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Geometric Semantics Combinatorial Model Languages of Higher-Dimensional Automata Properties Conclusion

Algebraic View

A program is a sequence of instructions

plus branches and loops

Kleene algebra:

set S with operations:

concatenation ⊗
choice ⊕
repetition ∗

idempotent semiring with unary ∗

which computes fixed points

(Kleene algebra with domain
for conditional branches)
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Geometric View

A program is a sequence of instructions

ignoring branches and loops for now

Now, a second program in parallel:

P
Q
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Geometric View

A program is a sequence of instructions

ignoring branches and loops for now

Now, a second program in parallel:

P
Q

an execution of P∥Q
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Geometric View

A program is a sequence of instructions

ignoring branches and loops for now

Now, a second program in parallel:

P
Q

not an execution
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Geometric View

A program is a sequence of instructions

ignoring branches and loops for now

Now, a second program in parallel:

P
Q

a geometric execution
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Geometric View

A program is a sequence of instructions

ignoring branches and loops for now

Now, a second program in parallel:

P
Q

not a geometric execution
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Holes

Adding mutual exclusion:

x← 3

x← 2

homotopic paths =̂ equivalent executions
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Holes

Adding mutual exclusion:

x← 3

x← 2

x = 3

x = 2

not an execution

homotopic paths =̂ equivalent executions
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More Holes

Semaphores à la Dijkstra (P =̂ acquire; V =̂ release):

Pa Pb Vb Va

Pb

Pa

Va

Vb
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More Holes

Semaphores à la Dijkstra (P =̂ acquire; V =̂ release):

Pa Pb Vb Va

Pb

Pa

Va

Vb

doomed

deadlocked execution

unreachable
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Summing Up

A program is a

directed

topological space

An execution is a

directed

path through said space

Two executions are equivalent iff their

di

paths are

di

homotopic
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Summing Up

A program is a directed topological space

An execution is a directed path through said space

Two executions are equivalent iff their dipaths are dihomotopic
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Directed Spaces

Definition (po-space)

A partially ordered space is a topological space X together with a partial order ≤ on X such
that ≤ ⊆ X × X is closed in the product topology.
A morphism of po-spaces is a ≤-preserving continuous function.

directed intervals; directed squares, cubes, etc.

concatenation ⊗, branching ⊕
no loops
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Directed Spaces

Definition (lpo-space)

A locally partially ordered space is a Hausdorff topological space X together with a relation ≤
on X in which any x ∈ X has an open neighborhood U ∋ x such that the restriction of ≤ to U
is a closed partial order.
A morphism of po-spaces is a continuous function which is locally ≤-preserving.
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Directed Spaces

Definition (d-space)

A directed space is a topological space X together with a set P⃗X of directed paths I → X such
that

all constant paths are directed,

concatenations of directed paths are directed, and

reparametrizations and restrictions of directed paths are directed.

A morphism of d-spaces is a continuous function which preserves directed paths.

po-spaces ↪→ lpo-spaces ↪→ d-spaces (not full)

po-spaces are loop-free; lpo-spaces are vortex-free

d-spaces are nice: axiomatize directly our objects of interest (dipaths); have good
categorical properties
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Directed Paths and Homotopies

the directed interval I⃗ :

([0, 1],≤) (usual order): po-space; lpo-space
([0, 1], P⃗[0, 1]): all (weakly) increasing paths

dipaths in X : morphisms I⃗ → X

for d-space (X , P⃗X ): dipaths =̂ P⃗X

a dihomotopy H : I × I⃗ → X :

all H(s, ·) dipaths
H : I × I → X continuous
H(·, 0) and H(·, 1) constrained

(some variants exist)
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Summing Up, Again

A program is a directed topological space

po-space, lpo-space, d-space
(other models exist)

An execution is a directed path through said space

Two executions are equivalent iff their dipaths are dihomotopic

Uli Fahrenberg Directed Topology and Concurrency 22/ 69



Geometric Semantics Combinatorial Model Languages of Higher-Dimensional Automata Properties Conclusion

Combinatorial Model
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Transition Systems?

“Programs are topological spaces”?!?

Programs are transition systems!

have lost info on “forbidden squares”

Higher-dimensional automata:

transition systems

plus info on concurrency

Uli Fahrenberg Directed Topology and Concurrency 24/ 69



Geometric Semantics Combinatorial Model Languages of Higher-Dimensional Automata Properties Conclusion

Transition Systems?

“Programs are topological spaces”?!?

