Directed Topology and Concurrency A Personal View

Uli Fahrenberg

LRE & EPITA Rennes, France

PPS seminar 21 March 2024

3 Languages of Higher-Dimensional Automata

Nice People

Jérémy Dubut, Lisbeth Fajstrup, Philippe Gaucher, Eric Goubault, Emmanuel Haucourt, Christian Johansen, Jérémy Ledent, Samuel Mimram, Sergio Rajsbaum, Martin Raussen, Georg Struth, Rob van Glabbeek, Krzysztof Ziemiański

Combinatorial Model

anguages of Higher-Dimensional Automata

Properties

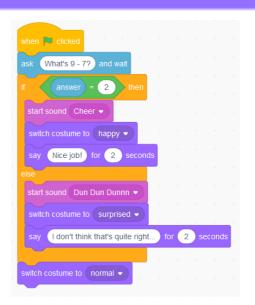
Conclusion

Algebraic View

- A program is a sequence of instructions
 - plus branches and loops

Kleene algebra:

- set *S* with operations:
- ${\scriptstyle \bullet}$ concatenation \otimes
- ullet choice \oplus
- repetition *
- idempotent semiring with unary * which computes fixed points
- (Kleene algebra with domain for conditional branches)



Uli Fahrenberg

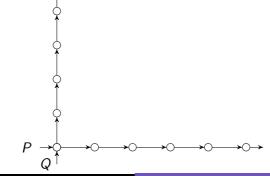
Directed Topology and Concurrency

eometric Semantics •00000000	Combinatorial Model	Languages of Higher-Dimensional Automata	Properties 00000000	Conclusio 00
_				

Ge

- A program is a sequence of instructions
 - ignoring branches and loops for now

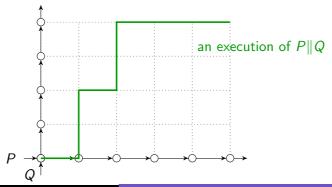
Now, a second program in parallel:



eometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata	Properties 00000000	Conclusi 00

- A program is a sequence of instructions
 - ignoring branches and loops for now

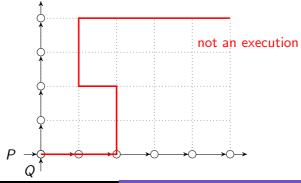
Now, a second program in parallel:



Geometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata	Properties 00000000	Conclu 00

- A program is a sequence of instructions
 - ignoring branches and loops for now

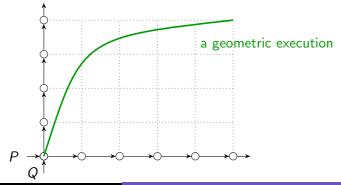
Now, a second program in parallel:



eometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata	Properties 00000000	Conclus
-				

- A program is a sequence of instructions
 - ignoring branches and loops for now

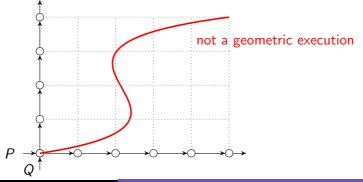
Now, a second program in parallel:



eometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata	Properties 00000000	Conclusi 00

- A program is a sequence of instructions
 - ignoring branches and loops for now

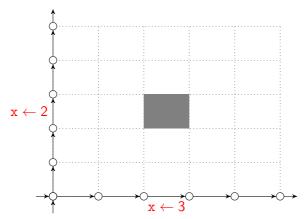
Now, a second program in parallel:



Geometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata	Properties 00000000	Conclusion 00

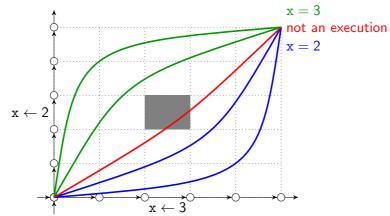
Holes

Adding mutual exclusion:



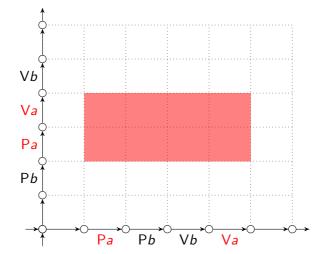
Geometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata	Properties 00000000	Conclusion
Holes				

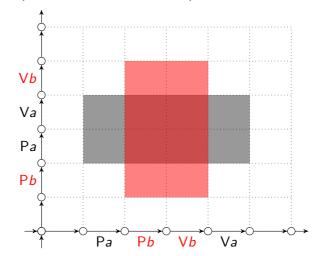
Adding mutual exclusion:



