem for Higher-Dimensional Automata

Uli Fahrenberg Krzysztof Ziemiański

LRE & EPITA Rennes, France

University of Warsaw

Petri Nets 2023

Languages of higher-dimensional automata

- Languages of Higher-Dimensional Automata. MSCS 2021
- Posets with Interfaces as a Model for Concurrency. I&C 2022
- A Kleene Theorem for Higher-Dimensional Automata. CONCUR 2022
- A Myhill-Nerode Theorem for Higher-Dimensional Automata. PN 2023

Today:

Introduction

- What are HDAs?
- What are languages of HDAs?
- What can I do with languages of HDAs?

Nice people

Introduction

- Christian Johansen, NTNU
- Georg Struth, Sheffield
- Krzysztof Ziemiański, Warsaw
- Amazigh Amrane, Hugo Bazille, EPITA
- Safa Zouari, NTNU
- Eric Goubault, LIX
- See https://ulifahrenberg.github.io/pomsetproject/ for more

Higher-dimensional automata

semantics of "a parallel b":

Higher-dimensional automata

semantics of "a parallel b":

Higher-dimensional automata & concurrency

HDAs as a model for concurrency:

points: states

Introduction

- edges: transitions
- squares, cubes etc.: independency relations (concurrently executing events)
- two-dimensional automata \cong asynchronous transition systems [Bednarczyk]

[van Glabbeek 2006, TCS]: Up to history-preserving bisimilarity, HDAs "generalize the main models of concurrency proposed in the literature" (notably, event structures and Petri nets)

HDAs oo●ooo

no concurrency

two out of three

full concurrency

Precubical sets and higher dimensional automata

An loset is a finite, ordered and Σ -labelled set.

(a list of events)

A precubical set *X* consists of:

- A set of cells X
- Every cell $x \in X$ has an loset ev(x)

(list of events active in x)

• We write $X[U] = \{x \in X \mid ev(x) = U\}$ for an loset U

(cells of type U)

• For every loset U and $A \subseteq U$ there are: upper face map $\delta^1_A : X[U] \to X[U-A]$

lower face map $\delta_A^0: X[U] \to X[U-A]$

(terminating events A) ("unstarting" events A)

• Precubical identities: $\delta^{\nu}_{A}\delta^{\nu}_{B} = \delta^{\nu}_{B}\delta^{\mu}_{A}$ for $A \cap B = \emptyset$ and $\mu, \nu \in \{0, 1\}$

A higher dimensional automaton (HDA) is a finite precubical set X with start cells $\bot \subseteq X$ and accept cells $\top \subseteq X$ (not necessarily vertices)

Example

$$X[\emptyset] = \{v, w, x, y\}$$

$$X[a] = \{e, f\}$$

$$X[b] = \{g, h\}$$

$$X[ab] = \{q\}$$

$$\bot_X = \{v\}$$

$$T_X = \{h, y\}$$

HDAs ooooo∙

HDAs ooooo∙

HDAs ooooo∙

- 2 Higher-Dimensional Automata
- 3 Languages of Higher-Dimensional Automata
- Myhill-Nerode

Languages of HDAs

Examples

$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$L_3 = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \dots \right\}$$

Examples

$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$L_{2} = \left\{ \begin{pmatrix} a \\ b \to c \end{pmatrix}, \begin{pmatrix} a \\ c \to b \end{pmatrix}, \begin{pmatrix} b \\ a \to c \end{pmatrix}, \\ \begin{pmatrix} b \\ c \to a \end{pmatrix}, \begin{pmatrix} c \\ a \to b \end{pmatrix}, \begin{pmatrix} c \\ b \to a \end{pmatrix} \right\} \cup L_{1}$$
sets of pomsets
$$L_{3} = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right\} \cup L_{2}$$

Computations of HDAs

A path on an HDA X is a sequence $(x_0, \phi_1, x_1, \dots, x_{n-1}, \phi_n, x_n)$ such that for every k, (x_{k-1}, ϕ_k, x_k) is either

