Generating Posets With and Without Interfaces

Uli Fahrenberg

LRE, EPITA, France

(i)Po(m)set Project Online Seminar

Februar 2024

- a poset: *finite* set *P* plus strict partial order <: irreflexive, transitive, asymmetric
- parallel composition of posets $(P_1, <_1)$, $(P_2, <_2)$:

• serial composition:

$$P_1 * P_2 = (P_1 \sqcup P_2, (<_1 \cup <_2 \cup P_1 \times P_2)^+)$$

$$\uparrow P_1 \text{ before } P_2 \text{ (transitive closure)}$$

- a poset: *finite* set *P* plus strict partial order <: irreflexive, transitive, asymmetric
- parallel composition of posets $(P_1, <_1)$, $(P_2, <_2)$:

$$P_1 \otimes P_2 = (P_1 \sqcup P_2, <_1 \cup <_2)$$

serial composition:

$$P_1 * P_2 = (P_1 \sqcup P_2, (<_1 \cup <_2 \cup P_1 \times P_2)^+)$$

 Motivation
 Iposets
 Gluing Decompositions
 GPS-Iposets
 Conclusion

 Series-Parallel Posets

 <

Definition (Winkowski '77, Grabowski '81)

A poset is series-parallel (sp) if it is empty or can be obtained from the singleton poset by a finite number of serial and parallel compositions.

Theorem (Grabowski '81)

A poset is sp iff it does not contain N as an induced subposet.

The equational theory of sp-posets is well-understood: [Gischer 1988, TCS], [Bloom-Esik 1996, MSCS]

Definition (Fishburn '70)

A poset is an interval order if is has a representation as (real) intervals, ordered by $\mathsf{max}_1 \leq \mathsf{min}_2$

- posets which are good for concurrency?
- already in [Wiener 1914], then [Winkowski '77], [Lamport '86], [van Glabbeek '90], [Vogler '91], [Janicky '93], etc.
- Lemma (Fishburn '70): A poset is interval iff it does not contain $2+2 = \left(\begin{array}{c} \longrightarrow \end{array} \right)$ as induced subposet.
- intuitively: if $a \longrightarrow b$ and $c \longrightarrow d$, then also $a \longrightarrow d$ or $c \longrightarrow b$

- interval orders are used in concurrency theory and distributed computing
- but don't (yet) have a good algebraic theory
- sp-posets have nice algebraic theory and seem to be used in concurrency theory
- Concurrent Kleene algebra
- interval orders are 2+2-free; sp-posets are N-free
- incomparable: 2+2 is sp; N is interval

Goal (2018):

- develop common generalization of sp-posets and interval orders
- for use in concurrency theory etc.
- with good algebraic properties
- \implies gluing-parallel (i)posets
 - Realization (2020):
 - combinatorial properties of gluing-parallel iposets are complicated
 - and interval orders seem to be enough for concurrency theory
 - (languages of HDAs are sets of labeled interval orders)

This talk:

- algebra of gluing-parallel iposets (a bit)
- combinatorics of gluing-parallel iposets (a lot)

Motivation 00000●00	lposets 00000	Gluing Decompositions	GPS-Iposets	Conclusion O
Nice peop	ole			

- UF, Christian Johansen, Georg Struth, Ratan Bahadur Thapa: Generating Posets Beyond N. RAMiCS 2020
- Olavi Äikäs, Polytechnique intern, 2021
- UF, Christian Johansen, Georg Struth, Krzysztof Ziemiański: *Posets with Interfaces as a Model for Concurrency*. Information and Computation 2022
- Äikäs, UF, Christian Johansen, Krzysztof Ziemiański: *Generating Posets with Interfaces.* arxiv 2022
- Clarisse Blanco & Dorian Peron, EPITA interns, 2022

Paul Fournillon & Quentin Hay-kergrohenn, EPITA interns, 2024

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclus
oooooooo	00000		000000	0
OEIS				

OF INTEGER SEQUENCES ®

founded in 1964 by N. J. A. Sloane

Search Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

43	31156 🛛 🛚	Number of (weakly) connected gluing-parallel or GP-posets with n points.	4
	1, 1, 1, 3	, 10, 44, 23 (list; graph; refs; listen; history; text; internal format)	
	OFFSET	0,4	
	LINKS	<u>Table of n, a(n) for n=06.</u> Uli Fahrenberg, Christian Johansen, Georg Struth, Ratan Bahadur Thapa, <u>Generating Posets Beyond N</u> , arXiv:1910.06162 [cs.FL], 2019.	
	CROSSREFS	The seven sequences in the table of Uli Fahrenberg et al., 2019, are A000112, A003430, A079566, A331156, A331157, A331158, A331159. Sequence in context: A032269 A179501 A041737 * A279105 A246956 A026682	
		Adjacent sequences: <u>A331153 A331154 A331155</u> * <u>A331157 A331158</u> <u>A331159</u>	
	KEYWORD	nonn,more	
	AUTHOR	N. J. A. Sloane, Jan 16 2020, following a suggestion from <u>Michael De</u> <u>Vlieger</u> .	