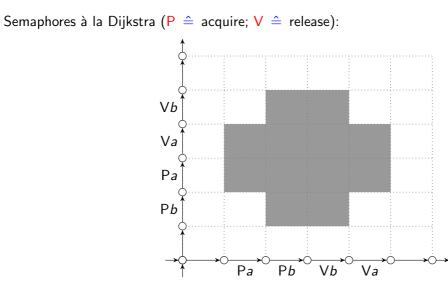
• homotopic paths $\hat{=}$ equivalent executions

Geometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata	Properties 00000000	Conclusion 00
More Holes				

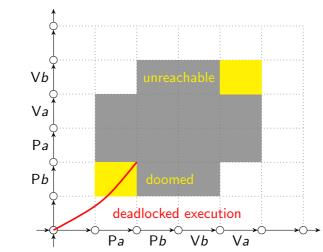




Geometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata	Properties 00000000	Conclusion 00
More Holes				



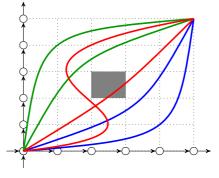
Geometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata	Properties 00000000	Conclusion 00
More Holes				



Combinatorial Model

Conclusion

Summing Up

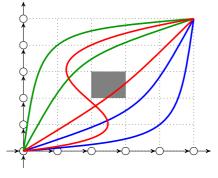


- A program is a topological space
- An execution is a path through said space
- Two executions are equivalent iff their paths are homotopic

Combinatorial Model

Conclusion

Summing Up

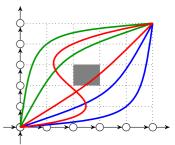


- A program is a directed topological space
- An execution is a directed path through said space
- Two executions are equivalent iff their dipaths are dihomotopic

Definition (po-space)

A partially ordered space is a topological space X together with a partial order \leq on X such that $\leq \subseteq X \times X$ is *closed* in the product topology. A morphism of po-spaces is a \leq -preserving continuous function.

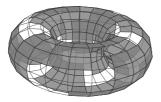
- directed intervals; directed squares, cubes, etc.
- ${\, \bullet \,}$ concatenation $\otimes,$ branching \oplus
- no loops



Definition (lpo-space)

A locally partially ordered space is a *Hausdorff* topological space X together with a relation \leq on X in which any $x \in X$ has an open neighborhood $U \ni x$ such that the restriction of \leq to U is a closed partial order.

A morphism of po-spaces is a continuous function which is *locally* \leq -preserving.



Directed Spaces

Definition (d-space)

A directed space is a topological space X together with a set $\vec{P}X$ of directed paths $I \to X$ such that

- all constant paths are directed,
- concatenations of directed paths are directed, and
- reparametrizations and restrictions of directed paths are directed.

A morphism of d-spaces is a continuous function which preserves directed paths.

- po-spaces \hookrightarrow lpo-spaces \hookrightarrow d-spaces (not full)
- po-spaces are *loop-free*; lpo-spaces are *vortex-free*
- d-spaces are nice: axiomatize directly our objects of interest (dipaths); have good categorical properties

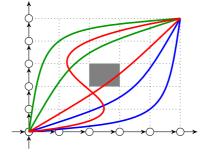
Directed Paths and Homotopies

• the directed interval \vec{l} :

- $([0,1],\leq)$ (usual order): po-space; lpo-space
- $([0,1], \vec{P}[0,1])$: all (weakly) increasing paths
- dipaths in X: morphisms $\vec{l} \to X$
 - for d-space $(X, \vec{P}X)$: dipaths $\hat{=} \vec{P}X$
- a dihomotopy $H: I \times \vec{l} \to X$:
 - all $H(s, \cdot)$ dipaths
 - $H: I \times I \to X$ continuous
 - $H(\cdot,0)$ and $H(\cdot,1)$ constrained
 - (some variants exist)

Geometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata	Properties 00000000	Conclusion

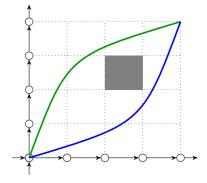
Summing Up, Again



- A program is a directed topological space
 - po-space, lpo-space, d-space
 - (other models exist)
- An execution is a directed path through said space
- Two executions are equivalent iff their dipaths are dihomotopic

Geometric Semantics	Combinatorial Model ○●○○○○○○	Languages of Higher-Dimensional Automata	Properties 00000000	Conclusion
Transition Sys	tems?			