- $(\delta^0_A(x_k), \nearrow^A, x_k)$ for $A \subseteq ev(x_k)$ or
- $(x_{k-1}, \searrow_B, \delta_B^1(x_{k-1}))$ for $B \subseteq ev(x_{k-1})$

(upstep: start A)

(downstep: terminate B)

downstep:

Example

$$(x_1 \nearrow^a x_2 \searrow_a x_3 \nearrow^{\{b,c,d\}} x_4 \searrow_{\{c,d\}} x_5 \nearrow^e x_6)$$

Are all pomsets generated by HDAs?

No, only (labeled) interval orders

- Poset (P, \leq) is an interval order iff it has an interval representation:
 - a set $I = \{[I_i, r_i]\}$ of real intervals
 - with order $[l_i, r_i] \leq [l_i, r_i]$ iff $r_i \leq l_i$
 - and an order isomorphism $(P, \leq) \leftrightarrow (I, \preceq)$
- [Fishburn 1970]

Pomsets with interfaces

Definition (Ipomset)

A pomset with interfaces (and event order): $(P, <, --+, S, T, \lambda)$:

- finite set *P*:
- two partial orders < (precedence order), --→ (event order)
 - s.t. $< \cup --+$ is a total relation:
- $S, T \subseteq P$ source and target interfaces
 - s.t. *S* is <-minimal, *T* is <-maximal.

Composition of ipomsets

- Gluing P * Q: P before Q, except for interfaces (which are identified)
- Parallel composition $P \parallel Q$: P above Q (disjoint union)

Subsumption

P refines Q / Q subsumes $P / P \sqsubseteq Q$ iff

- P and Q have same interfaces
- ullet P has more < than Q
- Q has more $-\rightarrow$ than P

HDAs

Languages of HDAs

Definition

The language of an HDA X is the set of event ipomsets of all accepting paths:

$$L(X) = \{ ev(\pi) \mid \pi \in Paths(X), src(\pi) \in \bot_X, tgt(\pi) \in \top_X \}$$

- L(X) contains only interval-order ipomsets
- and is closed under subsumption

Path objects

Important tool:

Proposition

For any interval-order ipomset P there exists an HDA \square^P for which $L(\square^P) = \{P\} \downarrow$.

Lemma

For any HDA X and ipomset P, $P \in L(X)$ iff $\exists f : \Box^P \to X$.

- Introduction
- 2 Higher-Dimensional Automata
- 3 Languages of Higher-Dimensional Automata
- Myhill-Nerode

Theorems

Definition (Rational Languages over Σ)

- Generated by \emptyset , $\{\epsilon\}$, and all $\{[a]\}$, $\{[\bullet a]\}$, $\{[a \bullet]\}$, $\{[\bullet a \bullet]\}$ for $a \in \Sigma$
- under operations ∪, *, || and (Kleene plus) +

Theorem (à la Kleene)

A language is rational iff it is recognized by an HDA.

Theorem (à la Myhill-Nerode)

A language is rational iff it has finite prefix quotient.

Myhill-Nerode

Prefix quotients:

- $P \setminus L := \{Q \in \mathsf{iiPoms} \mid PQ \in L\}$
- $suff(L) := \{P \setminus L \mid P \in iiPoms\}$

Theorem

L is rational iff suff (L) is finite.

Proof \Rightarrow : Let L = L(X) be rational.

- For $x \in X$ denote $Pre(x) = L(X_{\perp}^{x})$ and $Post(x) = L(X_{\perp}^{\top})$.
- 2 Lemma: for all P, $P \setminus L = \bigcup \{ Post(x) \mid x \in X, P \in Pre(x) \}$.
- **③** And then $\{P \setminus L \mid P \in iiPoms\} \subseteq \{\bigcup_{x \in Y} Post(x) \mid Y \subseteq X\}$ which is finite.

