Extensions of Automata: Concurrent, Timed, Hybrid

Uli Fahrenberg

EPITA Rennes

Foundations of Security and Concurrency July 2024

А	utc	m	ta
0			

Timed automa

Higher-dimensional automata

Higher-dimensional timed automa

Schiaparelli

Experimental Mars lander, ESA / Roscosmos

А	ut	at	
0			

Timed automata

Higher-dimensional automata

Higher-dimensional timed automa

Schiaparelli

Experimental Mars lander, ESA / Roscosmos

• an example of a cyber-physical system

Uli Fahrenberg

Extensions of Automata

Schippor	مال		Cabarratias	(-:);f;)
Automata	Timed automata	Higher-dimensional automata	Higher-dimensional timed automata	Conclusion
00	0000	0000		O

Schianarel	li		Schematics	(simplified)
Automata	Timed automata	Higher-dimensional automata	Higher-dimensional timed automata	Conclusion
00	0000	0000		O

Automata
OOTimed automata
OOOHigher-dimensional automata
OOOHigher-dimensional timed automata
OOO

Automata

- cyber-physical systems must often be modeled and verified
- that may be done using automata
- but these need to capture timing constraints, physical information, and concurrency
- ⇒ timed automata; hybrid automata; higher-dimensional automata
 - but how to combine them?

4 Higher-dimensional timed automata

5 Conclusion

Timed automata 0000 Higher-dimensional timed automata

Who am I

Automata

Uli Fahrenberg

- University studies in mathematics and computer science
- PhD in mathematics
- Worked at Aalborg University (DK), University of Rennes, École polytechnique (Paris)
- Interested in category theory, algebraic topology, automata theory, concurrency theory, verification
- Professor at EPITA since 2021

EPITA

- École Pour l'Informatique et les Techniques Avancées
- private engineering school specialized in software engineering
- in Paris, Lyon, Rennes, Strasbourg, and Toulouse
- 700 students \times 5 years
- accredited engineering diploma

NA/I				
Automata	Timed automata	Higher-dimensional automata	Higher-dimensional timed automata	Conclusio o

Joint work with

- Amazigh Amrane, EPITA Paris
- Hugo Bazille, EPITA Rennes
- Emily Clement, U Paris Cité
- Marie Fortin, U Paris Cité
- Christian Johansen, NTNU Gjøvik
- Georg Struth, U of Sheffield
- Krzysztof Ziemiański, Warsaw U

Automata	Timed automata	Higher-dimensional automata	Higher-dimensional timed automata	Conclusion
●0	0000	0000		O

Automata

- states
- transitions labeled with actions
- operational semantics: machine which changes state depending on inputs and emits outputs
- denotational semantics: what are executions?

Automata	Timed automata	Higher-dimensional automata	Higher-dimensional timed automata	Conclusio
●0	0000	0000		0

Automata

- states
- transitions labeled with actions
- operational semantics: machine which changes state depending on inputs and emits outputs
- denotational semantics: what are executions?

 $(ac + abd)^{\omega}$

Automata	Timed automata	Higher-dimensional automata	Higher-dimensional timed automata	Conclusion
⊙●	0000	0000	000	O
Automata				

Definition

An automaton is a tuple $\mathcal{A} = (L, \bot, \top, \Sigma, E)$ consisting of a set L of states, a set of initial states $\bot \subseteq L$, a set of accepting states $\top \subseteq L$, a set Σ of labels, and a set $E \subseteq L \times \Sigma \times L$ of edges.

- A path is a finite sequence $\pi = \ell_1 \xrightarrow{a_1} \ell_2 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} \ell_n$ of connected transitions.
- Its label is $\lambda(\pi) = a_1 a_2 \dots a_{n-1}$.
- It is accepting if $\ell_1 \in \bot$ and $\ell_n \in \top$.
- The language of \mathcal{A} is $\{\lambda(\pi) \mid \pi \text{ accepting path in } \mathcal{A}\}$.
- We only consider finite executions here.
- Hence languages are sets of (finite) words $a_1a_2 \dots a_k \in \Sigma^*$.
- (Usually, L and Σ are also to be finite.)

