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Model Checking

model specification

Mod = Spec
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Claus T: Quantitative Quantitative Quantitative Analysis

Quantitative Models Quantitative Logics Quantitative Verification

[¢](s) = 3.14
d(s,t) =42

Pr<.1(Oerror)

Boolean world “Quantification”
Trace equivalence = Linear distances d;
Bisimilarity ~ Branching distances dg
s~ timpliess =t di(s,t) < dg(s,t)
sE¢gorslEd [¢](s) is a quantity
s~tiff Vo s ¢ e tEe | de(s t) =sup, d([](s). [¢](t))
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Compositional Verification

model specification

Mod = Spec

Mod = Spec; & Spec; < Spec, = Mod |= Spec,

Mod = Spec; & Mod = Spec, = Mod |= Spec; A Spec,

Mod; [= Spec; & Mod; |= Spec, = Mod; || Mod, = Spec; || Spec,
Mod; = Spec; & Mod; |= Spec/Spec; = Mod; || Mod; = Spec

e 6 o6 o

(]

bottom-up and top-down
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Quantitative Compositional Verification?

quantitative model quantitative specification

Mod = Spec

Mod [=. Spec; & Spec; <. Spec, = Mod |=. Spec,

Mod [=. Spec; & Mod =, Spec, = Mod =, Spec; A Spec,

Mod; [=- Spec; & Mod; |=. Spec, = Mod; || Mod, . Spec; || Spec,
Mod; [=- Spec; & Mod; |=. Spec/Spec; = Mod; || Mods =, Spec

e 6 o6 o

(]

surely not the same ¢ everywhere!?
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User Stories

“In your quantitative verification, what type of distances do you use?”

@ point-wise D(o, 1) = supj|o; — il
@ accumulating D(o,7) = >>iloi — il
o limit-average D(o,7) = lim supN% Z,N:o lo; — i
o discounted D(o,7) =3; Noi — 7il
e maximum-lead D(o,7) = supy|>-Io(oi — 7))
o Cantor D(o,7) =1/(L +inf{j| o # 7;})
o discrete D(o,7) =0 if 0 = 7; 0o otherwise
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Asarin-Basset-Degorre 2018

su_pin'f{|t,~ — Sj’ | aj = bj}
D(o,7) = max b
supinf {|t; — 5| | aj = b}

joi
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Challenge (ca. 2009)

o In quantitative verification, lots of different distances
@ Develop theory to cover all/most of them
o idea: use bisimulation games

= The Quantitative Linear-Time—Branching-Time Spectrum
o QAPL 2011, FSTTCS 2011, TCS 2014

Challenge (ca. 2012):
@ How to make this compositional?
o Still not satisfied!
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@ Introduction
Q The Quantitative Linear-Time—Branching-Time Spectrum
© Compositional Verification

@ Conclusion
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The Linear-Time—Branching-Time Spectrum

van Glabbeek 1990 (excerpt):

bisimulation eq.

l

nested simulation eq

/
ready S|mulat|on eq.

055|ble futures eq.

S|mulat|on eq
readlness eq.

/

trace eq.
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van Glabbeek 1990 (excerpt):

bisimulation eq.

l

The Linear-Time—Branching-Time Spectrum

nested simulation eq.

nested simulation pr.

/ /
ready simulation eq. < ready simulation pr.
l possible-futures eq. l possible-futures pr.
simulation eq. < l simulation pr,\ l
readiness eq. readiness pr.
/ /
trace eq. trace pr.
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The Linear-Time—Branching-Time Spectrum

van Glabbeek 1990 (excerpt):

bisimulation eq.

/ \

nested simulation eq. nested simulation pr.
/ /
ready simulation eq. ready simulation pr.

| possible-futures pr.

l

— . . :
readiness eq. readiness pr.

trace eq. trace pr.

|

simulation eq.
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The Simulation Game
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The Simulation Game

Spoiler Duplicator

aT
O O
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The Simulation Game

Spoiler Duplicator
aT a a
o O O O
Spoiler wins
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The LTBT Spectrum, Game Version

bisimulation eq.