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Concl
0000000●	00000		000000	O
OFIS				

OF INTEGER SEQUENCES ®

founded in 1964 by N. J. A. Sloane

Search Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A331156 I	Number of (weakly) connected gluing-parallel or GP-posets with n points. 4
1, 1, 1, 3	3, 10, 44, 233 (list; graph; refs; listen; history; text; internal format)
OFFSET	0,4
LINKS	<u>Table of n, a(n) for n=06.</u> Uli Fahrenberg, Christian Johansen, Georg Struth, Ratan Bahadur Thapa, <u>Generating Posets Beyond N</u> , arXiv:1910.06162 [cs.FL], 2019.
CROSSREFS	The seven sequences in the table of Uli Fahrenberg et al., 2019, are A000112, A003430, A079566, A331156, A331157, A331158, A331159. Sequence in context: A335635 A096804 A113059 * A240172 A167995 A0006608
	Adjacent sequences: <u>A331153 A331154 A331155</u> * <u>A331157 A331158</u> <u>A331159</u>
KEYWORD	nonn,more,changed
AUTHOR	N. J. A. Sloane, Jan 16 2020, following a suggestion from <u>Michael De</u> <u>Vlieger</u> .
EXTENSIONS	Typo in a(6) corrected by <u>Uli Fahrenberg</u> , Feb 03 2024

- $([n] = \{1, \ldots, n\})$
- s: starting interface ; t: terminating interface
- events in t[m] are unfinished ; events in s[n] are "unstarted"

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	0●000		000000	O

Gluing Composition

Definition

The gluing of iposets
$$s_1 : [n] \rightarrow (P_1, <_1) \leftarrow [m] : t_1$$
 and
 $s_2 : [m] \rightarrow (P_2, <_2) \leftarrow [k] : t_2$ is

$$P_1 * P_2 = \begin{cases} (P_1 \sqcup P_2)/t_1(i) = s_2(i) \\ (<_1 \cup <_2 \cup (P_1 \setminus t_1[m]) \times (P_2 \setminus s_2[m]))^- \end{cases}$$

• only defined if terminating int. of P_1 is equal to starting int. of P_2

 iposets are morphisms in a category (objects ℕ; with gluing as composition; up to isomorphism)

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	0●000		000000	O

Gluing Composition

Definition

The gluing of iposets
$$s_1 : [n] \rightarrow (P_1, <_1) \leftarrow [m] : t_1$$
 and
 $s_2 : [m] \rightarrow (P_2, <_2) \leftarrow [k] : t_2$ is

$$P_1 * P_2 = \begin{cases} (P_1 \sqcup P_2)/t_1(i) = s_2(i) \\ (<_1 \cup <_2 \cup (P_1 \setminus t_1[m]) \times (P_2 \setminus s_2[m]))^{-1} \end{cases}$$

• only defined if terminating int. of P_1 is equal to starting int. of P_2

 iposets are morphisms in a category (objects N; with gluing as composition; up to isomorphism)

Motivation 00000000	lposets 00●00	Gluing Decompositions	GPS-Iposets	Conclusion O
Parallel	Composition			

- parallel composition of iposets: put posets in parallel and renumber interfaces
- for $[n_1] \rightarrow P_1 \leftarrow [m_1]$ and $[n_2] \rightarrow P_2 \leftarrow [m_2]$, have $[n_1 + n_2] \rightarrow P_1 \otimes P_2 \leftarrow [m_1 + m_2]$
- not commutative ; only "lax tensor" ; not a PROP

- parallel composition of iposets: put posets in parallel and renumber interfaces
- for $[n_1] \rightarrow P_1 \leftarrow [m_1]$ and $[n_2] \rightarrow P_2 \leftarrow [m_2]$, have $[n_1 + n_2] \rightarrow P_1 \otimes P_2 \leftarrow [m_1 + m_2]$

• not commutative ; only "lax tensor" ; not a PROP $\begin{array}{c} \uparrow \\ \circ & \bullet \\ \circ & \bullet \\ \ast & \circ \\ \circ & \circ$

2

≻ 2

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	00●00		000000	O
Parallel C	omposition			

- parallel composition of iposets: put posets in parallel and renumber interfaces
- for $[n_1] \rightarrow P_1 \leftarrow [m_1]$ and $[n_2] \rightarrow P_2 \leftarrow [m_2]$, have $[n_1 + n_2] \rightarrow P_1 \otimes P_2 \leftarrow [m_1 + m_2]$
- not commutative ; only "lax tensor" ; not a PROP $\uparrow\uparrow$