Automata	Timed automata	Higher-dimensional automata	Higher-dimensional timed automata	Conclusion
00	●000	0000		0
Timed auto	omata			

- states and labeled transitions
- states and transitions conditioned on values of clocks
- transitions may reset clocks
- modeling and analysis of real-time systems

Timed automata 0000

Higher-dimensional automata

Higher-dimensional timed automata

UppAal

Uli Fahrenberg

Extensions of Automata

Automata	Timed automata	Higher-dimensional automata	Higher-dimensional timed automata	Coi
00	00●0	0000		O
Timed a	utomata			

Definition

The set $\Phi(C)$ of clock constraints ϕ over a finite set C is defined by the grammar

 $\phi ::= x \bowtie k \mid \phi_1 \land \phi_2 \qquad (x, y \in C, k \in \mathbb{Z}, \bowtie \in \{\leq, <, \geq, >\}).$

Definition

A timed automaton is a tuple $\mathcal{A} = (L, \bot, \top, C, \Sigma, I, E)$ consisting of a set L of locations, initial and accepting locations $\bot, \top \subseteq L$, a finite set C of clocks, a set Σ of labels, an invariants mapping $I : L \to \Phi(C)$, and a set $E \subseteq L \times \Phi(C) \times \Sigma \times 2^C \times L$ of edges.

- (Usually, L and Σ are to be finite.)
- The operational semantics of A is the infinite automaton with states L × ℝ^C_{≥0}, alphabet Σ ∪ ℝ_{>0}, and transitions

$$\begin{split} \mathsf{E} &= \{(\ell, \mathbf{v}) \xrightarrow{\delta} (\ell, \mathbf{v} + \delta) \mid \forall t \in [0, \delta] : \mathbf{v} + t \models \mathsf{I}(\ell) \} \\ &\cup \{(\ell, \mathbf{v}) \xrightarrow{a} (\ell', \mathbf{v}') \mid \exists (\ell, \phi, \mathbf{a}, \mathbf{r}, \ell') \in \mathsf{E} : \mathbf{v} \models \phi, \mathbf{v}' = \mathbf{v}[\mathbf{r} \leftarrow 0] \}. \end{split}$$

Uli Fahrenberg

Extensions of Automata

clusion

Automata	Timed automata	Higher-dimensional automata	Higher-dimensional timed automata	Conclusion
00	000●	0000		0
Timed auto	omata			

• if two press? within 300 time units, then double_click!, else click!

Automata	Timed automata	Higher-dimensional automata	Higher-dimensional timed automata	Conclusion
00	000●	0000		0
Timed auto	omata			

if two press? within 300 time units, then double_click!, else click!language (one cycle only):

$$L = \{\delta_0 a \, \delta_1 c \mid \delta_1 = 300\} \cup \{\delta_0 a \, \delta_1 b \, \delta_2 d \mid \delta_1 < 300, \delta_1 + \delta_2 = 300\}$$

Automata	Timed automata	Higher-dimensional automata	Higher-dimensional timed automata
00	0000	●000	000

Higher-dimensional automata

ab

Automata 00	Timed automata 0000	Higher-dimensional automata ●000	Higher-dimensional timed automata		
Higher-dimensional automata					
	alb	a b c			

Automata 00	l imed automata 0000	Higher-dimensional automata ○●○○	Higher-c	limensional timed automata	O O
Higher-c	limensional aut	comata			
A con	clist is a finite, orde	ered and Σ -labelled set.		(a list of eve	ents)
A prec	ubical set X consis	sts of:			
• A	set of cells X			(cu	bes)
• E	very cell $x \in X$ has	s a conclist $ev(x)$		(list of events active i	n <i>x</i>)
• We write $X[U] = \{x \in X \mid ev(x) = U\}$ for a conclist U					
				(cells of type	e U)
• F	or every conclist U	and $A \subseteq U$ there are:			
u	pper face map $\delta_{m{A}}^{m{1}}$:	X[U] o X[U-A]		(terminating event	s A)
lc	ower face map δ_A^0 :	X[U] o X[U-A]		(unstarting event	s A)
• Precube identities: $\delta^{\mu}_{A}\delta^{\nu}_{B} = \delta^{\nu}_{B}\delta^{\mu}_{A}$ for $A \cap B = \emptyset$ and $\mu, \nu \in \{0, 1\}$					
A high accept	er dimensional auto cells $\top \subseteq X$	omaton (HDA) is a precu	ubical set X	with start cells $\bot \subseteq X$ (not necessarily vert	and ices)

Uli Fahrenberg

Higher-dimensional automata

HDAs as a model for concurrency:

- vertices $x \in X[\emptyset]$: states
- edges $a \in X[\{a\}]$: labeled transitions
- *n*-squares α ∈ X[{a₁,..., a_n}] (n ≥ 2): independency relations / concurrently executing events

van Glabbeek (TCS 2006): Up to history-preserving bisimilarity, HDAs generalize "the main models of concurrency proposed in the literature"

Lots of recent activity on languages of HDAs:

- Kleene theorem
- Myhill-Nerode theorem
- Büchi-Elgot-Trakhtenbrot theorem
- . . .