2-nested ready sim. eq.

2-nested simulation eq.
2-nested ready sim. pr.

2-nested simulation pr.
ready simulation eq.

simulation eq.

ready simulation pr.
/

simulation pr.
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The LTBT Spectrum, Game Version

\ | T Y
3-nested simulation pr. l 3-nested trace inc.

Y
\H{,ted ready sim. eq. 2-nested readiness eq.
2-nested simulation eq. ~C 2-nested trace eq.

\z{%ted ready sim. pr. 2-nested readiness pr.
2-nested simulation pr. <<

2-nested trace inc.

xﬁdy simulation eq. readiness eq.
simulation eq. << trace eq. K

ready simulation pr. readiness pr.

— /

simulation pr. trace inc.
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The Simulation Game, Revisited

1. Player 1 chooses edge from s (leading to s’)
2. Player 2 chooses matching edge from t (leading to t')
3. Game continues from configuration s, t/

w. If Player 2 can always answer: YES, t simulates s.
Otherwise: NO

Or, as an Ehrenfeucht-Fraissé game (“delayed evaluation”):
1. Player 1 chooses edge from s (leading to s’)
2. Player 2 chooses edge from t (leading to t')
3. Game continues from new configuration s’, t/

w. At the end (maybe after infinitely many rounds!), compare the chosen traces:
If the trace chosen by t matches the one chosen by s: YES
Otherwise: NO

Uli Fahrenberg Quantitative Verification 24/ 53
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Quantitative Ehrenfeucht-Fraissé Games

The quantitative setting:
o Assume we have a way, possibly application-determined, to measure distances of (finite or
infinite) traces

@ a hemimetric D : (0,7) + D(0,7) € R>o U {0}

The quantitative Ehrenfeucht-Fraissé game:
1. Player 1 chooses edge from s (leading to s’)
2. Player 2 chooses edge from t (leading to t’)
3. Game continues from new configuration s’, t/

w. At the end, compare the chosen traces o, 7:
The simulation distance from s to t is defined to be D(o, T)

o Player 1 plays to maximize D(o,7); Player 2 plays to minimize
This can be generalized to all the games in the LTBT spectrum.
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The Quantitative Linear-Time—Branching-Time Spectrum

For any trace distance D : (o, 7) — D(o,7) € R>o U {o0}:

bisimulation eq. __

T T >
\ | Y

3-nested simulation pr. 3-nested trace inc.

|
Y Y

\gsted ready sim. eq. 2-nested readiness eq.
2-nested simulation eq. ~ 2-nested trace eq.

\gsted ready sim. pr. 2-nested readiness pr.
2-nested simulation pr. <

2-nested trace inc.

B{,dy simulation eq. readiness eq.
simulation eq. << trace eq. ‘><

ready simulation pr. readiness pr.

— /

simulation pr. trace inc.
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Quantitative EF Games: Some Details

o Configuration of the game: (m, p): 7 the Player-1 choices up to now; p the Player-2

choices

o Strategy: mapping from configurations to next moves
o O;: set of Player-i strategies

o Simulation strategy: Player-1 moves allowed from end of 7

o Bisimulation strategy: Player-1 moves allowed from end of 7 or end of p
o (hence 7 and p are generally not paths — “mingled paths™)

o Pair of strategies = (possibly infinite) sequence of configurations

o Take the limit; unmingle = pair of (possibly infinite) traces (o, 7)

e Bisimulation distance: sup inf dr(o,7)
916@1 926@2
e Simulation distance: sup inf dy(o,7) (restricting Player 1's capabilities)

916@(1) 6,€0,

Uli Fahrenberg Quantitative Verification 27/ 53



QLTBT
00000000800

Quantitative EF Games: Some Details — Il

(7]

Blind Player-1 strategies: depend only on the end of p
o (“cannot see Player-2 moves”)
o O7: set of blind Player-1 strategies

@ Trace inclusion distance: sup inf dy(o,7)
0169 0,0,

o For nesting: count the number of times Player 1 switches between end of 7 and end of p
o OF: k switches allowed
o Nested simulation distance: sup inf d(o,7)
916@% 026@2
o Nested trace inclusion distance: sup inf dr(o,7) @)
0,€61 0,€0,
o For ready: allow extra “I'll see you™ Player-1 transition from end of p

Uli Fahrenberg Quantitative Verification 28/ 53
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Transfer Theorem

If two equivalences or preorders are inequivalent in the qualitative setting,
and the trace distance D is separating,
then the corresponding QLTBT distances are topologically inequivalent.

