

SynCoP 2023

Sven Dziadek Uli Fahrenberg Philipp Schlehuber-Caissier

LRE, EPITA, France

- Timed automata
- Büchi condition

- Timed automata
- Büchi condition
- weighted over integers
 - negative weight: consumption of energy
 - positive weight: collection of energy

- Timed automata
- Büchi condition
- weighted over integers
 - negative weight: consumption of energy
 - positive weight: collection of energy
- energy bounded
 - from below (battery must not become empty)
 - weakly from above (maximal battery capacity)

- Timed automata
- Büchi condition
- weighted over integers
 - negative weight: consumption of energy
 - positive weight: collection of energy
- energy bounded
 - from below (battery must not become empty)
 - weakly from above (maximal battery capacity)

Energy Büchi Problem

Does a Büchi accepted feasible run exist?

- Timed automata
- Büchi condition
- weighted over integers
 - negative weight: consumption of energy
 - positive weight: collection of energy
- energy bounded
 - from below (battery must not become empty)
 - weakly from above (maximal battery capacity)

Energy Büchi Problem

Does a Büchi accepted feasible run exist?

energy always within bound [0, b]

- Timed automata
- Büchi condition
- weighted over integers
 - negative weight: consumption of energy
 - positive weight: collection of energy
- energy bounded
 - from below (battery must not become empty)
 - weakly from above (maximal battery capacity)

Energy Büchi Problem

Does a Büchi accepted feasible run exist?

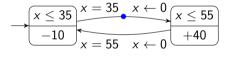
energy always within bound [0, b]

weak upper bound b

Remember, Remember, the 15 September

- ... 2008

- Bouyer, F., Larsen, Markey, Srba: Infinite Runs in Weighted Timed Automata with Energy Constraints, FORMATS 2008
- Dziadek, F., Schlehuber: Energy Büchi Problems, FM 2023:
 - extend to Büchi conditions
 - fix problems
 - implement everything: TChecker + Spot


Weighted Timed Büchi Automata

- generalized Büchi acceptance on transitions
- (only) locations are weighted

Weighted Timed Büchi Automata

- generalized Büchi acceptance on transitions
- (only) locations are weighted

Weighted Timed Büchi Automata

- generalized Büchi acceptance on transitions
- (only) locations are weighted

$$x \leq 35$$

$$x = 35$$

$$x \leftarrow 0$$

$$x \leq 55$$

$$x \leftarrow 0$$

$$x = 55$$

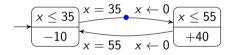
$$x \leftarrow 0$$

$$x = 40$$

Note: we only handle one clock Energy problems **undecidable** for **four** clocks (Bouyer, Larsen, Markey 2014) **open** for **two** or **three** clocks

Corner-Point Abstraction

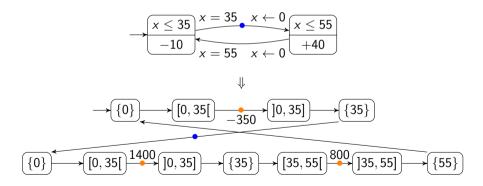
One-clock timed automaton \rightarrow untimed automaton


- TChecker computes the zone graph
- compute corner-point abstraction (Behrmann, Fehnker, Hune et al. 2001)
- Zeno-exclusion

Corner-Point Abstraction

One-clock timed automaton \rightarrow untimed automaton

- TChecker computes the zone graph
- compute corner-point abstraction (Behrmann, Fehnker, Hune et al. 2001)
- Zeno-exclusion



Corner-Point Abstraction

One-clock timed automaton \rightarrow untimed automaton

- TChecker computes the zone graph
- compute corner-point abstraction (Behrmann, Fehnker, Hune et al. 2001)
- Zeno-exclusion

Weights

Given values:

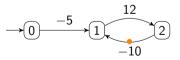
c : initial credit
b : weak upper bound

Weights

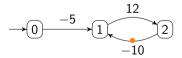
Given values: *c* : initial credit

b : weak upper bound

Weights:


 $e_0 = \min(b, c)$ $e_{i+1} = \min(b, e_i + w_i)$ for transition weight w_i

Weights		
Given values:	<i>c</i> : initial credit <i>b</i> : weak upper bound	
Weights:	$egin{array}{llllllllllllllllllllllllllllllllllll$	for transition weight w_i
Feasible Run		
Always: $e_i \ge 0$		


Weights			
Given values:	<i>c</i> : initial credit <i>b</i> : weak upper bound		
Weights:	$egin{array}{llllllllllllllllllllllllllllllllllll$	for transition weight w_i	
Feasible Run			
Always: $e_i \ge 0$			
Example			

Weights			
Given values:	<i>c</i> : initial credit <i>b</i> : weak upper bound		
Weights:	$egin{array}{llllllllllllllllllllllllllllllllllll$	for transition weight <i>w_i</i>	
Feasible Run			
Always: $e_i \ge 0$			

Example

Feasible with $c \ge 5$ and $b \ge 10$.

