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Claus T: Quantitative Quantitative Quantitative Analysis

Quantitative Models
x≥4

**

x :=0
jj

Quantitative Logics

Pr≤.1(♢error)

Quantitative Verification

JϕK(s) = 3.14
d(s, t) = 42

Boolean world “Quantification”
Trace equivalence ≡ Linear distances dL
Bisimilarity ∼ Branching distances dB
s ∼ t implies s ≡ t dL(s, t) ≤ dB(s, t)
s |= ϕ or s ̸|= ϕ JϕK(s) is a quantity
s ∼ t iff ∀ϕ : s |= ϕ ⇔ t |= ϕ dB(s, t) = supϕ d

(
JϕK(s), JϕK(t)

)
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Compositional Verification

Mod

model

Spec

specification

|=

Mod |= Spec1 & Spec1 ≤ Spec2 =⇒ Mod |= Spec2

Mod |= Spec1 & Mod |= Spec2 =⇒ Mod |= Spec1 ∧ Spec2

Mod1 |= Spec1 & Mod2 |= Spec2 =⇒ Mod1 ∥ Mod2 |= Spec1 ∥ Spec2

Mod1 |= Spec1 & Mod2 |= Spec/Spec1 =⇒ Mod1 ∥ Mod2 |= Spec

bottom-up and top-down
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Quantitative Compositional Verification?

Mod

quantitative model

Spec

quantitative specification

|=ε

Mod |=ε Spec1 & Spec1 ≤ε Spec2 =⇒ Mod |=ε Spec2

Mod |=ε Spec1 & Mod |=ε Spec2 =⇒ Mod |=ε Spec1 ∧ Spec2

Mod1 |=ε Spec1 & Mod2 |=ε Spec2 =⇒ Mod1 ∥ Mod2 |=ε Spec1 ∥ Spec2

Mod1 |=ε Spec1 & Mod2 |=ε Spec/Spec1 =⇒ Mod1 ∥ Mod2 |=ε Spec

surely not the same ε everywhere!?
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User Stories

“In your quantitative verification, what type of distances do you use?”

point-wise D(σ, τ) = supi |σi − τi |

accumulating D(σ, τ) =
∑

i |σi − τi |

limit-average D(σ, τ) = lim supN
1
N

∑N
i=0 |σi − τi |

discounted D(σ, τ) =
∑

i λi |σi − τi |

maximum-lead D(σ, τ) = supN
∣∣∑N

i=0(σi − τi)
∣∣

Cantor D(σ, τ) = 1/(1 + inf{j | σj ̸= τj})

discrete D(σ, τ) = 0 if σ = τ ; ∞ otherwise
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Asarin-Basset-Degorre 2018

D(σ, τ) = max


sup

i
inf

j
{|ti − sj | | ai = bj}

sup
j

inf
i

{|ti − sj | | ai = bj}
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Challenge (ca. 2009)

In quantitative verification, lots of different distances
Develop theory to cover all/most of them

idea: use bisimulation games

⇒ The Quantitative Linear-Time–Branching-Time Spectrum
QAPL 2011, FSTTCS 2011, TCS 2014

Challenge (ca. 2012):
How to make this compositional?
Still not satisfied!
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1 Introduction

2 The Quantitative Linear-Time–Branching-Time Spectrum

3 Compositional Verification

4 Conclusion
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The Linear-Time–Branching-Time Spectrum

van Glabbeek 1990 (excerpt):

bisimulation eq.

nested simulation eq.

ready simulation eq.
possible-futures eq.

simulation eq.
readiness eq.

trace eq.
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The Simulation Game

Spoiler Duplicator

Spoiler wins

s t

a

b c

a a

b c
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The LTBT Spectrum, Game Version

bisimulation eq.

3-nested simulation pr.

2-nested simulation eq.

2-nested simulation pr.

simulation eq.

simulation pr.

2-nested ready sim. eq.

2-nested ready sim. pr.

ready simulation eq.

ready simulation pr.
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The LTBT Spectrum, Game Version

bisimulation eq.

3-nested simulation pr.

2-nested simulation eq.

2-nested simulation pr.

simulation eq.

simulation pr.

2-nested ready sim. eq.

2-nested ready sim. pr.

ready simulation eq.

ready simulation pr.

3-nested trace inc.

2-nested trace eq.

2-nested trace inc.

trace eq.

trace inc.

2-nested readiness eq.