Uli Fahrenberg Quantitative Verification
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Recursive Characterization

If the trace distance D : (o, 7) — d(o,7) has a decomposition

d=gof:TrxTr— L— R>oU{oo} through a complete lattice L,

and f has a recursive characterization, i.e., such that f(a.o, b.) = F(a, b,f(0, 7)) for some
F X x X x L— L which is monotone in the third coordinate,

then all distances in the corresponding QLTBT spectrum are given as least fixed points of some
functionals using F.

v

All trace distances | know can be expressed recursively like this.
o except ABD'187?
o L is “memory”

@ also gives relation family characterization

Uli Fahrenberg Quantitative Verification 30/ 53
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@ Introduction
© The Quantitative Linear-Time-Branching-Time Spectrum

© Compositional Verification

@ Conclusion
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Compositional Verification
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Specification Theories

Let Mod be a set of models with an equivalence ~.

Definition
A complete specification theory for (Mod, ~) is (Spec, <, ||, x) such that

o < is a refinement preorder on Spec
@ x : Mod — Spec picks out characteristic specifications
o ie, VM1, Mz € Mod : M1 ~ My <— x(M1) < x(M3)
@ (Spec, <,||) forms a bounded commutative distributive residuated lattice up to <N >

V.

= V and A on Spec; double distributivity; |, T € Spec
o everything up to modal equivalence = =<nN>

= || distributes over V, has unit U, has residual /  (up to =)
0 S51|852 <83 —= S < S3/5;
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Examples

o Disjunctive modal transition systems
o Acceptance automata

o Hennessy-Milner logic with maximal fixed points

o CONCUR 2013, ICTAC 2014, 1&C 2020 (all with ~ = bisimulation)
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Acceptance Automata

Let X be a finite alphabet.

Definition

A (nondeterministic) acceptance automaton (AA) is a structure A = (S, S Tran), with
S D SO finite sets of states and initial states and Tran : S — 227 an assignment of transition
constraints.

o standard labeled transition system (LTS): Tran : S — 2%*5 (coalgebraic view)
o (for AA:) Tran(s) = {My, My, ... }: provide My or My or ...

@ a disjunctive choice of conjunctive constraints

e J.-B. Raclet 2008 (but deterministic); see also H. H. Hansen 2003

°

note multiple initial states
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Refinement

Let A; = (51,50, Trang) and A = (52, 59, Tran,) be AA.
A relation R C S; x S, is a modal refinement if:
O Vs) eSP:3s0 €S9:(sD,s9)eR (init)
Q VY(s1,5) € R:VM; € Trani(s1) : IMa € Trany(sp) : (tran)
(1) V(a, tl) e M : 3(3, t2) e Mo : (tl, t2) €R
Q V(a, tg) e M, : El(a, tl) e M : (i‘l7 t2) €R

Write A; < A5 if there exists such a modal refinement.

o for any constraint choice M there is a bisimilar choice M,
o A; has fewer choices than A,
@ no more choices = only one M € Tran(s) = LTS

o formally: an embedding x : LTS — AA
such that x(£1) < x(£2) iff £1 and Ly are bisimilar

Uli Fahrenberg Quantitative Verification
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Logical Operations

Let A; = (51,50, Trang) and A = (52,59, Tran,) be AA.
Disjunction: A; V Ay = (51 U S, S? U S9, Trang U Trany)
Conjunction: define 7rj : 25X51X%2 4 2XSi py
m(M) ={(a,s1) | 32 € S2: (a, 51, 52) € M}
m(M) ={(a,s2) | 3s1 € 51 : (a,51,5) € M}
Let A; A Ay = (S1 % S, 5P x S9, Tran) with
Tran((s1,52)) = {M C X x 51 X S2 | m1(M) € Trani(s1), m2(M) € Trana(s2)}