Myhill-Nerode ←

Introduction

Assume suff(L) finite. Construct HDA M(L):

- Write $P \sim_I Q$ if $P \setminus L = Q \setminus L$
 - standard Myhill-Nerode equivalence: doesn't work for us
 - but implies $S_P = S_Q$ and $T_P = T_Q$
- Write $P \approx_I Q$ if $P \sim_I Q$ and $\forall A \subseteq T_P S_P : (P A) \setminus L = (Q A) \setminus L$
- cells of M(L): $M(L)[U] = iiPoms_U/\approx_L \cup \{w_U\} \leftarrow$ subsidiary "completion" cells
- face maps: $\delta_A^1(\langle P \rangle) = \langle P * U \downarrow_A \rangle$ (terminate A)
 - $\delta_A^0(\langle P \rangle) = \langle P A \rangle$ if $A \subset T_P S_P$ (unstart A)
 - $\delta_A^0(\langle P \rangle) = w_{U-A}$ otherwise; $\delta_A^0(w_U) = \delta_A^1(w_U) = w_{U-A}$
- $\perp_{M(L)} = \{\langle id_U \rangle\}_{U \in \square} \text{ and } \top_{M(L)} = \{\langle P \rangle \mid P \in L\}$

Proposition

The essential part of M(L) is finite and L(M(L)) = L.

essential part: reachable and co-reachable cells plus all their faces

Example

$$L = \{ \begin{bmatrix} a \\ b \end{bmatrix}, ab, ba, abc \}$$

$M(L)[\emptyset]$	
Р	$P \setminus L$
ϵ	L
a	$\{b,bc\}$
b	{a}
ab	$\{\epsilon, c\}$
$\begin{bmatrix} a \\ b \end{bmatrix}$	$\{\epsilon\}$

M(L)[c]		
P	$P \setminus L$	
abc •	{• <i>c</i> }	

$$\begin{array}{c|c} M(L)[\begin{bmatrix} a \\ b \end{bmatrix}] \\ \hline P & P \setminus L \\ \begin{bmatrix} a \bullet \\ b \bullet \end{bmatrix} & \{ \begin{bmatrix} \bullet & a \\ \bullet & b \end{bmatrix} \} \end{array}$$

M(L)[b]		
Р	$P \setminus L$	
b∙	$\{[\begin{smallmatrix} a \\ \bullet b \end{smallmatrix}], \bullet ba\}$	
ab∙	$\{ \bullet b, \bullet bc \}$	
$\begin{bmatrix} a \\ b \bullet \end{bmatrix}$	{• <i>b</i> }	

Properties

Introduction

- M(L) may be non-deterministic
- if L is determinizable, then M(L) is deterministic (and minimal (?))
- but there exist non-determinizable ipomset languages
- in fact, there are languages of unbounded ambiguity
 - for example $L = (\begin{bmatrix} a \\ b \end{bmatrix} cd + ab \begin{bmatrix} c \\ d \end{bmatrix})^+$

Further:

- regular languages are closed under (∪, *, ||, +, and) ∩
- but not under complement
 - L regular \Rightarrow L has finite width \Rightarrow (iiPoms L) \downarrow has infinite width
- width-bounded complement: $\overline{L}^k = \{P \in iiPoms L \mid wid(P) \leq k\} \downarrow$
- regular languages are closed under $^{-k}$ (for all k)

Further:

emptiness and inclusion of regular languages are decidable

Conclusion & Further Work

Higher-Dimensional Automata Theory for Fun and Profit!

- Kleene and Myhill-Nerode: a good start
- are HDAs learnable?
- trouble with determinization and non-ambiguity: residual automata?
- logical characterization? Büchi-Elgot theorem?

HDAs

- relation to interval semantics for Petri nets?
- relation to trace theory?
- higher-dimensional timed automata
- higher-dimensional omega-automata
- Distributed Hybrid Systems