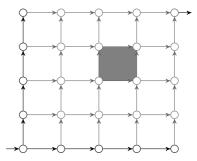
"Programs are topological spaces" ?!?



Transition Systems?

"Programs are topological spaces" ?!?

Programs are transition systems!

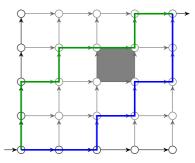


Transition Systems?

"Programs are topological spaces" ?!?

Programs are transition systems!

• have lost info on "forbidden squares"



Conclusion

Transition Systems?

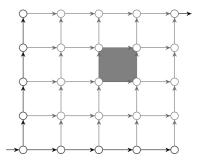
"Programs are topological spaces" ?!?

Programs are transition systems!

• have lost info on "forbidden squares"

Higher-dimensional automata:

- transition systems
- plus info on concurrency



Conclusion

Transition Systems?

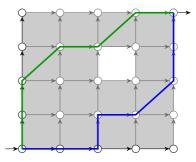
"Programs are topological spaces" ?!?

Programs are transition systems!

• have lost info on "forbidden squares"

Higher-dimensional automata:

- transition systems
- plus info on concurrency



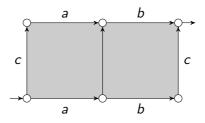
Geometric	Semantics
	000

Languages of Higher-Dimensional Automata

operties

Conclusion

Examples



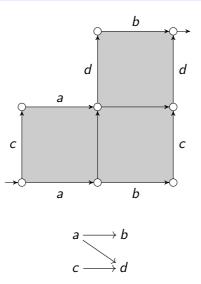
first *a*, then *b*; all in parallel with *c*: $ab \parallel c$

Geometric	Semantics
0000000	000

Languages of Higher-Dimensional Automata

roperties 0000000 Conclusion

Examples



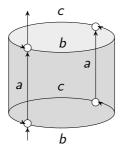
Geometric	Semantics	
000000000		

anguages of Higher-Dimensional Automata

operties

Conclusion

Examples



 $a \parallel (bc)^*$

Geometric Realization

Definition

The geometric realization of a precubical set X is the d-space $|X| = \bigsqcup_{n \ge 0} X_n \times \vec{l}^n / \sim$, where \sim is the equivalence generated by $(\delta_i^{\nu} x, (t_1, \ldots, t_{n-1})) \sim (x, (t_1, \ldots, t_{i-1}, \nu, t_{i+1}, \ldots, t_{n-1})).$

Geometric Realization

Definition

The geometric realization of a precubical set X is the d-space $|X| = \bigsqcup_{n \ge 0} X_n \times \vec{l}^n / \sim$, where \sim is the equivalence generated by $(\delta_i^{\nu} x, (t_1, \ldots, t_{n-1})) \sim (x, (t_1, \ldots, t_{i-1}, \nu, t_{i+1}, \ldots, t_{n-1}))$.

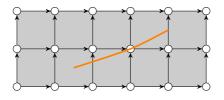
(No, we haven't properly introduced precubical sets (and HDAs, for that sake).) (Please wait.)

Combinatorial Model

anguages of Higher-Dimensional Automata

Properties 00000000 Conclusion

Dipaths in Geometric Realizations



Let $p: \vec{l} \to |X|$ be a dipath in the geometric realization of precubical set X.

- let $C_p = \{x \in X \mid im(p) \cap |x| \neq \emptyset\}$ all cells touched by p
- organize C_p into a sequence $c_p = (x_1, \ldots, x_m)$ s.t. $\forall i$:

$$x_i = \delta^0_+ x_{i+1}$$
 or $x_{i+1} = \delta^1_+ x_i$ (iterated face maps)

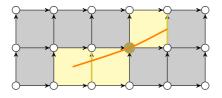
Combinatorial Model

anguages of Higher-Dimensional Automata

Properties

Conclusion

Dipaths in Geometric Realizations



Let $p: \vec{l} \to |X|$ be a dipath in the geometric realization of precubical set X.