For all LTS L and AA A1, A»:
ﬁ':.Al\/.Az = E):Al Orﬁ):.Az
E'Z.Al/\Az <=>£):.A1&£|:A2

Uli Fahrenberg Quantitative Verification
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Structural Operations: Composition

Let A; = (51,50, Trany) and Az = (52, S9, Trany) be AA.
For Mi C X x S; and M, C X x S;, define

Mi[[Mz = {(a, (t1, 22)) | (a, 1) € My, (a, 2) € Mo}
(assumes CSP synchronization, but can be generalized)
Let Ap|lA2 = (51 x S, S? x S9, Tran) with

Tran((51,52)) = {M1HM2 ‘ M; € Tranl(sl), M, € Tran2(52)}

Theorem (independent implementability)

For all AA A;, Ay, Az, Ay:
Al S A3 & Ax < Ay = Ap]| A2 < A3l Aq

Uli Fahrenberg Quantitative Verification 37/ 53
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Structural Operations: Quotient

Let A; = (51, S0, Trany) and Az = (52, S9, Trany) be AA.

Define A1 /A = (S, S, Tran):
0 §=291x
o write S§ = {s3,..., 53"} and let S = {{(sV"?,55°%) | g € {1,...,p}} | ¥q: s € S0}

o Tran =

Uli Fahrenberg Quantitative Verification 38/ 53
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Structural Operations: Quotient

Let A; = (51,50, Trang) and A = (S5, 59, Tran,) be AA.
Define A1 /A = (S, S, Tran):
0 S =2%9%%
o write S§ = {s3,..., 53"} and let S = {{(sV"?,55°%) | g € {1,...,p}} | ¥q: s € S0}

o Tran =
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Structural Operations: Quotient

Let A; = (51,50, Trang) and A = (S5, 59, Tran,) be AA.
Define A1 /A = (S, S, Tran):
0 S =2%9%%
o write S§ = {s3,..., 53"} and let S = {{(sV"?,55°%) | g € {1,...,p}} | ¥q: s € S0}

o Tran =

For all AA Ay, Ay, As:

Aif[ A2 < A3 <= Ay < A3/ A

@ up to =, / is the adjoint (or residual) of ||

Uli Fahrenberg Quantitative Verification
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Quantitative Specification Theories?

Definition (recall)

A complete specification theory for (Mod, ~) is (Spec, <, ||, x) such that
o < is a refinement preorder on Spec
0 M1~ Mz = x(Mi) < x(M2)
o (Spec, <,||) forms a b.c.d. residuated lattice up to =

o generalize ~ by pseudometric dpod
o duod(M1, M2) =0 iff M1 ~ M
o generalize < by hemimetric d

o dmod(M1, M2) = d(x(M1), x(M2))
o d(M,S) = d(x(M),S)
o still want (Spec, <, ||) to be a b.c.d. residuated lattice up to =

Uli Fahrenberg Quantitative Verification 41/ 53
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Acceptance Automata

For DMTS/AA/HMLyax:
@ dpmod: any bisimulation distance
o d: corresponding modal refinement distance
@ transitivity ~~ triangle ineq.: d(S1,S82) + d(S2, S3) > d(S1, S3)
d(S,851 N S2) = max(d(S,S1),d(S,S2)) or
d(S1V 82,8) = max(d(S1,S),d(S2,S)) or
quotient is quantitative residual: d(S1||S2, S3) = d(S2, S3/81)

for || itself, uniform continuity: a function P : R>0 X R>0 — R>0 such that
d(S81|S2, 83(|Sa) < P(d(S1,S3), d(S2,S4))

e 6 o6 o
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Silent Moves in QLTBT?