2-nested readiness pr.

readiness eq.

readiness pr.
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The Simulation Game, Revisited

1. Player 1 chooses edge from s (leading to s ′)
2. Player 2 chooses matching edge from t (leading to t ′)
3. Game continues from configuration s ′, t ′

ω. If Player 2 can always answer: YES, t simulates s.
Otherwise: NO

Or, as an Ehrenfeucht-Fraïssé game (“delayed evaluation”):
1. Player 1 chooses edge from s (leading to s ′)
2. Player 2 chooses edge from t (leading to t ′)
3. Game continues from new configuration s ′, t ′

ω. At the end (maybe after infinitely many rounds!), compare the chosen traces:
If the trace chosen by t matches the one chosen by s: YES
Otherwise: NO
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Quantitative Ehrenfeucht-Fraïssé Games

The quantitative setting:
Assume we have a way, possibly application-determined, to measure distances of (finite or
infinite) traces
a hemimetric D : (σ, τ) 7→ D(σ, τ) ∈ R≥0 ∪ {∞}

The quantitative Ehrenfeucht-Fraïssé game:
1. Player 1 chooses edge from s (leading to s ′)
2. Player 2 chooses edge from t (leading to t ′)
3. Game continues from new configuration s ′, t ′

ω. At the end, compare the chosen traces σ, τ :
The simulation distance from s to t is defined to be D(σ, τ)
Player 1 plays to maximize D(σ, τ); Player 2 plays to minimize

This can be generalized to all the games in the LTBT spectrum.
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The Quantitative Linear-Time–Branching-Time Spectrum
For any trace distance D : (σ, τ) 7→ D(σ, τ) ∈ R≥0 ∪ {∞}:

bisimulation eq.

3-nested simulation pr.

2-nested simulation eq.

2-nested simulation pr.

simulation eq.

simulation pr.

2-nested ready sim. eq.

2-nested ready sim. pr.

ready simulation eq.

ready simulation pr.
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2-nested trace inc.

trace eq.

trace inc.

2-nested readiness eq.

2-nested readiness pr.
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Quantitative EF Games: Some Details

Configuration of the game: (π, ρ): π the Player-1 choices up to now; ρ the Player-2
choices
Strategy: mapping from configurations to next moves

Θi : set of Player-i strategies
Simulation strategy: Player-1 moves allowed from end of π

Bisimulation strategy: Player-1 moves allowed from end of π or end of ρ

(hence π and ρ are generally not paths – “mingled paths”)
Pair of strategies =⇒ (possibly infinite) sequence of configurations
Take the limit; unmingle =⇒ pair of (possibly infinite) traces (σ, τ)
Bisimulation distance: sup

θ1∈Θ1

inf
θ2∈Θ2

dT (σ, τ)

Simulation distance: sup
θ1∈Θ0

1

inf
θ2∈Θ2

dT (σ, τ) (restricting Player 1’s capabilities)
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Quantitative EF Games: Some Details – II

Blind Player-1 strategies: depend only on the end of ρ

(“cannot see Player-2 moves”)
Θ̃1: set of blind Player-1 strategies

Trace inclusion distance: sup
θ1∈Θ̃0

1

inf
θ2∈Θ2

dT (σ, τ)

For nesting: count the number of times Player 1 switches between end of π and end of ρ

Θk
1 : k switches allowed

Nested simulation distance: sup
θ1∈Θ1

1

inf
θ2∈Θ2

dT (σ, τ)

Nested trace inclusion distance: sup
θ1∈Θ̃1

1

inf
θ2∈Θ2

dT (σ, τ) (!)

For ready: allow extra “I’ll see you” Player-1 transition from end of ρ
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Transfer Theorem

Theorem
If two equivalences or preorders are inequivalent in the qualitative setting,
and the trace distance D is separating,
then the corresponding QLTBT distances are topologically inequivalent.
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Recursive Characterization

Theorem
If the trace distance D : (σ, τ) 7→ d(σ, τ) has a decomposition
d = g ◦ f : Tr × Tr → L → R≥0 ∪ {∞} through a complete lattice L,
and f has a recursive characterization, i.e., such that f (a.σ, b.τ) = F (a, b, f (σ, τ)) for some
F : Σ × Σ × L → L which is monotone in the third coordinate,
then all distances in the corresponding QLTBT spectrum are given as least fixed points of some
functionals using F .

All trace distances I know can be expressed recursively like this.
except ABD’18?
L is “memory”
also gives relation family characterization
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Specification Theories

Let Mod be a set of models with an equivalence ∼.

