Quantitative Verification

The Good, The Bad and The Ugly

Uli Fahrenberg

LRE \& EPITA Rennes, France

68nqrt 4 April 2024

Nice People

Sebastian S. Bauer, Nikola Beneš, Zoltán Ésik, Lisbeth Fajstrup, Eric Goubault, Line Juhl, Jan Křetínský, Kim G. Larsen, Martin Raussen, Georg Struth, Claus Thrane, Louis-Marie Traonouez
model
Mod

specification
Spec

Quantitative Model Checking

quantitative model
Mod
\models
quantitative specification
Spec

Quantitative Model Checking

quantitative model
quantitative specification
Mod

Quantitative Models

Quantitative Logics

$$
\operatorname{Pr}_{\leq .1}(\triangle \text { error })
$$

Quantitative Verification

$$
\begin{gathered}
\llbracket \phi \rrbracket(s)=3.14 \\
d(s, t)=42
\end{gathered}
$$

Boolean world	"Quantification"
Trace equivalence \equiv	Linear distances d_{L}
Bisimilarity \sim	Branching distances d_{B}
$s \sim t$ implies $s \equiv t$	$d_{L}(s, t) \leq d_{B}(s, t)$
$s \models \phi$ or $s \not \models \phi$	$\llbracket \phi \rrbracket(s)$ is a quantity
$s \sim t$ iff $\forall \phi: s \models \phi \Leftrightarrow t \models \phi$	$d_{B}(s, t)=\sup _{\phi} d(\llbracket \phi \rrbracket(s), \llbracket \phi \rrbracket(t))$

Compositional Verification

model
Mod
specification
Spec

- Mod \models Spec $_{1} \& \operatorname{Spec}_{1} \leq$ Spec $_{2} \Longrightarrow \operatorname{Mod} \mid=$ Spec $_{2}$
- Mod \models Spec $_{1} \& \operatorname{Mod} \models$ Spec $_{2} \Longrightarrow \operatorname{Mod} \models \operatorname{Spec}_{1} \wedge$ Spec $_{2}$
- $\operatorname{Mod}_{1} \models \operatorname{Spec}_{1} \& \operatorname{Mod}_{2} \models \operatorname{Spec}_{2} \Longrightarrow \operatorname{Mod}_{1}\left\|\operatorname{Mod}_{2} \models \operatorname{Spec}_{1}\right\| \operatorname{Spec}_{2}$
- $\operatorname{Mod}_{1} \models \operatorname{Spec}_{1} \& \operatorname{Mod}_{2} \models \operatorname{Spec} /$ Spec $_{1} \Longrightarrow \operatorname{Mod}_{1} \| \operatorname{Mod}_{2} \models$ Spec
- bottom-up and top-down

Quantitative Compositional Verification?

quantitative mode
Mod
quantitative specification
Spec

- Mod \models_{ε} Spec $_{1} \& \operatorname{Spec}_{1} \leq_{\varepsilon} \operatorname{Spec}_{2} \Longrightarrow \operatorname{Mod} \models_{\varepsilon}$ Spec $_{2}$
- Mod \models_{ε} Spec $_{1} \& \operatorname{Mod} \models_{\varepsilon} \operatorname{Spec}_{2} \Longrightarrow \operatorname{Mod} \models_{\varepsilon} \operatorname{Spec}_{1} \wedge$ Spec $_{2}$
- $\operatorname{Mod}_{1} \models_{\varepsilon} \operatorname{Spec}_{1} \& \operatorname{Mod}_{2} \models_{\varepsilon} \operatorname{Spec}_{2} \Longrightarrow \operatorname{Mod}_{1}\left\|\operatorname{Mod}_{2} \models_{\varepsilon} \operatorname{Spec}_{1}\right\| \operatorname{Spec}_{2}$
- $\operatorname{Mod}_{1} \models_{\varepsilon} \operatorname{Spec}_{1} \& \operatorname{Mod}_{2} \models{ }_{\varepsilon} \operatorname{Spec} /$ Spec $_{1} \Longrightarrow \operatorname{Mod}_{1} \| \operatorname{Mod}_{2} \models_{\varepsilon}$ Spec
- surely not the same ε everywhere!?