Programs are transition systems!

have lost info on “forbidden squares”

Higher-dimensional automata:

transition systems

plus info on concurrency

Uli Fahrenberg Directed Topology and Concurrency 25/ 69



Geometric Semantics Combinatorial Model Languages of Higher-Dimensional Automata Properties Conclusion

Transition Systems?

“Programs are topological spaces”?!?

Programs are transition systems!

have lost info on “forbidden squares”

Higher-dimensional automata:

transition systems

plus info on concurrency

Uli Fahrenberg Directed Topology and Concurrency 26/ 69



Geometric Semantics Combinatorial Model Languages of Higher-Dimensional Automata Properties Conclusion

Transition Systems?

“Programs are topological spaces”?!?

Programs are transition systems!

have lost info on “forbidden squares”

Higher-dimensional automata:

transition systems

plus info on concurrency

Uli Fahrenberg Directed Topology and Concurrency 27/ 69



Geometric Semantics Combinatorial Model Languages of Higher-Dimensional Automata Properties Conclusion

Transition Systems?

“Programs are topological spaces”?!?

Programs are transition systems!

have lost info on “forbidden squares”

Higher-dimensional automata:

transition systems

plus info on concurrency
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Examples

a b

a b

c c

first a, then b; all in parallel with c: ab ∥ c
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Examples

a b

a

b

c c

d d

a //

$$

b

c // d
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Examples

a

a

b

c

b

c

a ∥ (bc)∗
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Geometric Realization

Definition

The geometric realization of a precubical set X is the d-space |X | =
⊔

n≥0 Xn × I⃗ n /∼, where ∼
is the equivalence generated by (δνi x , (t1, . . . , tn−1)) ∼ (x , (t1, . . . , ti−1, ν, ti+1, . . . , tn−1)).

(No, we haven’t properly introduced precubical sets (and HDAs, for that sake).)

(Please wait.)
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Dipaths in Geometric Realizations

Let p : I⃗ → |X | be a dipath in the geometric realization of precubical set X .

let Cp = {x ∈ X | im(p) ∩ |x | ≠ ∅} – all cells touched by p

organize Cp into a sequence cp = (x1, . . . , xm) s.t. ∀i :

xi = δ0+xi+1 or xi+1 = δ1+xi (iterated face maps)

⇒ the combinatorial path of p

any combinatorial path c gives rise to dipath pc (non-unique) with cpc = c

if cp = cq, then p and q are dihomotopic
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Combinatorial Homotopy

generated by local replacements

dipaths p, q are dihomotopic iff cp and cq are homotopic

combinatorial paths c , d are homotopic iff pc and pd are dihomotopic
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Summing Up

precubical sets / higher-dimensional automata: combinatorial models of directed spaces

natural extension of transition systems

closely linked to directed spaces via geometric realization:

dipaths =̂ combinatorial paths =̂ executions
dihomotopy =̂ combinatorial homotopy =̂ equivalence of executions
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Languages of Higher-Dimensional Automata
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Precubical sets and higher dimensional automata

A conclist is a finite, ordered and Σ-labelled set. (a list of concurrent events)

A precubical set X consists of:

A set of cells X

Every cell x ∈ X has a conclist ev(x) (list of events active in x)

We write X [U] = {x ∈ X | ev(x) = U} for a conclist U (cells of type U)

For every conclist U and A ⊆ U there are:
upper face map δ1A : X [U]→ X [U − A] (terminating events A)
lower face map δ0A : X [U]→ X [U − A] (“unstarting” events A)

Precubical identities: δµAδ
ν
B = δνBδ

µ
A for A ∩ B = ∅ and µ, ν ∈ {0, 1}

A higher dimensional automaton (HDA) is a finite precubical set X with start cells ⊥ ⊆ X and
accept cells ⊤ ⊆ X (not necessarily vertices)
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Example

v

x

w

y

e

f

g hq

X [∅] = {v ,w , x , y}

X [a] = {e, f }

X [b] = {g , h}

X [ab] = {q}

δ0a δ1a

δ0a δ1a

δ0a δ1a

δ0b

δ1b

δ0b

δ1b

δ0b

δ1b
δ1ab

δ0ab

⊥

⊤

⊤

⊥X = {v}

⊤X = {h, y}

a

b

⊥

⊤

⊤
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Precubical sets as presheaves

A presheaf over a category C is a functor Cop → Set (contravariant functor on C)

The precube category □ has (iso classes of) conclists as objects.
Morphisms are coface maps dA,B : U → V , where

A,B ⊆ V are disjoint subsets,

U ≃ V − (A ∪ B) are isomorphic conclists,

dA,B : U → V is the unique label preserving monotonic map with image V − (A ∪ B).

