
Extensions of Automata: Concurrent, Timed, Hybrid

Uli Fahrenberg

EPITA Rennes

Foundations of Security and Concurrency
July 2024

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Schiaparelli Experimental Mars lander, ESA / Roscosmos

an example of a cyber-physical system

Uli Fahrenberg Extensions of Automata 1

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Schiaparelli Experimental Mars lander, ESA / Roscosmos

an example of a cyber-physical system

Uli Fahrenberg Extensions of Automata 2

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Schiaparelli Schematics (simplified)

Doppler radar angular sensor

bord computer

parachute retrorocket

D α

αD A

A = D · cos(α)

Uli Fahrenberg Extensions of Automata 3

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Schiaparelli Schematics (simplified)

Doppler radar angular sensor

bord computer

parachute retrorocket

D α

α

A ?

A = D · cos(α)

Uli Fahrenberg Extensions of Automata 4

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Automata

cyber-physical systems must often be
modeled and verified
that may be done using automata
but these need to capture timing
constraints, physical information, and
concurrency

⇒ timed automata; hybrid automata;
higher-dimensional automata

but how to combine them?

ℓ0

ℓ1

ℓ2

ℓfa b

b a

ℓ0

ℓ1

ℓ2

ℓfa
x := 0

b

x ∈ [1, 3]

b

y := 0
a

y ∈ [2, 4]

On

∂T
∂t = k

Off

∂T
∂t = Ta − T

T ≥ Ts

turn off

T ≤ Ts

turn on

a b

b a

ab

Uli Fahrenberg Extensions of Automata 5

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Higher-dimensional
timed automata

Higher-
dimensional
automata

Timed automata
Petri nets

Automata

1 Automata

2 Timed automata

3 Higher-dimensional automata

4 Higher-dimensional timed automata

5 Conclusion

Uli Fahrenberg Extensions of Automata 6

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Who am I

Uli Fahrenberg
University studies in mathematics
and computer science
PhD in mathematics
Worked at Aalborg University (DK),
University of Rennes,
École polytechnique (Paris)

Interested in category theory,
algebraic topology, automata theory,
concurrency theory, verification
Professor at EPITA since 2021

EPITA
École Pour l’Informatique et les
Techniques Avancées
private engineering school specialized
in software engineering
in Paris, Lyon, Rennes, Strasbourg,
and Toulouse
700 students × 5 years
accredited engineering diploma

Uli Fahrenberg Extensions of Automata 7

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Who are we

Joint work with
Amazigh Amrane, EPITA Paris
Hugo Bazille, EPITA Rennes
Emily Clement, U Paris Cité
Marie Fortin, U Paris Cité
Christian Johansen, NTNU Gjøvik
Georg Struth, U of Sheffield
Krzysztof Ziemiański, Warsaw U

Uli Fahrenberg Extensions of Automata 8

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Automata
press? press?

click!

double_click!

states
transitions labeled with actions

operational semantics: machine which changes state depending on inputs and emits
outputs
denotational semantics: what are executions?

(ac + abd)ω

Uli Fahrenberg Extensions of Automata 9

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Automata
a b

c

d

states
transitions labeled with actions

operational semantics: machine which changes state depending on inputs and emits
outputs
denotational semantics: what are executions? (ac + abd)ω

Uli Fahrenberg Extensions of Automata 10

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Automata

Definition
An automaton is a tuple A = (L,⊥,⊤, Σ, E) consisting of a set L of states, a set of
initial states ⊥ ⊆ L, a set of accepting states ⊤ ⊆ L, a set Σ of labels, and a set
E ⊆ L× Σ× L of edges.

A path is a finite sequence π = ℓ1
a1−→ ℓ2

a2−→ · · · an−1−→ ℓn of connected transitions.
Its label is λ(π) = a1a2 . . . an−1.
It is accepting if ℓ1 ∈ ⊥ and ℓn ∈ ⊤.
The language of A is {λ(π) | π accepting path in A}.

We only consider finite executions here.
Hence languages are sets of (finite) words a1a2 . . . ak ∈ Σ∗.
(Usually, L and Σ are also to be finite.)