Definition
A complete specification theory for (Mod, ∼) is (Spec, ≤, ∥, χ) such that

≤ is a refinement preorder on Spec
χ : Mod → Spec picks out characteristic specifications

i.e., ∀M1, M2 ∈ Mod : M1 ∼ M2 ⇐⇒ χ(M1) ≤ χ(M2)
(Spec, ≤, ∥) forms a bounded commutative distributive residuated lattice up to ≤ ∩ ≥

⇒ ∨ and ∧ on Spec; double distributivity; ⊥, ⊤ ∈ Spec
everything up to modal equivalence ≡ = ≤ ∩ ≥

⇒ ∥ distributes over ∨, has unit U, has residual / (up to ≡)
S1∥S2 ≤ S3 ⇐⇒ S2 ≤ S3/S1
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Examples

Disjunctive modal transition systems
Acceptance automata
Hennessy-Milner logic with maximal fixed points

CONCUR 2013, ICTAC 2014, I&C 2020 (all with ∼ = bisimulation)
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Acceptance Automata

Let Σ be a finite alphabet.

Definition
A (nondeterministic) acceptance automaton (AA) is a structure A = (S, S0, Tran), with
S ⊇ S0 finite sets of states and initial states and Tran : S → 22Σ×S an assignment of transition
constraints.

standard labeled transition system (LTS): Tran : S → 2Σ×S (coalgebraic view)
(for AA:) Tran(s) = {M1, M2, . . . }: provide M1 or M2 or . . .

a disjunctive choice of conjunctive constraints
J.-B. Raclet 2008 (but deterministic); see also H. H. Hansen 2003
note multiple initial states
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Refinement

Definition
Let A1 = (S1, S0

1 , Tran1) and A2 = (S2, S0
2 , Tran2) be AA.

A relation R ⊆ S1 × S2 is a modal refinement if:
1 ∀s0

1 ∈ S0
1 : ∃s0

2 ∈ S0
2 : (s0

1 , s0
2 ) ∈ R (init)

2 ∀(s1, s2) ∈ R : ∀M1 ∈ Tran1(s1) : ∃M2 ∈ Tran2(s2) : (tran)
1 ∀(a, t1) ∈ M1 : ∃(a, t2) ∈ M2 : (t1, t2) ∈ R
2 ∀(a, t2) ∈ M2 : ∃(a, t1) ∈ M1 : (t1, t2) ∈ R

Write A1 ≤ A2 if there exists such a modal refinement.

for any constraint choice M1 there is a bisimilar choice M2
A1 has fewer choices than A2
no more choices =̂ only one M ∈ Tran(s) =̂ LTS
formally: an embedding χ : LTS ↪→ AA
such that χ(L1) ≤ χ(L2) iff L1 and L2 are bisimilar
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Logical Operations
Let A1 = (S1, S0

1 , Tran1) and A2 = (S2, S0
2 , Tran2) be AA.

Disjunction: A1 ∨ A2 = (S1
+
∪ S2, S0

1
+
∪ S0

2 , Tran1
+
∪ Tran2)

Conjunction: define πi : 2Σ×S1×S2 → 2Σ×Si by

π1(M) ={(a, s1) | ∃s2 ∈ S2 : (a, s1, s2) ∈ M}
π2(M) ={(a, s2) | ∃s1 ∈ S1 : (a, s1, s2) ∈ M}

Let A1 ∧ A2 = (S1 × S2, S0
1 × S0

2 , Tran) with

Tran((s1, s2)) = {M ⊆ Σ × S1 × S2 | π1(M) ∈ Tran1(s1), π2(M) ∈ Tran2(s2)}

Theorem
For all LTS L and AA A1, A2:

L |= A1 ∨ A2 ⇐⇒ L |= A1 or L |= A2

L |= A1 ∧ A2 ⇐⇒ L |= A1 & L |= A2
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Structural Operations: Composition

Let A1 = (S1, S0
1 , Tran1) and A2 = (S2, S0

2 , Tran2) be AA.

For M1 ⊆ Σ × S1 and M2 ⊆ Σ × S2, define

M1∥M2 = {(a, (t1, t2)) | (a, t1) ∈ M1, (a, t2) ∈ M2}

(assumes CSP synchronization, but can be generalized)

Let A1∥A2 = (S1 × S2, S0
1 × S0

2 , Tran) with

Tran((s1, s2)) = {M1∥M2 | M1 ∈ Tran1(s1), M2 ∈ Tran2(s2)}

Theorem (independent implementability)
For all AA A1, A2, A3, A4:

A1 ≤ A3 & A2 ≤ A4 =⇒ A1∥A2 ≤ A3∥A4
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Structural Operations: Quotient

Let A1 = (S1, S0
1 , Tran1) and A2 = (S2, S0

2 , Tran2) be AA.