Composition of coface maps dA,B : U → V and dC ,D : V →W is

d∂(A)∪C ,∂(B)∪D : U →W ,

where ∂ : V →W − (C ∪ D) is the unique conclist isomorphism.

Intuitively, dA,B terminates events B and “unstarts” events A.

precubical sets: presheaves over □
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Context

augmented presimplex category ∆ large augmented presimplex category ∆·
objects {1 < · · · < n} for n ≥ 0 objects totally ordered sets
morphisms order injections morphisms order injections
skeletal isos are unique

∆ ↪→ ∆· equivalence with unique left inverse

(augmented) precube category □ large (augmented) precube category □·
objects {0, 1}n for n ≥ 0 objects totally ordered sets
morphisms 0-1 injections morphisms distinguished order injections
skeletal isos are unique

□ ↪→ □· equivalence with unique left inverse

presimplicial sets: Set∆
op

or Set∆·
op

; makes no difference

precubical sets: Set□
op

or Set□·
op

; makes no difference
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Computations of HDAs

A path on an HDA X is a sequence (x0, ϕ1, x1, . . . , xn−1, ϕn, xn)
such that for every k, (xk−1, ϕk , xk) is either

(δ0A(xk),↗A, xk) for A ⊆ ev(xk) or (upstep: start A)

(xk−1,↘B , δ
1
B(xk−1)) for B ⊆ ev(xk−1) (downstep: terminate B)

upstep:

a

a

b bxk

xk−1 = δ0ab(xk)

downstep:

a

a

b
xk+1 = δ1a(xk)

xk
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Event ipomset of a path

a

a

b

c

Lifetimes of events

0

1 2 3 4 5 6

a

b

•

•

∗
a

b

•

• •

∗
c

b

•

• •

∗
c

b

•

•

•

∗
c

a

•

•

•

∗
c

a

•

••

Event ipomset

•

(not series-parallel!)
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Are all pomsets generated by HDAs?

No, only (labeled) interval orders

Poset (P,≤) is an interval order iff it has an interval representation:

a set I = {[li , ri ]} of real intervals
with order [li , ri ] ⪯ [lj , rj ] iff ri ≤ lj
and an order isomorphism (P,≤)↔ (I ,⪯)

[Fishburn 1970]

⊥

⊤

c d

a

b
a b

c d

(
a // b
c //

77

d

)
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Pomsets with interfaces

Definition (Ipomset)

A pomset with interfaces (and event order): (P, <, 99K, S ,T , λ):

finite set P;

two partial orders < (precedence order), 99K (event order)

s.t. < ∪ 99K is a total relation;

S ,T ⊆ P source and target interfaces

s.t. S is <-minimal, T is <-maximal.
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Composition of ipomsets

a b

c d

e

∗
b g

e f

=

a b

c d

e

g

f

| | | |

| | | |

| |

I (a) I (b)

I (c) I (d)

I (e)

∗

| | | |

| | | |

I (b) I (g)

I (e) I (f )

=

| | |

| | | |

|

| | |

| | |

I (a) I (b)

I (c) I (d)

I (e)

I (g)

I (f )

Gluing P ∗ Q: P before Q, except for interfaces (which are identified)

Parallel composition P ∥ Q: P above Q (disjoint union)
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Subsumption

a

b
c

a•

c

b

a

b
c

a•

c

b

a

b
c

a•

c

b

a

b
c

a•

c

b

⊑ ⊑ ⊑

⊑ ⊑ ⊑

P refines Q / Q subsumes P / P ⊑ Q iff

P and Q have same interfaces

P has more < than Q

Q has more 99K than P
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Languages of HDAs

Definition

The language of an HDA X is the set of event ipomsets of all accepting paths:

L(X ) = {ev(π) | π ∈ Paths(X ), src(π) ∈ ⊥X , tgt(π) ∈ ⊤X}

L(X ) contains only interval-order ipomsets

and is closed under subsumption
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Path objects

Important tool:

Proposition

For any interval-order ipomset P there exists an HDA □P for which L(□P) = {P}↓.