User Stories

"In your quantitative verification, what type of distances do you use?"

- point-wise
- accumulating
- limit-average
- discounted
- maximum-lead
- Cantor
- discrete

$$
\begin{array}{r}
D(\sigma, \tau)=\sup _{i}\left|\sigma_{i}-\tau_{i}\right| \\
D(\sigma, \tau)=\sum_{i}\left|\sigma_{i}-\tau_{i}\right| \\
D(\sigma, \tau)=\limsup \\
N
\end{array} \frac{1}{N} \sum_{i=0}^{N}\left|\sigma_{i}-\tau_{i}\right|,
$$

$D(\sigma, \tau)=0$ if $\sigma=\tau ; \infty$ otherwise

$$
D(\sigma, \tau)=\max \left\{\begin{array}{c}
\operatorname{supinf}_{i}\left\{\left|t_{i}-s_{j}\right| \mid a_{i}=b_{j}\right\} \\
\underset{j}{\sup _{j} \inf }\left\{\left|t_{i}-s_{j}\right| \mid a_{i}=b_{j}\right\}
\end{array}\right.
$$

Challenge (ca. 2009)

- In quantitative verification, lots of different distances
- Develop theory to cover all/most of them
- idea: use bisimulation games
\Rightarrow The Quantitative Linear-Time-Branching-Time Spectrum
- QAPL 2011, FSTTCS 2011, TCS 2014

Challenge (ca. 2012):

- How to make this compositional?
- Still not satisfied!
(1) Introduction
(2) The Quantitative Linear-Time-Branching-Time Spectrum
(3) Compositional Verification
(4) Conclusion

The Linear-Time-Branching-Time Spectrum

van Glabbeek 1990 (excerpt):
bisimulation eq.
\downarrow
nested simulation eq.
ready simulation eq.

The Linear-Time-Branching-Time Spectrum

van Glabbeek 1990 (excerpt):
bisimulation eq.
\downarrow nested simulation eq. nested simulation pr. ready simulation eq.
 \rightarrow ready simulation pr.

The Linear-Time-Branching-Time Spectrum

van Glabbeek 1990 (excerpt):

The Simulation Game

The Simulation Game

Duplicator

Spoiler wins

The LTBT Spectrum, Game Version

The LTBT Spectrum, Game Version

The Simulation Game, Revisited

1. Player 1 chooses edge from s (leading to s^{\prime})
2. Player 2 chooses matching edge from t (leading to t^{\prime})
3. Game continues from configuration s^{\prime}, t^{\prime}
ω. If Player 2 can always answer: YES, t simulates s.
Otherwise: NO
Or, as an Ehrenfeucht-Fraïssé game ("delayed evaluation"):
4. Player 1 chooses edge from s (leading to s^{\prime})
5. Player 2 chooses edge from t (leading to t^{\prime})
6. Game continues from new configuration s^{\prime}, t^{\prime}
ω. At the end (maybe after infinitely many rounds!), compare the chosen traces: If the trace chosen by t matches the one chosen by s : YES
Otherwise: NO

Quantitative Ehrenfeucht-Fraïssé Games

The quantitative setting:

- Assume we have a way, possibly application-determined, to measure distances of (finite or infinite) traces
- a hemimetric $D:(\sigma, \tau) \mapsto D(\sigma, \tau) \in \mathbb{R}_{\geq 0} \cup\{\infty\}$

The quantitative Ehrenfeucht-Fraïssé game:

1. Player 1 chooses edge from s (leading to s^{\prime})
2. Player 2 chooses edge from t (leading to t^{\prime})
3. Game continues from new configuration s^{\prime}, t^{\prime}
ω. At the end, compare the chosen traces σ, τ :
The simulation distance from s to t is defined to be $D(\sigma, \tau)$

- Player 1 plays to maximize $D(\sigma, \tau)$; Player 2 plays to minimize

This can be generalized to all the games in the LTBT spectrum.

The Quantitative Linear-Time-Branching-Time Spectrum

For any trace distance $D:(\sigma, \tau) \mapsto D(\sigma, \tau) \in \mathbb{R}_{\geq 0} \cup\{\infty\}$:
bisimulation eq.