Automata	Timed	automata

Higher-dimensional automata

Higher-dimensional timed automat

Higher-dimensional automata

• The operational semantics of an HDA (X, \bot, \top, Σ) is the automaton with states X, alphabet $St_{\Sigma} \cup Te_{\Sigma}$, and transitions

$$\mathsf{E} = \{ \delta^{\mathsf{0}}_{\mathsf{A}}(\ell) \stackrel{{}_{\mathsf{A}} \uparrow \mathsf{ev}(\ell)}{\longrightarrow} \ell \mid \mathsf{A} \subseteq \mathsf{ev}(\ell) \} \cup \{ \ell \stackrel{\mathsf{ev}(\ell) \downarrow_{\mathsf{A}}}{\longrightarrow} \delta^{\mathsf{1}}_{\mathsf{A}}(\ell) \mid \mathsf{A} \subseteq \mathsf{ev}(\ell) \}.$$

• Here, the language is $\left\{ \begin{bmatrix} b \\ a \\ a \end{bmatrix} \begin{bmatrix} \bullet \\ \bullet a \\ \bullet \end{bmatrix} \begin{bmatrix} c \\ \bullet \\ \bullet a \\ \bullet \end{bmatrix} \begin{bmatrix} \bullet \\ \bullet a \\ \bullet \end{bmatrix} \right\} \downarrow$.

Higher-dimensional timed automata

- In real-time formalisms, everything is synchronous
 - timed automata, timed Petri nets, hybrid automata, etc.
- and concurrency is interleaving
- In formalisms for (non-interleaving) concurrency, no real time
 - same for distributed computing theory
 - (Petri nets have a concurrent semantics; timed Petri nets don't)
- Our goal: formalisms for real-time concurrent systems
- Here: the marriage between timed and higher-dimensional automata

Higher-dimensional timed automata $\circ \bullet \circ$

Higher-dimensional timed automata

Definition

An HDTA is a structure $(L, \bot, \top, \Sigma, C, inv, exit)$, where (L, \bot, \top, Σ) is an HDA, C is a finite set of clocks, and $inv : L \to \Phi(C)$, $exit : L \to 2^C$ give invariant and exit conditions for each cell.

Intuition: • $inv(\ell)$: conditions on the clock values while delaying in ℓ

• $exit(\ell)$: clocks which are reset to 0 when leaving ℓ .

$$y \ge 1; x \leftarrow 0 \qquad x \le 4 \land y \ge 1$$

$$y \le 3; x \leftarrow 0 \qquad b \qquad x \le 4 \land y \le 3 \qquad b \qquad x \ge 2 \land y \ge 1$$

$$x, y \leftarrow 0 \qquad x \le 4; y \leftarrow 0$$

$$x \le 4; y \leftarrow 0 \qquad x \ge 2; y \leftarrow 0$$

$$y \ge 1; x \leftarrow 0 \qquad x \le 5 \land y \ge 1 \qquad x \ge 2 \land y \ge 1 \land z \ge 1$$

$$x \ge 1 \land y \le 3 \qquad b \qquad 1 \le x \le 4 \land y \le 3 \qquad b \qquad x \ge 2 \land y \ge 1 \land z \ge 1$$

$$x \ge 1 \land y \le 3 \qquad x \ge 2 \land y \le 3 \land z \ge 1$$

$$x \ge 4; y \leftarrow 0 \qquad x \le 4; y \leftarrow 0$$

$$x \le 4; y \leftarrow 0 \qquad x \ge 2 \land z \ge 1; y \leftarrow 0$$

• The operational semantics of an HDTA X is the infinite automaton with states $X \times \mathbb{R}_{\geq 0}^{C}$, alphabet $St_{\Sigma} \cup Te_{\Sigma} \cup \mathbb{R}_{\geq 0}$, and transitions

$$\begin{split} & \mathcal{E} = \{(\ell, v) \overset{\delta}{\longrightarrow} (\ell, v + \delta) \mid \forall t \in [0, \delta] : v + t \models \mathsf{inv}(\ell)\} \\ & \cup \{(\delta^0_A(\ell), v) \overset{A \uparrow \mathsf{ev}(\ell)}{\longrightarrow} (\ell, v') \mid A \subseteq \mathsf{ev}(\ell), v' = v[\mathsf{exit}(\delta^0_A(\ell)) \leftarrow 0]\} \\ & \cup \{(\ell, v) \overset{\mathsf{ev}(\ell) \downarrow_A}{\longrightarrow} (\delta^1_A(\ell), v') \mid A \subseteq \mathsf{ev}(\ell), v' = v[\mathsf{exit}(\ell) \leftarrow 0]\}. \end{split}$$

Conclusion

Automata, automata, automata

- useful to provide operational semantics to other models
- well-developed language theory

Higher-dimensional automata

- nice for modeling (and verifying?) concurrent systems
- nice language theory

Timed automata

- useful for modeling and verifying real-time systems
- badly behaved language theory

Higher-dimensional timed automata

• for modeling (and verifying?) real-time concurrent systems