Bellman-Ford (BF)

Recall: BF finds shortest paths

Bellman-Ford (BF)

Recall: BF finds shortest paths

BF relaxes a distance approximation until solution is found

Bellman-Ford (BF)

Recall: BF finds shortest paths

BF relaxes a distance approximation until solution is found

BF stops when finding "negative loops"

Bellman-Ford (BF)

Recall: BF finds **shortest** paths \Rightarrow Invert to find **maximal** energy

BF relaxes a distance approximation until solution is found

BF stops when finding "negative loops"

Bellman-Ford (BF)

Recall: BF finds **shortest** paths \Rightarrow Invert to find **maximal** energy

BF relaxes a distance approximation until solution is found

BF stops when finding "negative loops" \Leftrightarrow here, positive cycles are desired

Bellman-Ford (BF)

Recall: BF finds **shortest** paths \Rightarrow Invert to find **maximal** energy

BF relaxes a distance approximation until solution is found

BF stops when finding "negative loops" $\quad \Leftrightarrow$ here, positive cycles are desired

BF not aware of Büchi acceptance

Bellman-Ford (BF)

Recall: BF finds **shortest** paths \Rightarrow Invert to find **maximal** energy

BF relaxes a distance approximation until solution is found

BF stops when finding "negative loops" $\quad \Leftrightarrow \text{ here, positive cycles are desired}$

BF not aware of Büchi acceptance

Our solution: Search for strongly connected components and modify BF for "energy positive" loops

Our Algorithm

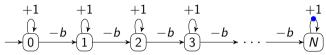
Take a weighted Büchi automaton:

- find strongly connected components (SCC) (we use Couvreur)
- degeneralize SCCs (produces Büchi accepting back edges)
- with modified Bellman-Ford search for feasible lassos:
 - on original graph for maximal prefix energy
 - in SCCs for non-negative cycles including a back edge

Note: Energy and Büchi condition cannot be fully separated

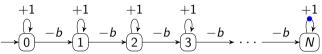
Our Algorithm

Take a weighted Büchi automaton:

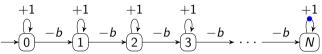

- find strongly connected components (SCC) (we use Couvreur)
- degeneralize SCCs (produces Büchi accepting back edges)
- with modified Bellman-Ford search for feasible lassos:
 - on original graph for maximal prefix energy
 - in SCCs for non-negative cycles including a back edge

Note: Energy and Büchi condition cannot be fully separated

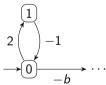
#mod	#states	to cpa [s]	sol [s]
1	25	0.01	0.00
3	90	0.03	0.02
5	293	0.06	0.24
7	1012	0.19	3.24
9	3759	0.89	59.52
10	7377	1.87	261.38
11	14582	4.37	1194.81



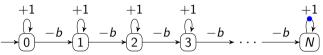
Example


Example

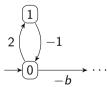
Get weak upper bound b out of complexity

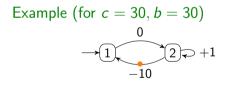


Example

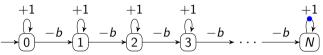

Get weak upper bound b out of complexity

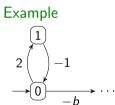
Example

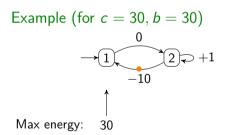



Example

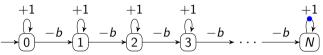
Get weak upper bound b out of complexity

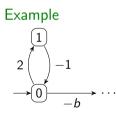

Example

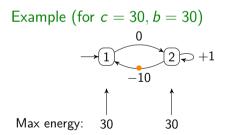




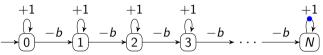
Example

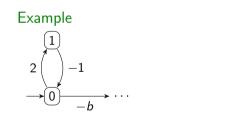

Get weak upper bound b out of complexity

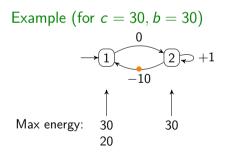




Example


Get weak upper bound b out of complexity





Example

Get weak upper bound b out of complexity

Conclusion

Results on Energy Büchi problems

- 1. Weighted Büchi automata
 - Modified Bellman-Ford with Couvreur's algorithm
- 2. One-clock weighted timed Büchi automata
 - Reduce to **1**. using corner-point abstraction

All algorithms are implemented using TChecker and Spot

Results on Energy Büchi problems

- 1. Weighted Büchi automata
 - Modified Bellman-Ford with Couvreur's algorithm
- 2. One-clock weighted timed Büchi automata
 - Reduce to 1. using corner-point abstraction

All algorithms are implemented using TChecker and Spot

Future Work

- edge weights
 - Bouyer, F., Larsen, Markey: Timed automata with observers under energy constraints, HSCC 2010
- more realistic battery model
 - Boker, Henzinger, Radhakrishna: Battery Transition Systems, POPL 2014
- parametric problem: synthesize b and/or c
 - F., Juhl, Larsen, Srba: Energy Games in Multiweighted Automata, ICTAC 2011
 - (in some cases that's easier!)
- implement everything!

Backup

Whiteboard