Quantitative EF Games: Some Details

- Configuration of the game: $(\pi, \rho): \pi$ the Player-1 choices up to now; ρ the Player-2 choices
- Strategy: mapping from configurations to next moves
- Θ_{i} : set of Player- i strategies
- Simulation strategy: Player-1 moves allowed from end of π
- Bisimulation strategy: Player-1 moves allowed from end of π or end of ρ
- (hence π and ρ are generally not paths - "mingled paths")
- Pair of strategies \Longrightarrow (possibly infinite) sequence of configurations
- Take the limit; unmingle \Longrightarrow pair of (possibly infinite) traces (σ, τ)
- Bisimulation distance: $\sup _{\theta_{1} \in \Theta_{1}} \inf _{\theta_{2} \in \Theta_{2}} d_{T}(\sigma, \tau)$
- Simulation distance: $\sup \inf d_{T}(\sigma, \tau) \quad$ (restricting Player 1's capabilities)

$$
\theta_{1} \in \Theta_{1}^{0} \theta_{2} \in \Theta_{2}
$$

Quantitative EF Games: Some Details - II

- Blind Player-1 strategies: depend only on the end of ρ
- ("cannot see Player-2 moves")
- $\tilde{\Theta}_{1}$: set of blind Player-1 strategies
- Trace inclusion distance: sup $\inf d_{T}(\sigma, \tau)$

$$
\theta_{1} \in \widetilde{\Theta}_{1}^{0} \theta_{2} \in \Theta_{2}
$$

- For nesting: count the number of times Player 1 switches between end of π and end of ρ
- $\Theta_{1}^{k}: k$ switches allowed
- Nested simulation distance: sup $\inf d_{T}(\sigma, \tau)$

$$
\theta_{1} \in \Theta_{1}^{1} \theta_{2} \in \Theta_{2}
$$

- Nested trace inclusion distance: sup $\inf d_{T}(\sigma, \tau)$

$$
\begin{equation*}
\theta_{1} \in \tilde{\Theta}_{1}^{1} \theta_{2} \in \Theta_{2} \tag{!}
\end{equation*}
$$

- For ready: allow extra "I'll see you" Player-1 transition from end of ρ

Transfer Theorem

Theorem

If two equivalences or preorders are inequivalent in the qualitative setting, and the trace distance D is separating, then the corresponding QLTBT distances are topologically inequivalent.

Recursive Characterization

Theorem

If the trace distance $D:(\sigma, \tau) \mapsto d(\sigma, \tau)$ has a decomposition $d=g \circ f: \operatorname{Tr} \times \operatorname{Tr} \rightarrow L \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$ through a complete lattice L, and f has a recursive characterization, i.e., such that $f(a . \sigma, b . \tau)=F(a, b, f(\sigma, \tau))$ for some $F: \Sigma \times \Sigma \times L \rightarrow L$ which is monotone in the third coordinate, then all distances in the corresponding QLTBT spectrum are given as least fixed points of some functionals using F.

All trace distances I know can be expressed recursively like this.

- Example: simulation distance:

$$
\begin{equation*}
d_{\mathrm{sim}}(s, t)=\sup _{s \xrightarrow{a} s^{\prime}} \inf _{t \xrightarrow{b} t^{\prime}} F\left(a, b, d_{\mathrm{sim}}\left(s^{\prime}, t^{\prime}\right)\right) \tag{I.f.p.}
\end{equation*}
$$

- L is "memory"
- also gives relation family characterization
(1) Introduction
(2) The Quantitative Linear-Time-Branching-Time Spectrum
(3) Compositional Verification
(4) Conclusion

Specification Theories

Let Mod be a set of models with an equivalence \sim.