Define A1/A2 = (S, S0, Tran):
S = 2S1×S2

write S0
2 = {s0,1

2 , . . . , s0,p
2 } and let S0 = {{(s0,q

1 , s0,q
2 ) | q ∈ {1, . . . , p}}

∣∣ ∀q : s0,q
1 ∈ S0

1 }
Tran =

Theorem
For all AA A1, A2, A3:

A1∥A2 ≤ A3 ⇐⇒ A2 ≤ A3/A1

up to ≡, / is the adjoint (or residual) of ∥
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Quantitative Specification Theories?

Definition (recall)
A complete specification theory for (Mod, ∼) is (Spec, ≤, ∥, χ) such that

≤ is a refinement preorder on Spec
M1 ∼ M2 ⇐⇒ χ(M1) ≤ χ(M2)
(Spec, ≤, ∥) forms a b.c.d. residuated lattice up to ≡

generalize ∼ by pseudometric dMod
dMod(M1, M2) = 0 iff M1 ∼ M2

generalize ≤ by hemimetric d
dMod(M1, M2) = d(χ(M1), χ(M2))
d(M, S) = d(χ(M), S)

still want (Spec, ≤, ∥) to be a b.c.d. residuated lattice up to ≡
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Acceptance Automata

For DMTS/AA/HMLmax:
dMod: any bisimulation distance
d : corresponding modal refinement distance
transitivity ⇝ triangle ineq.: d(S1, S2) + d(S2, S3) ≥ d(S1, S3)
d(S, S1 ∧ S2) = max(d(S, S1), d(S, S2)) or ∞
d(S1 ∨ S2, S) = max(d(S1, S), d(S2, S)) or ∞
quotient is quantitative residual: d(S1∥S2, S3) = d(S2, S3/S1)
for ∥ itself, uniform continuity: a function P : R≥0 ×R≥0 → R≥0 such that
d(S1∥S2, S3∥S4) ≤ P(d(S1, S3), d(S2, S4))
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Silent Moves in QLTBT?

Any serious spectrographer needs to think about silent moves
(van Glabbeek 1993: LTBT II)
Bisping, Jansen 2023: Energy games for the weak spectrum

but uses power set for linear part (recall: we use blindness instead)
difficult to reconcile power set with quantitative setting

otherwise, some coalgebra approaches:
Sprunger, Katsumata, Dubut, Hasuo 2021: Fibrational bisimulations and quantitative
reasoning
Ford, Milius, Schröder, Beohar, König 2022: Graded monads and behavioural
equivalence games
Beohar, Gurke, König, Messing 2023: Hennessy-Milner theorems via Galois
connections
again, power set seems very popular . . .

status: IT’S COMPLICATED
Uli Fahrenberg Quantitative Verification 44/ 53



94 B. Bisping

Fig. 7. Schematic spectroscopy game G� of Definition 10.

of actions. The second dimension limits how often they may use conjunctions
to resolve nondeterminism. The third, fourth, and fifth dimensions limit how
deeply observations may nest underneath a conjunction, where the fifth stands
for negated clauses, the third for one of the deepest positive clauses and the
fourth for the other positive clauses. The last dimension limits how often the
attacker may use negations to enforce symmetry by swapping sides. The moves
closely match productions in the grammar of Definition 2 and prices in Defini-
tion 5.

Definition 10. (Spectroscopy energy game). For a system S = (P, Σ,−→),
the 6-dimensional spectroscopy energy game GS

�[g0, e0] = (G,Gd, , w, g0, e0)
consists of

– attacker positions (p,Q)a ∈ Ga,
– attacker clause positions (p, q)

∧
a ∈ Ga,

– defender conjunction positions (p,Q,Q∗)d ∈ Gd,

where p, q ∈ P and Q,Q∗ ∈ 2P, and six kinds of moves:

− observation moves (p,Q)a
(−1,0,0,0,0,0)

(p′, Q′)a if p
a−→ p′, Q

a−→ Q′,
− conj. challenges (p,Q)a

(0,−1,0,0,0,0)
(p,Q \ Q∗, Q∗)d if Q∗ ⊆ Q,

− conj. revivals (p,Q,Q∗)d
(min{1,3},0,0,0,0,0)

(p,Q∗)a if Q∗ 	= ∅,
− conj. answers (p,Q,Q∗)d

(0,0,0,min{3,4},0,0)

(p, q)
∧
a if q ∈ Q,

− positive decisions (p, q)
∧
a

(min{1,4},0,0,0,0,0)

(p, {q})a, and
− negative decisions (p, q)

∧
a

(min{1,5},0,0,0,0,−1)

(q, {p})a if p 	= q.