- let $C_p = \{x \in X \mid im(p) \cap |x| \neq \emptyset\}$ all cells touched by p
- organize C_p into a sequence $c_p = (x_1, \ldots, x_m)$ s.t. $\forall i$:

$$x_i = \delta^0_+ x_{i+1}$$
 or $x_{i+1} = \delta^1_+ x_i$ (iterated face maps)

 \Rightarrow the combinatorial path of p

- any combinatorial path c gives rise to dipath p_c (non-unique) with $c_{p_c} = c$
- if $c_p = c_q$, then p and q are dihomotopic

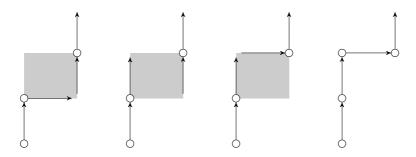
Combinatorial Model

anguages of Higher-Dimensional Automata

oooooooo

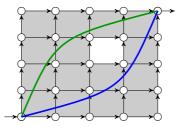
Conclusion

Combinatorial Homotopy



- generated by local replacements
- dipaths p, q are dihomotopic iff c_p and c_q are homotopic
- combinatorial paths c, d are homotopic iff p_c and p_d are dihomotopic

Geometric Semantics	Combinatorial Model 0000000●	Languages of Higher-Dimensional Automata	Properties 00000000	Conclusion 00
Summing Up				



- precubical sets / higher-dimensional automata: combinatorial models of directed spaces
- natural extension of transition systems
- closely linked to directed spaces via geometric realization:
 - dipaths $\hat{=}$ combinatorial paths $\hat{=}$ executions
 - dihomotopy $\hat{=}$ combinatorial homotopy $\hat{=}$ equivalence of executions

Languages of Higher-Dimensional Automata

More Nice People

Jérémy Dubut, Eric Goubault, Christian Johansen, Jérémy Ledent, Sergio Rajsbaum, Georg Struth, Krzysztof Ziemiański

Samy Abbes, Amazigh Amrane, Hugo Bazille, Emily Clement, Thomas Colcombet, Marie Fortin, Ryszard Janicki, Roman Kniazev, Łukasz Mikulski, Safa Zouari

(a list of concurrent events)

Precubical sets and higher dimensional automata

A conclist is a finite, ordered and Σ -labelled set.

- A precubical set X consists of:
 - A set of cells X
 - Every cell $x \in X$ has a conclist ev(x)
 - We write $X[U] = \{x \in X \mid ev(x) = U\}$ for a conclist U

- (list of events active in x) (cells of type U)
- For every conclist U and $A \subseteq U$ there are: upper face map $\delta_A^1 : X[U] \to X[U - A]$ (terminating events A) lower face map $\delta_A^0 : X[U] \to X[U - A]$ ("unstarting" events A)
- Precubical identities: $\delta^{\mu}_{A}\delta^{\nu}_{B} = \delta^{\nu}_{B}\delta^{\mu}_{A}$ for $A \cap B = \emptyset$ and $\mu, \nu \in \{0, 1\}$

A higher dimensional automaton (HDA) is a finite precubical set X with start cells $\bot \subseteq X$ and accept cells $\top \subseteq X$ (not necessarily vertices)

Geometric	Semantics
0000000	000

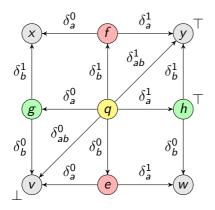
Combinatorial Mod

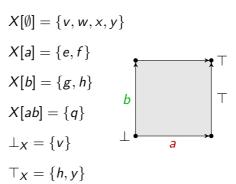
Languages of Higher-Dimensional Automata

operties

Conclusion

Example





A presheaf over a category C is a functor $C^{op} \to Set$ (contravariant functor on C)

The precube category \Box has (iso classes of) conclists as objects. Morphisms are coface maps $d_{A,B}: U \to V$, where

- $A, B \subseteq V$ are disjoint subsets,
- $U \simeq V (A \cup B)$ are isomorphic conclists,

• $d_{A,B}: U \to V$ is the unique label preserving monotonic map with image $V - (A \cup B)$. Composition of coface maps $d_{A,B}: U \to V$ and $d_{C,D}: V \to W$ is

 $d_{\partial(A)\cup C,\partial(B)\cup D}: U \to W,$

where $\partial: V \to W - (C \cup D)$ is the unique conclist isomorphism.

Intuitively, $d_{A,B}$ terminates events B and "unstarts" events A.