@ Any serious spectrographer needs to think about silent moves
o (van Glabbeek 1993: LTBT II)
o Bisping, Jansen 2023: Energy games for the weak spectrum
o but uses power set for linear part (recall: we use blindness instead)
o difficult to reconcile power set with quantitative setting
@ otherwise, some coalgebra approaches:
o Sprunger, Katsumata, Dubut, Hasuo 2021: Fibrational bisimulations and quantitative

reasoning
o Ford, Milius, Schréder, Beohar, Kénig 2022: Graded monads and behavioural

equivalence games
o Beohar, Gurke, Konig, Messing 2023: Hennessy-Milner theorems via Galois

connections
e again, power set seems very popular ...

o status: IT'S COMPLICATED
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B. Bisping

(P, Q).

0,0,0,ming 4,0,0

(p,q). E

ming 5,0,0,0,0, -1

Fig. 7. Schematic spectroscopy game Ga of Definition 10.




Bad/Ugly
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Asarin-Basset-Degorre Distance

Recall:

su_pin'f{|t,~ — Sj’ | aj = b_,}
D(o,7) = max b

supinf{|ti — s;| | a;i = b;}
o

o takes into account permutations of symbols which are close in timing
@ but in a way which may lose symbols

o relation to timed pomsets? Amrane, Bazille, Clement, UF 2024: Languages of HDTA
o status: HOPEFUL
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On the practical side, if we observed timed words with some finite precision
(say 0.01s), then it would be difficult to distinguish the order of close events,
e.g. detect the difference between

wy = (a,1),(b,2),(¢,2.001) and we = (a,1.001), (c,1.999), (b,2.001).

Moreover, it is even difficult to count the number of events that happen in a
short lapse of time, e.g. the words wy, ws look very similar to

ws = (a,1), (¢, 1.999), (¢, 2), (b, 2.001), (¢, 2.0002).

A slow observer, when receiving timed words w1, wo, w3 will just sense an a at
the date ~ 1 and b and c at the date ~ 2.

As the main contribution of this paper, we introduce a metric on timed words
(with non-fixed number of events) for which wy,ws, w3 are very close to each
other. We believe that this metric is natural and sets a ground for approximate
model-checking and information theory of timed languages w.r.t. time (and not
only number of events).

We present the first technical results concernine this distance:
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Specification Theories for Real-Time Systems

Timed input-output automata:
o David, Larsen, Legay, Nyman, Traonouez, Wasowski 2015: Real-time specifications

o Goorden, Larsen, Legay, Lorber, Nyman, Wasowski 2023: Timed /O Automata: It is
never too late to complete your timed specification theory

complete, with quotient, but without disjunction
only deterministic specifications
tool support: ECDAR / Uppaal TiGa (Aalborg)

some work on robustness and implementability: Larsen, Legay, Traonouez, Wasowski 2014:
Robust synthesis for real-time systems

e 6 o o
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Bad/Ugly
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Timed Input-Output Automata

Machine HalfAdmi HalfAdm2 Researcher UniSpec

I L4 < | yes/no-+strategy

combine with operator
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Specification Theories for Real-Time Systems, contd.

Modal event-clock specifications:
o Bertrand, Legay, Pinchinat, Raclet 2012: Modal event-clock specifications for timed
component-based design
o complete, with quotient, but without disjunction
@ only deterministic specifications
@ some work on robustness: UF, Legay 2012: A robust specification theory for modal
event-clock automata
Synchronous time-triggered interface theories:
o Delahaye, UF, Henzinger, Legay, Nickovi¢ 2012: Synchronous interface theories and time
triggered scheduling
@ no quotient, dubious conjunction, no implementation

o relation to BIP
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Specification Theories for Hybrid Systems
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Specification Theories for Hybrid Systems

o Quesel, Franzle, Damm 2011: Crossing the bridge between similar games
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Conclusion

o general theory of quantitative verification v
@ general theory of compositional quantitative verification )/
o algebraic properties v
o quantitative algebraic properties X
o silent moves X
o for real-time systems \_)_/”
o robustness M)/
o compositionality \_(V)_/
o robust compositionality X
o for hybrid systems X
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