The spectroscopy energy game is a bisimulation game in the tradition of Stir-
ling [33].
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Asarin-Basset-Degorre Distance

Recall:

D(σ, τ) = max


sup

i
inf

j
{|ti − sj | | ai = bj}

sup
j

inf
i

{|ti − sj | | ai = bj}

takes into account permutations of symbols which are close in timing
but in a way which may lose symbols
relation to timed pomsets? Amrane, Bazille, Clement, UF 2024: Languages of HDTA
status: HOPEFUL
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On the practical side, if we observed timed words with some finite precision
(say 0.01s), then it would be difficult to distinguish the order of close events,
e.g. detect the difference between

w1 = (a, 1), (b, 2), (c, 2.001) and w2 = (a, 1.001), (c, 1.999), (b, 2.001).

Moreover, it is even difficult to count the number of events that happen in a
short lapse of time, e.g. the words w1, w2 look very similar to

w3 = (a, 1), (c, 1.999), (c, 2), (b, 2.001), (c, 2.0002).

A slow observer, when receiving timed words w1, w2, w3 will just sense an a at
the date ≈ 1 and b and c at the date ≈ 2.

As the main contribution of this paper, we introduce a metric on timed words
(with non-fixed number of events) for which w1, w2, w3 are very close to each
other. We believe that this metric is natural and sets a ground for approximate
model-checking and information theory of timed languages w.r.t. time (and not
only number of events).

We present the first technical results concerning this distance:

– its simple geometrical properties;
– techniques of quantitative model-checking and monitoring, and complexity

estimates thereof (the complexity of standard problems is quite moderate:
PSPACE or sometimes NP);

– proof of compactness of this distance, and analysis of information contents
of some important languages.

The paper is structured as follows: after some preliminaries in Sect. 2 we
introduce our main new notion of distance between timed words in Sect. 3. We
analyse problems of quantitative model-checking (with respect to this distance)
in Sect. 4 and those of information content in Sect. 5. We conclude with some
perspectives in Sect. 6.

2 Preliminaries

We suppose that the reader is acquainted with timed automata (and region
equivalence), [1]. Nonetheless, here we fix notation and provide main definitions.
We also provide basic facts and notions on pre-compact spaces and two infor-
mation measures thereof.

2.1 Timed Words and Timed Languages

A timed word of length n over an alphabet Σ is a sequence w = t1a1 . . . tnan,
with ai ∈ Σ, ti ∈ IR and 0 ≤ t1 ≤ . . . ≤ tn. Here ti represents the dates at
which the event ai occurs (this definition rules out timed words ending by a
time delay). We also adopt the convention that t0 = 0. A timed language L is a
set of timed words.

2
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Specification Theories for Real-Time Systems

Timed input-output automata:
David, Larsen, Legay, Nyman, Traonouez, Wąsowski 2015: Real-time specifications
Goorden, Larsen, Legay, Lorber, Nyman, Wąsowski 2023: Timed I/O Automata: It is
never too late to complete your timed specification theory
complete, with quotient, but without disjunction
only deterministic specifications
tool support: ECDAR / Uppaal TiGa (Aalborg)
some work on robustness and implementability: Larsen, Legay, Traonouez, Wąsowski 2014:
Robust synthesis for real-time systems
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Timed Input-Output Automata
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Specification Theories for Real-Time Systems, contd.

Modal event-clock specifications:
Bertrand, Legay, Pinchinat, Raclet 2012: Modal event-clock specifications for timed
component-based design
complete, with quotient, but without disjunction
only deterministic specifications
some work on robustness: UF, Legay 2012: A robust specification theory for modal
event-clock automata

Synchronous time-triggered interface theories:
Delahaye, UF, Henzinger, Legay, Ničković 2012: Synchronous interface theories and time
triggered scheduling
no quotient, dubious conjunction, no implementation
relation to BIP
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http://dx.doi.org/10.1016/j.scico.2011.01.007
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Specification Theories for Hybrid Systems

Quesel, Fränzle, Damm 2011: Crossing the bridge between similar games
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Specification Theories for Hybrid Systems
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Conclusion

general theory of quantitative verification ✓

general theory of compositional quantitative verification
_
\_( ") )_/

_

algebraic properties ✓

quantitative algebraic properties ✗

silent moves ✗

for real-time systems
_
\_( ") )_/

_

robustness
_
\_( ") )_/

_

compositionality
_
\_( ") )_/

_

robust compositionality ✗

for hybrid systems ✗
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