● precubical sets: presheaves over □

Geometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata	Conclusion 00
Context			

augmented presimplex category Δ	large augmented presimplex category Δ		
objects $\{1 < \cdots < n\}$ for $n \ge 0$	objects totally ordered sets		
morphisms order injections	morphisms order injections		
skeletal	isos are unique		
$\Delta \hookrightarrow \Delta$ equivalence with unique left inverse			

(augmented) precube category \Box	large (augmented) precube category ⊡		
objects $\{0,1\}^n$ for $n \ge 0$	objects totally ordered sets		
morphisms 0-1 injections	morphisms distinguished order injections		
skeletal	isos are unique		
$\Box \hookrightarrow \overline{\odot}$ equivalence with unique left inverse			

presimplicial sets: Set^{Δop} or Set^{Δop}; makes no difference
 precubical sets: Set^{□op} or Set^{⊡op}; makes no difference

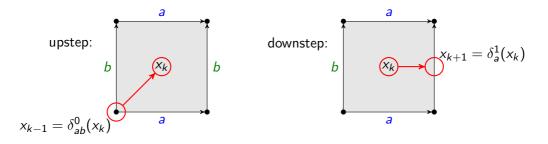
Geometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata 000000●0000000	Properties 0000000	Conclusion 00
Computations o	f HDAs			

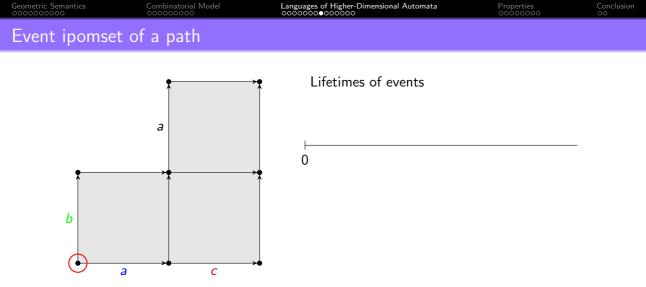
A path on an HDA X is a sequence $(x_0, \phi_1, x_1, \dots, x_{n-1}, \phi_n, x_n)$ such that for every k, (x_{k-1}, ϕ_k, x_k) is either

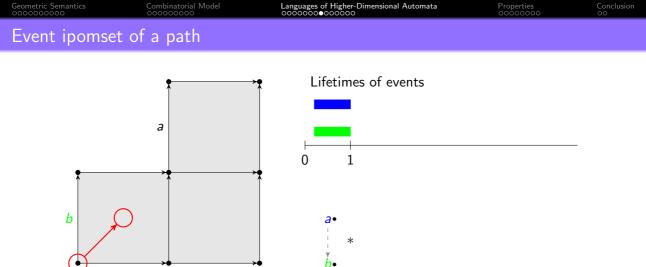
• $(\delta^0_A(x_k), \nearrow^A, x_k)$ for $A \subseteq ev(x_k)$ or

•
$$(x_{k-1}, \searrow_B, \delta^1_B(x_{k-1}))$$
 for $B \subseteq \operatorname{ev}(x_{k-1})$

(upstep: start A) (downstep: terminate *B*)



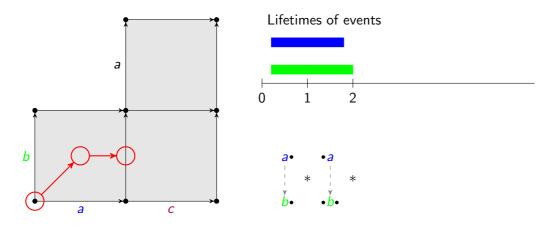




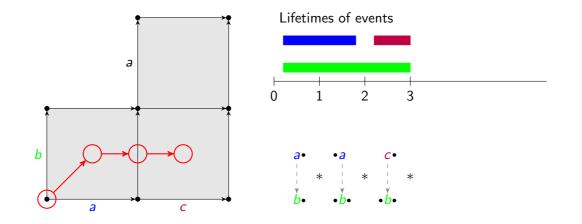
С

а

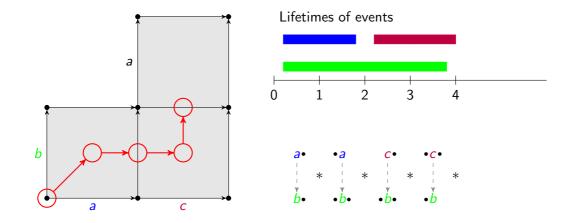
Geometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata	Properties 00000000	Conclusion 00
Event ipomset of	f a path			



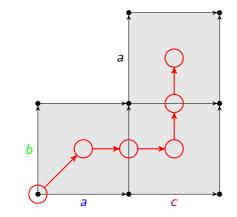
Geometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata	Properties 00000000	Conclusion 00
Event ipomset o	f a path			