Lemma

For any HDA X and ipomset P, P ∈ L(X ) iff ∃f : □P → X.
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Theorems

Definition (Rational Languages over Σ)

Generated by ∅, {ϵ}, and all {[a]}, {[•a]}, {[a•]}, {[•a•]} for a ∈ Σ

under operations ∪, ∗, ∥ and (Kleene plus) +

L+ =
⋃

n≥1 L
n

no Kleene star; no parallel star

Theorem (à la Kleene)

A language is rational iff it is recognized by an HDA. CONCUR’22

Theorem (à la Myhill-Nerode)

A language is rational iff it has finite prefix quotient. Petri Nets’23

Theorem (à la Büchi-Elgot-Trakhtenbrot)

A language is rational iff it is MSO-definable. arxiv’24
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Kleene theorem: easy parts

regular ⇒ rational: by reduction to ST-automata

⊥

⊤

rational ⇒ regular: generators:

L(X ) ∅ {ϵ} {[a]} {[• a]} {[a •]} {[• a •]}

X ∅ ⊥ ⊤
⊥

⊤
a ⊥

⊤
a

⊥
⊤a ⊥ ⊤a

rational ⇒ regular: ∪ and ∥

L(X ) ∪ L(Y ) = L(X ⊔ Y ) L(X ) ∥ L(Y ) = L(X ⊗ Y )
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Kleene theorem: difficult parts

miss to see: gluings and iterations of regular languages are regular:

L(X ) ∗ L(Y ) = L(X ∗ Y ) L(X )+ = L(X+)

much more difficult: higher-dimensional gluings identify too much

for example:

a

b ⊤

⊥

∗

c

⊥ b

⊤

=

a

b

⊥ c ⊤

∅ ∋ ac

use HDAs with interfaces and cylinder objects
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HDAs with interfaces

A conclist with interfaces (iconclist) is a conclist U with subsets S ⊆ U ⊇ T (notation: SUT ).
(events in T cannot be terminated; events in S cannot be “unstarted”)

A precubical set with interfaces (ipc-set) X consists of a set of cells X such that:

Every cell x ∈ X has an iconclist ev(x)

We write X [SUT ] = {x ∈ X | ev(x) = SUT}.
For every A ⊆ U − S there is a lower face map δ0A : X [U]→ X [SUT − A].

For every B ⊆ U − T there is an upper face map δ1B : X [U]→ X [SUT − b].

Precubical identities: δµAδ
ν
B = δνBδ

µ
A for A ∩ B = ∅ and µ, ν ∈ {0, 1}

presheaves over I□

An HDA with interfaces (iHDA) is a finite ipc-set with start and accept cells.

Extra conditions:
If x ∈ X [SUT ] is a start cell, then S = U.
If x ∈ X [SUT ] is an accept cell, then T = U.
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Cylinders

Let X ,Y ,Z be ipc-sets and f : Y → X , g : Z → X ipc-maps such that f (Y ) ∩ g(Z ) = ∅.
There is a diagram of ipc-sets

f̃ (Y )Y
f̃ g̃

jp

f g

g̃(Z ) Z

j(X )

X

C (f , g)

such that

f̃ is an initial inclusion;

g̃ is a final inclusion;

all paths in X from f (Y ) to g(Z ) lift to paths in C (f , g).
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Cylinders: construction

X ,Y ,Z : ipc-sets, f : Y → X , g : Z → X : ipc-maps with f (Y ) ∩ g(Z ) = ∅.
For SUT ∈ I□ let

C (f , g)[SUT ] = {(x ,K , L, ϕ, ψ)}

such that

x ∈ X [SUT ];

K ⊆ I□U is an initial subset;

L ⊆ I□U is a final subset;

ϕ : K → Y , ψ : L→ Z are ipc-maps satisfying f ◦ ϕ = ιx |K and g ◦ ψ = ιx |L:

K I□U L

Y X Z

ϕ ιx ψ

f g
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Cylinders?!

f̃ (Y )Y
f̃ g̃

jp

f g

g̃(Z ) Z

j(X )

X

C (f , g)

a factorization system?

directed model categories?

(note: no homotopy has been used)
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Conclusion

Programs are directed topological spaces

po-spaces ↪→ lpo-spaces ↪→ d-spaces
(lpo-spaces → po-spaces: delooping / universal dicover)
executions are dipaths; equivalence of executions is dihomotopy

; dihomotopy invariants; dihomology; homotopy vs reversibility; etc.

Programs are precubical sets

higher-dimensional automata
executions are combinatorial paths; equivalence of such is combinatorial homotopy
strong link to spaces via geometric realization

Language theory of higher-dimensional automata

languages are sets of interval pomsets with interfaces
partial order semantics, trace theory etc.
Kleene, Myhill-Nerode, Büchi-Elgot-Trakhtenbrot ✓

; timed HDAs; hybrid HDAs; ω-HDAs; weighted HDAs; active learning; etc.
no homotopy has been used!?
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