Definition

A complete specification theory for $(\operatorname{Mod}, \sim)$ is $(S p e c, \leq, \|, \chi)$ such that

- \leq is a refinement preorder on Spec
- $\chi:$ Mod \rightarrow Spec picks out characteristic specifications
- i.e., $\forall \mathcal{M}_{1}, \mathcal{M}_{2} \in \operatorname{Mod}: \mathcal{M}_{1} \sim \mathcal{M}_{2} \Longleftrightarrow \chi\left(\mathcal{M}_{1}\right) \leq \chi\left(\mathcal{M}_{2}\right)$
- (Spec, $\leq, \|)$ forms a bounded commutative distributive residuated lattice up to $\leq \cap \geq$
$\Rightarrow \vee$ and \wedge on Spec; double distributivity; $\perp, \top \in$ Spec
- everything up to modal equivalence $\equiv=\leq \cap \geq$
$\Rightarrow \|$ distributes over \vee, has unit U , has residual / (up to \equiv)
- $\mathcal{S}_{1} \| \mathcal{S}_{2} \leq \mathcal{S}_{3} \Longleftrightarrow \mathcal{S}_{2} \leq \mathcal{S}_{3} / \mathcal{S}_{1}$
- Disjunctive modal transition systems
- Acceptance automata
- Hennessy-Milner logic with maximal fixed points
- CONCUR 2013, ICTAC 2014, I\&C 2020 (all with bisimulation as model equivalence ~)

Acceptance Automata

Let Σ be a finite alphabet.

Definition

A (nondeterministic) acceptance automaton (AA) is a structure $\mathcal{A}=\left(S, S^{0}\right.$, Tran), with $S \supseteq S^{0}$ finite sets of states and initial states and Tran : S $\rightarrow 2^{2^{\Sigma \times S}}$ an assignment of transition constraints.

- standard labeled transition system (LTS): Tran : S $\rightarrow 2^{\Sigma \times S}$ (coalgebraic view)
- (for AA:) $\operatorname{Tran}(s)=\left\{M_{1}, M_{2}, \ldots\right\}$: provide M_{1} or M_{2} or \ldots
- a disjunctive choice of conjunctive constraints
- J.-B. Raclet 2008 (but deterministic); see also H. H. Hansen 2003
- note multiple initial states

Refinement

Definition

Let $\mathcal{A}_{1}=\left(S_{1}, S_{1}^{0}, \operatorname{Tran}_{1}\right)$ and $\mathcal{A}_{2}=\left(S_{2}, S_{2}^{0}\right.$, $\left.\operatorname{Tran}_{2}\right)$ be AA.
A relation $R \subseteq S_{1} \times S_{2}$ is a modal refinement if:
(1) $\forall s_{1}^{0} \in S_{1}^{0}: \exists s_{2}^{0} \in S_{2}^{0}:\left(s_{1}^{0}, s_{2}^{0}\right) \in R$
(2) $\forall\left(s_{1}, s_{2}\right) \in R: \forall M_{1} \in \operatorname{Tran}_{1}\left(s_{1}\right): \exists M_{2} \in \operatorname{Tran}_{2}\left(s_{2}\right)$:

- $\forall\left(a, t_{1}\right) \in M_{1}: \exists\left(a, t_{2}\right) \in M_{2}:\left(t_{1}, t_{2}\right) \in R$
(0) $\forall\left(a, t_{2}\right) \in M_{2}: \exists\left(a, t_{1}\right) \in M_{1}:\left(t_{1}, t_{2}\right) \in R$

Write $\mathcal{A}_{1} \leq \mathcal{A}_{2}$ if there exists such a modal refinement.

- for any constraint choice M_{1} there is a bisimilar choice M_{2}
- \mathcal{A}_{1} has fewer choices than \mathcal{A}_{2}
- no more choices $\hat{=}$ only one $M \in \operatorname{Tran}(s) \hat{=}$ LTS
- formally: an embedding χ : LTS \hookrightarrow AA such that $\chi\left(\mathcal{L}_{1}\right) \leq \chi\left(\mathcal{L}_{2}\right)$ iff \mathcal{L}_{1} and \mathcal{L}_{2} are bisimilar