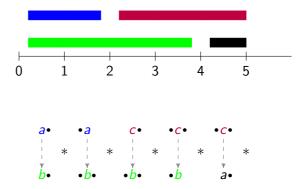
Geometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata 0000000●000000	Properties 00000000	Conclusion 00
Event ipomset o	f a path			



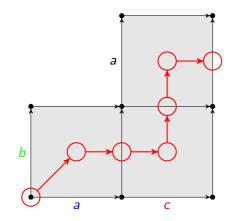
Geometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata 0000000●000000	Properties 00000000	Conclusion
Event ipomset o	f a path			



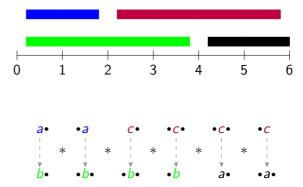
Lifetimes of events



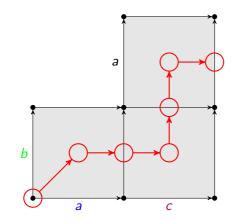
Geometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata 0000000€000000	Properties 00000000	Conclusion 00
Event ipomset	of a path			



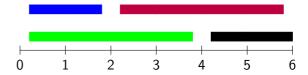
Lifetimes of events



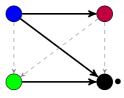
Geometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata 0000000●000000	Properties 00000000	Conclusion 00
Event ipomse	t of a path			



Lifetimes of events



Event ipomset



(not series-parallel!)

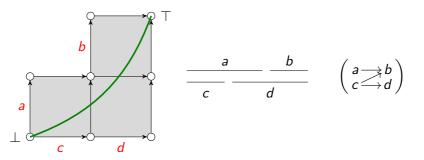
Conclusion

Are all pomsets generated by HDAs?

No, only (labeled) interval orders

- Poset (P, \leq) is an interval order iff it has an interval representation:
 - a set $I = \{[l_i, r_i]\}$ of real intervals
 - with order $[I_i, r_i] \preceq [I_j, r_j]$ iff $r_i \leq I_j$
 - and an order isomorphism $(P, \leq) \leftrightarrow (I, \preceq)$

• [Fishburn 1970]



Pomsets with interfaces

Definition (Ipomset)

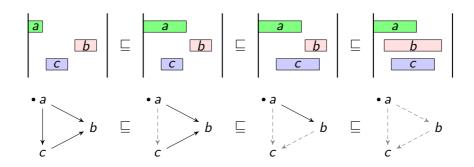
A pomset with interfaces (and event order): $(P, <, -\rightarrow, S, T, \lambda)$:

- finite set P;
- two partial orders < (precedence order), --→ (event order)
 - s.t. $< \cup -- \rightarrow$ is a total relation;
- $S, T \subseteq P$ source and target interfaces
 - s.t. S is <-minimal, T is <-maximal.

Geometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata 0000000000€000	Properties 00000000	Conclusio 00
Composition (of ipomsets			
	$a \rightarrow b \qquad b \\ c \rightarrow d \qquad * \\ e \qquad e$	\overrightarrow{f} = \overrightarrow{c}	g f	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(g)	

• Gluing P * Q: P before Q, except for interfaces (which are identified) • Parallel composition $P \parallel Q$: P above Q (disjoint union)

etric Semantics 000000	Combinatorial Model	Languages of Higher-Dimensional Automata	Properties 00000000
bsumption			



P refines Q / Q subsumes P / $P \sqsubseteq Q$ iff

- P and Q have same interfaces
- P has more < than Q

Su

• Q has more $-- \rightarrow$ than P

Languages of HDAs

Definition

The language of an HDA X is the set of event ipomsets of all accepting paths:

$$L(X) = \{ \mathsf{ev}(\pi) \mid \pi \in \mathsf{Paths}(X), \mathit{src}(\pi) \in \bot_X, \mathit{tgt}(\pi) \in \top_X \}$$

• L(X) contains only interval-order ipomsets

• and is closed under subsumption

Path objects

Important tool:

Proposition

For any interval-order ipomset P there exists an HDA \Box^P for which $L(\Box^P) = \{P\}\downarrow$.

Lemma

For any HDA X and ipomset P, $P \in L(X)$ iff $\exists f : \Box^P \to X$.

Path objects

Important tool:

Proposition

For any interval-order ipomset P there exists an HDA \Box^P for which $L(\Box^P) = \{P\}\downarrow$.

