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Schiaparelli Schematics (simplified)

Doppler radar angular sensor
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Automata

cyber-physical systems must often be
modeled and verified
that may be done using automata
but these need to capture timing
constraints, physical information, and
concurrency

⇒ timed automata; hybrid automata;
higher-dimensional automata

but how to combine them?
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Higher-dimensional
timed automata

Higher-
dimensional
automata

Timed automata
Petri nets

Automata

1 Automata

2 Timed automata

3 Higher-dimensional automata

4 Higher-dimensional timed automata

5 Conclusion
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Automata
press? press?

click!

double_click!

states
transitions labeled with actions

operational semantics: machine which changes state depending on inputs and emits
outputs
denotational semantics: what are executions?

(ac + abd)ω
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Automata

Definition
An automaton is a tuple A = (L,⊥,⊤, Σ, E ) consisting of a set L of states, a set of
initial states ⊥ ⊆ L, a set of accepting states ⊤ ⊆ L, a set Σ of labels, and a set
E ⊆ L× Σ× L of edges.

A path is a finite sequence π = ℓ1
a1−→ ℓ2

a2−→ · · · an−1−→ ℓn of connected transitions.
Its label is λ(π) = a1a2 . . . an−1.
It is accepting if ℓ1 ∈ ⊥ and ℓn ∈ ⊤.
The language of A is {λ(π) | π accepting path in A}.

We only consider finite executions here.
Hence languages are sets of (finite) words a1a2 . . . ak ∈ Σ∗.
(Usually, L and Σ are also to be finite.)
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Timed automata

press? press?

click!

double_click!

x ← 0 x < 300

x ≤ 300

x = 300

x = 300

states and labeled transitions
states and transitions conditioned on values of clocks
transitions may reset clocks

modeling and analysis of real-time systems
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UppAal

Timed Automata

Models

Lindahl, Pettersson, Yi 

TACAS’98
MECEL AB 
Gear Controller

ETAPS 2017 Kim Larsen [18]
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Timed automata

Definition
The set Φ(C) of clock constraints ϕ over a finite set C is defined by the grammar

ϕ ::= x ▷◁ k | ϕ1 ∧ ϕ2 (x , y ∈ C , k ∈ Z, ▷◁ ∈ {≤, <,≥, >}).

Definition
A timed automaton is a tuple A = (L,⊥,⊤, C , Σ, I, E ) consisting of a set L of locations,
initial and accepting locations ⊥,⊤ ⊆ L, a finite set C of clocks, a set Σ of labels, an
invariants mapping I : L→ Φ(C), and a set E ⊆ L× Φ(C)× Σ× 2C × L of edges.

(Usually, L and Σ are to be finite.)
The operational semantics of A is the infinite automaton with states L×RC

≥0,
alphabet Σ ∪R≥0, and transitions

E = {(ℓ, v) δ−→ (ℓ, v + δ) | ∀t ∈ [0, δ] : v + t |= I(ℓ)}
∪ {(ℓ, v) a−→ (ℓ′, v ′) | ∃(ℓ, ϕ, a, r , ℓ′) ∈ E : v |= ϕ, v ′ = v [r ← 0]}.
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Timed automata

press? press?

click!

double_click!

x ← 0 x < 300

x ≤ 300

x = 300

x = 300

if two press? within 300 time units, then double_click!, else click!

language (one cycle only):

L = {δ0a δ1c | δ1 = 300} ∪ {δ0a δ1b δ2d | δ1 < 300, δ1 + δ2 = 300}
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Higher-dimensional automata
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Higher-dimensional automata

A conclist is a finite, ordered and Σ-labelled set. (a list of events)

A precubical set X consists of:
A set of cells X (cubes)
Every cell x ∈ X has a conclist ev(x) (list of events active in x)
We write X [U] = {x ∈ X | ev(x) = U} for a conclist U