Logical Operations

Let $\mathcal{A}_{1}=\left(S_{1}, S_{1}^{0}\right.$, $\left.\operatorname{Tran}_{1}\right)$ and $\mathcal{A}_{2}=\left(S_{2}, S_{2}^{0}, \operatorname{Tran}_{2}\right)$ be AA.
Disjunction: $\mathcal{A}_{1} \vee \mathcal{A}_{2}=\left(S_{1} \cup^{+} S_{2}, S_{1}^{0} \cup S_{2}^{0}, \operatorname{Tran}_{1}{ }^{+} \operatorname{Tran}_{2}\right)$
Conjunction: define $\pi_{i}: 2^{\Sigma \times S_{1} \times S_{2}} \rightarrow 2^{\Sigma \times S_{i}}$ by

$$
\begin{aligned}
& \pi_{1}(M)=\left\{\left(a, s_{1}\right) \mid \exists s_{2} \in S_{2}:\left(a, s_{1}, s_{2}\right) \in M\right\} \\
& \pi_{2}(M)=\left\{\left(a, s_{2}\right) \mid \exists s_{1} \in S_{1}:\left(a, s_{1}, s_{2}\right) \in M\right\}
\end{aligned}
$$

Let $\mathcal{A}_{1} \wedge \mathcal{A}_{2}=\left(S_{1} \times S_{2}, S_{1}^{0} \times S_{2}^{0}\right.$, Tran $)$ with

$$
\operatorname{Tran}\left(\left(s_{1}, s_{2}\right)\right)=\left\{M \subseteq \Sigma \times S_{1} \times S_{2} \mid \pi_{1}(M) \in \operatorname{Tran}_{1}\left(s_{1}\right), \pi_{2}(M) \in \operatorname{Tran}_{2}\left(s_{2}\right)\right\}
$$

Theorem

For all LTS \mathcal{L} and $A A \mathcal{A}_{1}, \mathcal{A}_{2}$:

$$
\begin{aligned}
& \mathcal{L} \models \mathcal{A}_{1} \vee \mathcal{A}_{2} \Longleftrightarrow \mathcal{L} \models \mathcal{A}_{1} \text { or } \mathcal{L} \models \mathcal{A}_{2} \\
& \mathcal{L} \models \mathcal{A}_{1} \wedge \mathcal{A}_{2} \Longleftrightarrow \mathcal{L} \models \mathcal{A}_{1} \& \mathcal{L} \models \mathcal{A}_{2}
\end{aligned}
$$

Structural Operations: Composition

Let $\mathcal{A}_{1}=\left(S_{1}, S_{1}^{0}, \operatorname{Tran}_{1}\right)$ and $\mathcal{A}_{2}=\left(S_{2}, S_{2}^{0}, \operatorname{Tran}_{2}\right)$ be AA.
For $M_{1} \subseteq \Sigma \times S_{1}$ and $M_{2} \subseteq \Sigma \times S_{2}$, define

$$
M_{1} \| M_{2}=\left\{\left(a,\left(t_{1}, t_{2}\right)\right) \mid\left(a, t_{1}\right) \in M_{1},\left(a, t_{2}\right) \in M_{2}\right\}
$$

(assumes CSP synchronization, but can be generalized)
Let $\mathcal{A}_{1} \| \mathcal{A}_{2}=\left(S_{1} \times S_{2}, S_{1}^{0} \times S_{2}^{0}\right.$, Tran $)$ with

$$
\operatorname{Tran}\left(\left(s_{1}, s_{2}\right)\right)=\left\{M_{1} \| M_{2} \mid M_{1} \in \operatorname{Tran}_{1}\left(s_{1}\right), M_{2} \in \operatorname{Tran}_{2}\left(s_{2}\right)\right\}
$$

Theorem (independent implementability)

For all $A A \mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}, \mathcal{A}_{4}$:

$$
\mathcal{A}_{1} \leq \mathcal{A}_{3} \& \mathcal{A}_{2} \leq \mathcal{A}_{4} \Longrightarrow \mathcal{A}_{1}\left\|\mathcal{A}_{2} \leq \mathcal{A}_{3}\right\| \mathcal{A}_{4}
$$

Structural Operations: Quotient

Let $\mathcal{A}_{1}=\left(S_{1}, S_{1}^{0}, \operatorname{Tran}_{1}\right)$ and $\mathcal{A}_{2}=\left(S_{2}, S_{2}^{0}, \operatorname{Tran}_{2}\right)$ be AA.
Define $\mathcal{A}_{1} / \mathcal{A}_{2}=\left(S, S^{0}\right.$, Tran $)$:

- $S=2^{S_{1} \times S_{2}}$
- write $S_{2}^{0}=\left\{s_{2}^{0,1}, \ldots, s_{2}^{0, p}\right\}$ and let $S^{0}=\left\{\left\{\left(s_{1}^{0, q}, s_{2}^{0, q}\right) \mid q \in\{1, \ldots, p\}\right\} \mid \forall q: s_{1}^{0, q} \in S_{1}^{0}\right\}$
- Tran =

Structural Operations: Quotient

Let $\mathcal{A}_{1}=\left(S_{1}, S_{1}^{0}, \operatorname{Tran}_{1}\right)$ and $\mathcal{A}_{2}=\left(S_{2}, S_{2}^{0}, \operatorname{Tran}_{2}\right)$ be AA.
Define $\mathcal{A}_{1} / \mathcal{A}_{2}=\left(S, S^{0}\right.$, Tran $)$:

- $S=2^{S_{1} \times S_{2}}$
- write $S_{2}^{0}=\left\{s_{2}^{0,1}, \ldots, s_{2}^{0, p}\right\}$ and let $S^{0}=\left\{\left\{\left(s_{1}^{0, q}, s_{2}^{0, q}\right) \mid q \in\{1, \ldots, p\}\right\} \mid \forall q: s_{1}^{0, q} \in S_{1}^{0}\right\}$
- Tran $=$

Structural Operations: Quotient

Let $\mathcal{A}_{1}=\left(S_{1}, S_{1}^{0}, \operatorname{Tran}_{1}\right)$ and $\mathcal{A}_{2}=\left(S_{2}, S_{2}^{0}, \operatorname{Tran}_{2}\right)$ be AA.
Define $\mathcal{A}_{1} / \mathcal{A}_{2}=\left(S, S^{0}\right.$, Tran $)$:

- $S=2^{S_{1} \times S_{2}}$
- write $S_{2}^{0}=\left\{s_{2}^{0,1}, \ldots, s_{2}^{0, p}\right\}$ and let $S^{0}=\left\{\left\{\left(s_{1}^{0, q}, s_{2}^{0, q}\right) \mid q \in\{1, \ldots, p\}\right\} \mid \forall q: s_{1}^{0, q} \in S_{1}^{0}\right\}$
- $\operatorname{Tran}=\ldots$

Theorem

For all $A A \mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}$:

$$
\mathcal{A}_{1} \| \mathcal{A}_{2} \leq \mathcal{A}_{3} \Longleftrightarrow \mathcal{A}_{2} \leq \mathcal{A}_{3} / \mathcal{A}_{1}
$$

- up to \equiv, / is the adjoint (or residual) of ||

Quantitative Specification Theories?

Definition (recall)

A complete specification theory for (Mod, \sim) is (Spec, $\leq, \|, \chi)$ such that

- \leq is a refinement preorder on Spec
- $\mathcal{M}_{1} \sim \mathcal{M}_{2} \Longleftrightarrow \chi\left(\mathcal{M}_{1}\right) \leq \chi\left(\mathcal{M}_{2}\right)$
- (Spec, $\leq, \|)$ forms a b.c.d. residuated lattice up to \equiv
- generalize \sim by pseudometric $d_{\text {Mod }}$
- $d_{\text {Mod }}\left(\mathcal{M}_{1}, \mathcal{M}_{2}\right)=0$ iff $\mathcal{M}_{1} \sim \mathcal{M}_{2}$
- generalize \leq by hemimetric d
- $d_{\text {Mod }}\left(\mathcal{M}_{1}, \mathcal{M}_{2}\right)=d\left(\chi\left(\mathcal{M}_{1}\right), \chi\left(\mathcal{M}_{2}\right)\right)$
- $d(\mathcal{M}, \mathcal{S})=d(\chi(\mathcal{M}), \mathcal{S})$
- still want (Spec, $\leq, \|$) to be a b.c.d. residuated lattice up to \equiv

Acceptance Automata

For DMTS/AA/HML ${ }_{\text {max }}$:

- $d_{\text {Mod }}$: any bisimulation distance
- d: corresponding modal refinement distance
- transitivity \rightsquigarrow triangle ineq.: $d\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)+d\left(\mathcal{S}_{2}, \mathcal{S}_{3}\right) \geq d\left(\mathcal{S}_{1}, \mathcal{S}_{3}\right)$
- $d\left(\mathcal{S}, \mathcal{S}_{1} \wedge \mathcal{S}_{2}\right)=\max \left(d\left(\mathcal{S}, \mathcal{S}_{1}\right), d\left(\mathcal{S}, \mathcal{S}_{2}\right)\right)$ or ∞
- $d\left(\mathcal{S}_{1} \vee \mathcal{S}_{2}, \mathcal{S}\right)=\max \left(d\left(\mathcal{S}_{1}, \mathcal{S}\right), d\left(\mathcal{S}_{2}, \mathcal{S}\right)\right)$ or ∞
- quotient is quantitative residual: $d\left(\mathcal{S}_{1} \| \mathcal{S}_{2}, \mathcal{S}_{3}\right)=d\left(\mathcal{S}_{2}, \mathcal{S}_{3} / \mathcal{S}_{1}\right)$
- for $\|$ itself, uniform continuity: a function $P: \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ such that $d\left(\mathcal{S}_{1}\left\|\mathcal{S}_{2}, \mathcal{S}_{3}\right\| \mathcal{S}_{4}\right) \leq P\left(d\left(\mathcal{S}_{1}, \mathcal{S}_{3}\right), d\left(\mathcal{S}_{2}, \mathcal{S}_{4}\right)\right)$

The Bad and/or Ugly

Silent Moves in QLTBT?

- Any serious spectrographer needs to think about silent moves
- (van Glabbeek 1993: LTBT II)
- Bisping, Jansen 2023: Energy games for the weak spectrum
- but uses power set for linear part (recall: we use blindness instead)
- difficult to reconcile power set with quantitative setting
- otherwise, some coalgebra approaches:
- Sprunger, Katsumata, Dubut, Hasuo 2021: Fibrational bisimulations and quantitative reasoning
- Ford, Milius, Schröder, Beohar, König 2022: Graded monads and behavioural equivalence games
- Beohar, Gurke, König, Messing 2023: Hennessy-Milner theorems via Galois connections
- again, power set seems very popular ...
- status: IT'S COMPLICATED

Fig. 7. Schematic spectroscopy game \mathcal{G}_{\triangle} of Definition 10 .

Asarin-Basset-Degorre Distance

Recall:

$$
D(\sigma, \tau)=\max \left\{\begin{array}{c}
\sup _{i} \inf _{j}\left\{\left|t_{i}-s_{j}\right| \mid a_{i}=b_{j}\right\} \\
\sup _{j} \inf _{i}\left\{\left|t_{i}-s_{j}\right| \mid a_{i}=b_{j}\right\}
\end{array}\right.
$$

Asarin-Basset-Degorre Distance

On the practical side, if we observed timed words with some finite precision (say $0.01 s$), then it would be difficult to distinguish the order of close events, e.g. detect the difference between

$$
w_{1}=(a, 1),(b, 2),(c, 2.001) \text { and } w_{2}=(a, 1.001),(c, 1.999),(b, 2.001)
$$

Moreover, it is even difficult to count the number of events that happen in a short lapse of time, e.g. the words w_{1}, w_{2} look very similar to

$$
w_{3}=(a, 1),(c, 1.999),(c, 2),(b, 2.001),(c, 2.0002) .
$$

A slow observer, when receiving timed words w_{1}, w_{2}, w_{3} will just sense an a at the date ≈ 1 and b and c at the date ≈ 2.

As the main contribution of this paper, we introduce a metric on timed words (with non-fixed number of events) for which w_{1}, w_{2}, w_{3} are very close to each

Asarin-Basset-Degorre Distance

Recall:

$$
D(\sigma, \tau)=\max \left\{\begin{array}{c}
\operatorname{supinf}_{i}\left\{\left|t_{i}-s_{j}\right| \mid a_{i}=b_{j}\right\} \\
\underset{j}{\sup _{j}}\left\{\left|t_{i}-s_{j}\right| \mid a_{i}=b_{j}\right\}
\end{array}\right.
$$

- takes into account permutations of symbols which are close in timing
- but in a way which may lose symbols
- relation to timed pomsets? Amrane, Bazille, Clement, UF 2024: Languages of HDTA
- status: HOPEFUL

Robustness

A quantitative system is robust if

Formulate using uniform continuity: there is a constant K such that

$$
d_{\text {behavior }}\left(S, S^{\prime}\right) \leq K d_{\text {syntax }}\left(S, S^{\prime}\right)
$$

for all perturbations S^{\prime} of S.