Lemma

For any HDA X and ipomset P, $P \in L(X)$ iff $\exists f : \Box^P \to X$.

Conclusior

Geometric Semantics

2 Combinatorial Model

3 Languages of Higher-Dimensional Automata

Properties

Geometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata	Properties 0●000000	Conclusion 00
Theorems				

Definition (Rational Languages over Σ)

- Generated by \emptyset , $\{\epsilon\}$, and all $\{[a]\}$, $\{[\bullet a]\}$, $\{[\bullet a\bullet]\}$, $\{[\bullet a\bullet]\}$ for $a \in \Sigma$
- \bullet under operations \cup , *, \parallel and (Kleene plus) $^+$
- L⁺ = ∪_{n≥1} Lⁿ
 no Kleene star; no parallel star

Theorem (à la Kleene)

A language is rational iff it is recognized by an HDA.

Theorem (à la Myhill-Nerode)

A language is rational iff it has finite prefix quotient.

Theorem (à la Büchi-Elgot-Trakhtenbrot)

A language is rational iff it is MSO-definable.

Petri Nets'23

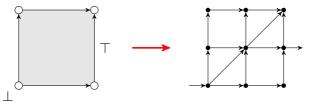
CONCUR'22

arxiv'24

Geometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata	Properties 00●00000	Conclusion 00
Kleene theorem.	easy parts			

deche theorem. easy parts

• regular \Rightarrow rational: by reduction to ST-automata



• rational \Rightarrow regular: generators:

• rational \Rightarrow regular: \cup and \parallel

$$L(X) \cup L(Y) = L(X \sqcup Y)$$

$$L(X) \parallel L(Y) = L(X \otimes Y)$$

Geometric Semantics

Combinatorial Model

Properties

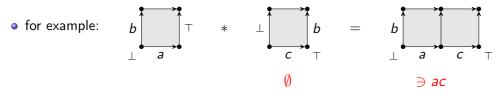
Conclusion

Kleene theorem: difficult parts

• miss to see: gluings and iterations of regular languages are regular:

$$L(X) * L(Y) = L(X * Y)$$
 $L(X)^+ = L(X^+)$

• much more difficult: higher-dimensional gluings identify too much



Geometric Semantics

Combinatorial Model

Properties

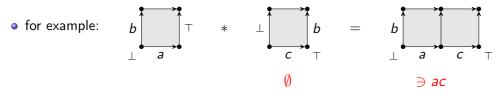
Conclusion

Kleene theorem: difficult parts

• miss to see: gluings and iterations of regular languages are regular:

$$L(X) * L(Y) = L(X * Y)$$
 $L(X)^+ = L(X^+)$

• much more difficult: higher-dimensional gluings identify too much



• use HDAs with interfaces and cylinder objects

Geometric Semantics 0000000000	Combinatorial Model	Languages of Higher-Dimensional Automata	Conclusion 00
UDAe with inter			

HDAs with interfaces

A conclist with interfaces (iconclist) is a conclist U with subsets $S \subseteq U \supseteq T$ (notation: ${}_{S}U_{T}$). (events in T cannot be terminated; events in S cannot be "unstarted")

A precubical set with interfaces (ipc-set) X consists of a set of cells X such that:

- Every cell $x \in X$ has an iconclist ev(x)
- We write $X[_{\mathcal{S}}U_{\mathcal{T}}] = \{x \in X \mid ev(x) = _{\mathcal{S}}U_{\mathcal{T}}\}.$
- For every $A \subseteq U S$ there is a lower face map $\delta_A^0 : X[U] \to X[_S U_T A]$.
- For every $B \subseteq U T$ there is an upper face map $\delta_B^1 : X[U] \to X[{}_SU_T b]$.
- Precubical identities: $\delta^{\mu}_{A}\delta^{\nu}_{B} = \delta^{\nu}_{B}\delta^{\mu}_{A}$ for $A \cap B = \emptyset$ and $\mu, \nu \in \{0, 1\}$

• presheaves over I

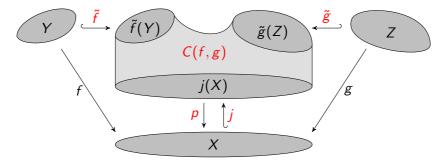
An HDA with interfaces (iHDA) is a finite ipc-set with start and accept cells.

Extra conditions:

If $x \in X[{}_{S}U_{T}]$ is a start cell, then S = U. If $x \in X[{}_{S}U_{T}]$ is an accept cell, then T = U.

Geometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata	Properties 00000●00	Conclusion 00
Cylinders				

Let X, Y, Z be ipc-sets and $f: Y \to X$, $g: Z \to X$ ipc-maps such that $f(Y) \cap g(Z) = \emptyset$. There is a diagram of ipc-sets



such that

- \tilde{f} is an initial inclusion;
- \tilde{g} is a final inclusion;
- all paths in X from f(Y) to g(Z) lift to paths in C(f,g).

Geometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata	Properties 00000000	Conclusion 00
Cylinders: cor	struction			

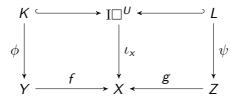
X, Y, Z: ipc-sets, $f : Y \to X$, $g : Z \to X$: ipc-maps with $f(Y) \cap g(Z) = \emptyset$. For ${}_{S}U_{T} \in I\Box$ let

$$C(f,g)[_{\mathcal{S}}U_{\mathcal{T}}] = \{(x,K,L,\phi,\psi)\}$$

such that

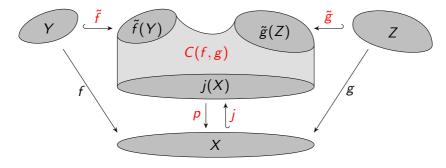
- $x \in X[_S U_T];$
- $K \subseteq I \square^U$ is an initial subset;
- $L \subseteq I \square^U$ is a final subset;

• $\phi: K \to Y, \psi: L \to Z$ are ipc-maps satisfying $f \circ \phi = \iota_x|_K$ and $g \circ \psi = \iota_x|_L$:



etric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata	Properties 0000000●	Conclusion 00

Cylinders?!



- a factorization system?
- directed model categories?
- (note: no homotopy has been used)

ometric Semantics	Combinatorial Model	Languages of Higher-Dimensional Automata	Properties 00000000	Conclusion ●○

Conclusion

- Programs are directed topological spaces
 - $\bullet \ \mathsf{po-spaces} \hookrightarrow \mathsf{lpo-spaces} \hookrightarrow \mathsf{d-spaces}$
 - (Ipo-spaces \rightarrow po-spaces: delooping / universal dicover)
 - executions are dipaths; equivalence of executions is dihomotopy
 - \sim dihomotopy invariants; dihomology; homotopy vs reversibility; etc.
- Programs are precubical sets
 - higher-dimensional automata
 - executions are combinatorial paths; equivalence of such is combinatorial homotopy
 - strong link to spaces via geometric realization
- Language theory of higher-dimensional automata
 - languages are sets of interval pomsets with interfaces
 - partial order semantics, trace theory etc.
 - Kleene, Myhill-Nerode, Büchi-Elgot-Trakhtenbrot 🗸
 - $\rightarrow\,$ timed HDAs; hybrid HDAs; $\omega\text{-HDAs};$ weighted HDAs; active learning; etc.
 - no homotopy has been used !?

$\leftarrow \rightarrow$	C	🔿 🗛 https://ulifahrenberg.github.io/pomsets/	1
--------------------------	---	--	---

120% ☆ 👱 🔍 ccf

Workshop on Pomsets and Related Structures (RaPS)

Contents

Home Call for contributions Venue Participants Important dates Sponsors Contact

Workshop on Pomsets and Related Structures RaPS

Program Committee

Henning Basold Uli Fahrenberg Christian Johansen Tobias Kappé Sergio Rajsbaum Georg Struth Rob van Glabbeek Krzysztof Zlemiański

Organizing Committee

Amazigh Amrane Uli Fahrenberg Loīc Hélouët The Workshop on Pomsets and Related Structures will take place at EPITA Rennes on 24 April 2024.

The workshop is associated with the (i)Po(m)set Project, a research project at the crossroads of concurrency theory, automata theory, algebra, and geometry. The project also has an online seminar, and the workshop is an offshoot of that seminar.

The RaPS workshop is collocated with ATLAS'24 and will be followed by the Journées GT DAAL.

Venue

The workshop will take place at EPITA Rennes in downtown Rennes, close to the train station.

Participants

Preliminary list of participants (updated 20 March):

- · Samy Abbes, Université Paris Cité, France
- Amazigh Amrane, EPITA Paris, France
- · Henning Basold, Universiteit Leiden, The Netherlands
- · Hugo Bazille, EPITA Rennes, France
- Christian Choffrut, Université Paris Cité, France
- · Emily Clement, Université Paris Cité, France