Uli Fahrenberg Extensions of Automata 11

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Timed automata

press? press?

click!

double_click!

x ← 0 x < 300

x ≤ 300

x = 300

x = 300

states and labeled transitions
states and transitions conditioned on values of clocks
transitions may reset clocks

modeling and analysis of real-time systems

Uli Fahrenberg Extensions of Automata 12

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

UppAal

Timed Automata

Models

Lindahl, Pettersson, Yi

TACAS’98
MECEL AB
Gear Controller

ETAPS 2017 Kim Larsen [18]

Uli Fahrenberg Extensions of Automata 13

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Timed automata

Definition
The set Φ(C) of clock constraints ϕ over a finite set C is defined by the grammar

ϕ ::= x ▷◁ k | ϕ1 ∧ ϕ2 (x , y ∈ C , k ∈ Z, ▷◁ ∈ {≤, <,≥, >}).

Definition
A timed automaton is a tuple A = (L,⊥,⊤, C , Σ, I, E) consisting of a set L of locations,
initial and accepting locations ⊥,⊤ ⊆ L, a finite set C of clocks, a set Σ of labels, an
invariants mapping I : L→ Φ(C), and a set E ⊆ L× Φ(C)× Σ× 2C × L of edges.

(Usually, L and Σ are to be finite.)
The operational semantics of A is the infinite automaton with states L×RC

≥0,
alphabet Σ ∪R≥0, and transitions

E = {(ℓ, v) δ−→ (ℓ, v + δ) | ∀t ∈ [0, δ] : v + t |= I(ℓ)}
∪ {(ℓ, v) a−→ (ℓ′, v ′) | ∃(ℓ, ϕ, a, r , ℓ′) ∈ E : v |= ϕ, v ′ = v [r ← 0]}.
Uli Fahrenberg Extensions of Automata 14

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Timed automata

press? press?

click!

double_click!

x ← 0 x < 300

x ≤ 300

x = 300

x = 300

if two press? within 300 time units, then double_click!, else click!

language (one cycle only):

L = {δ0a δ1c | δ1 = 300} ∪ {δ0a δ1b δ2d | δ1 < 300, δ1 + δ2 = 300}

Uli Fahrenberg Extensions of Automata 15

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Timed automata

a b

c

d

x ← 0 x < 300

x ≤ 300

x = 300

x = 300

if two press? within 300 time units, then double_click!, else click!
language (one cycle only):

L = {δ0a δ1c | δ1 = 300} ∪ {δ0a δ1b δ2d | δ1 < 300, δ1 + δ2 = 300}

Uli Fahrenberg Extensions of Automata 16

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Higher-dimensional automata
a|b

a

a

b b a.b + b.a

a

a

b bab a and b are independent

a|b|c

a

b

c

ab

ac

bc

a|b + a|c + b|c

a

b

c

abcab

ac

bc

{a, b, c} independent

Uli Fahrenberg Extensions of Automata 17

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Higher-dimensional automata
a|b

a

a

b b

a.b + b.a

a

a

b bab

a and b are independent

a|b|c

a

b

c

ab

ac

bc a|b + a|c + b|c

a

b

c

abcab

ac

bc {a, b, c} independent

Uli Fahrenberg Extensions of Automata 18

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Higher-dimensional automata

A conclist is a finite, ordered and Σ-labelled set. (a list of events)

A precubical set X consists of:
A set of cells X (cubes)
Every cell x ∈ X has a conclist ev(x) (list of events active in x)
We write X [U] = {x ∈ X | ev(x) = U} for a conclist U

(cells of type U)
For every conclist U and A ⊆ U there are:
upper face map δ1

A : X [U]→ X [U − A] (terminating events A)
lower face map δ0

A : X [U]→ X [U − A] (unstarting events A)
Precube identities: δµ

Aδν
B = δν

Bδµ
A for A ∩ B = ∅ and µ, ν ∈ {0, 1}

A higher dimensional automaton (HDA) is a precubical set X with start cells ⊥ ⊆ X and
accept cells ⊤ ⊆ X (not necessarily vertices)

Uli Fahrenberg Extensions of Automata 19

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Higher-dimensional automata
HDAs as a model for concurrency:

vertices x ∈ X [∅]: states
edges a ∈ X [{a}]: labeled transitions
n-squares α ∈ X [{a1, . . . , an}] (n ≥ 2): independency relations / concurrently
executing events

van Glabbeek (TCS 2006): Up to history-preserving bisimilarity, HDAs generalize “the
main models of concurrency proposed in the literature”

Lots of recent activity on languages of HDAs:
Kleene theorem
Myhill-Nerode theorem
Büchi-Elgot-Trakhtenbrot theorem
. . .