(cells of type U)
For every conclist U and A ⊆ U there are:
upper face map δ1

A : X [U]→ X [U − A] (terminating events A)
lower face map δ0

A : X [U]→ X [U − A] (unstarting events A)
Precube identities: δµ

Aδν
B = δν

Bδµ
A for A ∩ B = ∅ and µ, ν ∈ {0, 1}

A higher dimensional automaton (HDA) is a precubical set X with start cells ⊥ ⊆ X and
accept cells ⊤ ⊆ X (not necessarily vertices)
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Higher-dimensional automata
HDAs as a model for concurrency:

vertices x ∈ X [∅]: states
edges a ∈ X [{a}]: labeled transitions
n-squares α ∈ X [{a1, . . . , an}] (n ≥ 2): independency relations / concurrently
executing events

van Glabbeek (TCS 2006): Up to history-preserving bisimilarity, HDAs generalize “the
main models of concurrency proposed in the literature”

Lots of recent activity on languages of HDAs:
Kleene theorem
Myhill-Nerode theorem
Büchi-Elgot-Trakhtenbrot theorem
. . .
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Higher-dimensional automata
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The operational semantics of an HDA (X ,⊥,⊤, Σ) is the automaton with states X ,
alphabet StΣ ∪ TeΣ, and transitions

E = {δ0
A(ℓ) A↑ev(ℓ)−→ ℓ | A ⊆ ev(ℓ)} ∪ {ℓ ev(ℓ)↓A−→ δ1

A(ℓ) | A ⊆ ev(ℓ)}.
Here, the language is

{
[ b•

a• ] [ •b
•a• ] [ c•

•a• ] [ •c
•a• ]

}
↓.
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Higher-dimensional timed automata

In real-time formalisms, everything is synchronous
timed automata, timed Petri nets, hybrid automata, etc.

and concurrency is interleaving

In formalisms for (non-interleaving) concurrency, no real time
same for distributed computing theory
(Petri nets have a concurrent semantics; timed Petri nets don’t)

Our goal: formalisms for real-time concurrent systems

Here: the marriage between timed and higher-dimensional automata
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Higher-dimensional timed automata

Definition
An HDTA is a structure (L,⊥,⊤, Σ, C , inv, exit), where (L,⊥,⊤, Σ) is an HDA, C is a
finite set of clocks, and inv : L→ Φ(C), exit : L→ 2C give invariant and exit conditions
for each cell.

Intuition: inv(ℓ): conditions on the clock values while delaying in ℓ

exit(ℓ): clocks which are reset to 0 when leaving ℓ.

⊥

⊤

x , y ← 0 x ≥ 2; y ← 0

y ≥ 1; x ← 0 x ≥ 2 ∧ y ≥ 1

x ≤ 4; y ← 0
a

y ≤ 3; x ← 0 b x ≥ 2 ∧ y ≤ 3b

x ≤ 4 ∧ y ≥ 1
a

x ≤ 4 ∧ y ≤ 3
ab
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⊥

⊤

x , y ← 0 x ≥ 2 ∧ z ≥ 1; y ← 0

y ≥ 1; x ← 0 x ≥ 2 ∧ y ≥ 1 ∧ z ≥ 1

x ≤ 4; y ← 0
a

x ≥ 1 ∧ y ≤ 3
x , z ← 0 b x ≥ 2 ∧ y ≤ 3 ∧ z ≥ 1

z ← 0
b

x ≤ 5 ∧ y ≥ 1
a

1 ≤ x ≤ 4 ∧ y ≤ 3
z ← 0; ab

The operational semantics of an HDTA X is the infinite automaton with states
X ×RC

≥0, alphabet StΣ ∪ TeΣ ∪R≥0, and transitions

E = {(ℓ, v) δ−→(ℓ, v + δ) | ∀t ∈ [0, δ] : v + t |= inv(ℓ)}

∪ {(δ0
A(ℓ), v) A↑ev(ℓ)−→ (ℓ, v ′) | A ⊆ ev(ℓ), v ′ = v [exit(δ0

A(ℓ))← 0]}

∪ {(ℓ, v) ev(ℓ)↓A−→ (δ1
A(ℓ), v ′) | A ⊆ ev(ℓ), v ′ = v [exit(ℓ)← 0]}.
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Conclusion

Automata, automata, automata
useful to provide operational
semantics to other models
well-developed language theory

Timed automata
useful for modeling and verifying
real-time systems
badly behaved language theory

Higher-dimensional automata
nice for modeling (and verifying?)
concurrent systems
nice language theory

Higher-dimensional timed automata
for modeling (and verifying?)
real-time concurrent systems
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