- Standard formulation in control theory
- Generally want systems to be robust

Robustness, lack of

Our quantitative models are not robust:

- restrict to robust models?
- quantify robustness?
- use different models?
- ...

Compositionality?

Timed input-output automata:

- David, Larsen, Legay, Nyman, Traonouez, Wąsowski 2015: Real-time specifications
- Goorden, Larsen, Legay, Lorber, Nyman, Wąsowski 2023: Timed I/O Automata: It is never too late to complete your timed specification theory
- complete, with quotient, but without disjunction
- only deterministic specifications
- tool support: ECDAR / Uppaal TiGa (Aalborg)
- some work on robustness and implementability: Larsen, Legay, Traonouez, Wąsowski 2014: Robust synthesis for real-time systems

Timed Input-Output Automata

Specification Theories for Real-Time Systems, contd.

Modal event-clock specifications:

- Bertrand, Legay, Pinchinat, Raclet 2012: Modal event-clock specifications for timed component-based design
- complete, with quotient, but without disjunction
- only deterministic specifications
- some work on robustness: UF, Legay 2012: A robust specification theory for modal event-clock automata

Synchronous time-triggered interface theories:

- Delahaye, UF, Henzinger, Legay, Ničković 2012: Synchronous interface theories and time triggered scheduling
- no quotient, dubious conjunction, no implementation
- relation to BIP

Specification Theories for Hybrid Systems

Specification Theories for Hybrid Systems

- Quesel, Fränzle, Damm 2011: Crossing the bridge between similar games

Conclusion

- general theory of quantitative verification
- general theory of compositional quantitative verification
- algebraic properties
- quantitative algebraic properties
- silent moves
- for real-time systems
- robustness
- compositionality
- robust compositionality
- for hybrid systems
(5) Applications

Interface Compatibility

Interface Compatibility

- Use discounted (bi)simulation distances for measuring interface compatibility
- With A. Legay, M. Ouederni, G. Salaün
- bisimulation d. for symmetric compatibility
- ready simulation d. for asymmetric compatibility
- With tool support:

Behaviour Interactions in Product Lines

Behaviour Interactions in Product Lines

- Use a variant of Cantor bisimulation distance for counting the number of behaviour interactions in feature transition systems
- With J. Atlee, S. Beidu, A. Legay
- Use projections to products and compute Cantor bisimulation distance without repetitions:

- Use discounted bisimulation distance to measure differences between texts
- With F. Biondi, S. Kongshøj, A. Legay
- texts are very simple transition systems!
- Implementation
- Works better for some cases than standard distances used in statistical natural language processing
- New collaboration with NLP people in Grenoble
- Let $A=\left(a_{1}, a_{2}, \ldots, a_{N_{A}}\right)$ and $B=\left(b_{1}, b_{2}, \ldots, b_{N_{B}}\right)$ be texts
- Write $\delta_{i, j}=$ [if $a_{i}=b_{j}$ then 0 else 1] (word match indicator)
- position match (λ : discounting factor, $0 \leq \lambda<1$):

$$
d_{\mathrm{pm}}(i, j)=\delta_{i, j}+\lambda \delta_{i+1, j+1}+\lambda^{2} \delta_{i+2, j+2}+\lambda^{3} \delta_{i+3, j+3}+\cdots
$$

- "try to match n-grams for n as high as possible, but don't be too sad if very long phrases don't match"
- global distance:

$$
d_{3}(A, B)=\frac{1-\lambda}{N_{A}} \sum_{i=1}^{N_{A}} \min _{j=1, \ldots, N_{B}} d_{\mathrm{pm}}(i, j)
$$

- find best possible match for each position in A, average, and scale
- and symmetrize: $d_{4}(A, B)=\max \left(d_{3}(A, B), d_{3}(B, A)\right)$

Inter-Textual Distances in Statistical NLP

Experiment:

- 42 genuine scientific papers, all about modeling and verification
- 8 automatically generated "fake" papers ("SciGen")