Uli Fahrenberg Extensions of Automata 20

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Higher-dimensional automata

a

b c⊥

⊤

∅ ∅

∅

∅

∅ ∅

b

a

b

a

c

c

a[b
a] [c

a]

b• •b

a•

•a

[•b•
a•]

[•b•
•a]

c• •c

[b•
•a•] [•b

•a•]

b• •b

[•b
•a]

[b•
a•]

[c•
•a•] [•c

•a•]

c• •c

a•

•a

[•c•
a•]

[•c•
•a]

a•

•a[•c
•a]

[c•
a•]

⊥

⊤

The operational semantics of an HDA (X ,⊥,⊤, Σ) is the automaton with states X ,
alphabet StΣ ∪ TeΣ, and transitions

E = {δ0
A(ℓ) A↑ev(ℓ)−→ ℓ | A ⊆ ev(ℓ)} ∪ {ℓ ev(ℓ)↓A−→ δ1

A(ℓ) | A ⊆ ev(ℓ)}.
Here, the language is

{
[b•

a•] [•b
•a•] [c•

•a•] [•c
•a•]

}
↓.

Uli Fahrenberg Extensions of Automata 21

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Higher-dimensional timed automata

In real-time formalisms, everything is synchronous
timed automata, timed Petri nets, hybrid automata, etc.

and concurrency is interleaving

In formalisms for (non-interleaving) concurrency, no real time
same for distributed computing theory
(Petri nets have a concurrent semantics; timed Petri nets don’t)

Our goal: formalisms for real-time concurrent systems

Here: the marriage between timed and higher-dimensional automata

Uli Fahrenberg Extensions of Automata 22

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Higher-dimensional timed automata

Definition
An HDTA is a structure (L,⊥,⊤, Σ, C , inv, exit), where (L,⊥,⊤, Σ) is an HDA, C is a
finite set of clocks, and inv : L→ Φ(C), exit : L→ 2C give invariant and exit conditions
for each cell.

Intuition: inv(ℓ): conditions on the clock values while delaying in ℓ

exit(ℓ): clocks which are reset to 0 when leaving ℓ.

⊥

⊤

x , y ← 0 x ≥ 2; y ← 0

y ≥ 1; x ← 0 x ≥ 2 ∧ y ≥ 1

x ≤ 4; y ← 0
a

y ≤ 3; x ← 0 b x ≥ 2 ∧ y ≤ 3b

x ≤ 4 ∧ y ≥ 1
a

x ≤ 4 ∧ y ≤ 3
ab

Uli Fahrenberg Extensions of Automata 23

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

⊥

⊤

x , y ← 0 x ≥ 2 ∧ z ≥ 1; y ← 0

y ≥ 1; x ← 0 x ≥ 2 ∧ y ≥ 1 ∧ z ≥ 1

x ≤ 4; y ← 0
a

x ≥ 1 ∧ y ≤ 3
x , z ← 0 b x ≥ 2 ∧ y ≤ 3 ∧ z ≥ 1

z ← 0
b

x ≤ 5 ∧ y ≥ 1
a

1 ≤ x ≤ 4 ∧ y ≤ 3
z ← 0; ab

The operational semantics of an HDTA X is the infinite automaton with states
X ×RC

≥0, alphabet StΣ ∪ TeΣ ∪R≥0, and transitions

E = {(ℓ, v) δ−→(ℓ, v + δ) | ∀t ∈ [0, δ] : v + t |= inv(ℓ)}

∪ {(δ0
A(ℓ), v) A↑ev(ℓ)−→ (ℓ, v ′) | A ⊆ ev(ℓ), v ′ = v [exit(δ0

A(ℓ))← 0]}

∪ {(ℓ, v) ev(ℓ)↓A−→ (δ1
A(ℓ), v ′) | A ⊆ ev(ℓ), v ′ = v [exit(ℓ)← 0]}.

Uli Fahrenberg Extensions of Automata 24

Automata Timed automata Higher-dimensional automata Higher-dimensional timed automata Conclusion

Conclusion

Automata, automata, automata
useful to provide operational
semantics to other models
well-developed language theory

Timed automata
useful for modeling and verifying
real-time systems
badly behaved language theory

Higher-dimensional automata
nice for modeling (and verifying?)
concurrent systems
nice language theory

Higher-dimensional timed automata
for modeling (and verifying?)
real-time concurrent systems

Uli Fahrenberg Extensions of Automata 25

	Automata
	Timed automata
	Higher-dimensional automata
	Higher-dimensional timed automata
	Conclusion