 $(P_1 \otimes P_2) * (Q_1 \otimes Q_2) \preceq (P_1 * Q_1) \otimes (P_2 * Q_2)$

- ullet recall series-parallel posets: generated from $\,\,\odot\,\,$ using * and $\,\otimes\,\,$
- the four singleton iposets:
- 1) (1 1 M1
 gluing-parallel (gp) iposets: generated from ○, 1), (1, 1 M1 using * and ⊗
- gluing-parallel posets: gp-iposets without interfaces

- sp-posets $\hat{=}$ **N**-free
- interval orders $\hat{=} 2+2$ -free
- gluing-parallel posets \implies free of

- sp-posets $\hat{=} \mathbf{N}$ -free
- interval orders $\hat{=} 2+2$ -free
- gluing-parallel posets \implies free of

- sp-posets $\hat{=}$ **N**-free
- interval orders $\hat{=} 2+2$ -free
- gluing-parallel posets \implies free of

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	0000●		000000	O
Forbidder	n Substruc	tures		

- sp-posets $\hat{=} \mathbf{N}$ -free
- interval orders $\hat{=} 2+2$ -free
- gluing-parallel posets ↔ free of ???
 - it's complicated!

- an iposet P can be decomposed as P = Q ⊗ R iff P is disconnected as an undirected graph
- an iposet P can be decomposed as P = Q * R iff ???

Definition

A gluing P = Q * R is non-trivial if $P \neq Q$ and $P \neq R$ as posets.

Extremities

For a poset *P*, define $P_a = \{x \in P \mid \forall y \in P : |x\uparrow| \ge |y\uparrow|\}$ ("extreme left") and $P_b = \{x \in P \mid \forall y \in P : |x\downarrow| \ge |y\downarrow|\}$ ("extreme right").

Decomposition Ler

Lemma

Suppose P admits a non-trivial gluing decomposition. Then there is $\varphi: P \to \{0, *, 1\}$ such that

• if x < y, then $(\varphi(x), \varphi(y)) \in \{(1, 0), (1, *), (1, 1), (*, 0), (0, 0)\};$

● if $(φ(x), φ(y)) ∈ {(1, *), (*, 0), (1, 0)}, then y ∠ x;$

• if
$$(\varphi(x), \varphi(y)) = (*, *)$$
, then $x \not< y$ and $y \not< x$;

$${old 0} \ arphi(x)=1$$
 for $x\in {\sf P}_{\sf a}$ and $arphi(y)=0$ for $y\in {\sf P}_{\sf b}.$

- $0 \stackrel{}{=} not$ started yet
- * ÷ running

Decomposition Lemma: Proof

Lemma

P has non-trivial gluing decomposition $\implies \exists \varphi : P \rightarrow \{0, *, 1\}$:

- if x < y, then $(\varphi(x), \varphi(y)) \in \{(1, 0), (1, *), (1, 1), (*, 0), (0, 0)\};$
- if $(\varphi(x), \varphi(y)) = (1, 0)$, then x < y;
- Solution if $(\varphi(x), \varphi(y)) \in \{(1, *), (*, 0), (1, 0)\}$, then y ∠ x;
- if $(\varphi(x), \varphi(y)) = (*, *)$, then $x \not< y$ and $y \not< x$;
- $\varphi(x) = 1$ for $x \in P_a$ and $\varphi(y) = 0$ for $y \in P_b$.

Proof: (or maybe not!?)

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	00000		000000	O
Small F	orbidden	Substructures		

N does not admit a non-trivial gluing decomposition.

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	00000		000000	O
Small F	orbidden	Substructures		

N does not admit a non-trivial gluing decomposition.

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	00000		000000	O
Small F	orbidden	Substructures		

N does not admit a non-trivial gluing decomposition.

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	00000		000000	O
Small F	orbidden	Substructures		

N does not admit a non-trivial gluing decomposition.

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	00000		000000	O
Small F	orbidden	Substructures		

N does not admit a non-trivial gluing decomposition.

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	00000		000000	O
Small F	orbidden	Substructures		

N does not admit a non-trivial gluing decomposition.

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	00000		000000	O
Small F	orbidden	Substructures		

N does not admit a non-trivial gluing decomposition.

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	00000		000000	O
Small F	orbidden	Substructures		

N does not admit a non-trivial gluing decomposition.

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	00000		000000	O
Small F	orbidden	Substructures		

N does not admit a non-trivial gluing decomposition.

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	00000		000000	O
Small F	orbidden	Substructures		

N does not admit a non-trivial gluing decomposition.

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	00000		000000	O
Small F	orbidden	Substructures		

N does not admit a non-trivial gluing decomposition.

N, 3C and M do not admit non-trivial gluing decompositions.

Proof: Use decomposition lemma:

Lemma

P has non-trivial gluing decomposition $\implies \exists \varphi : P \rightarrow \{0, *, 1\}$:

- if x < y, then $(\varphi(x), \varphi(y)) \in \{(1, 0), (1, *), (1, 1), (*, 0), (0, 0)\};$
- if (φ(x), φ(y)) = (1,0), then x < y;</p>
- **③** if $(\varphi(x), \varphi(y)) \in \{(1, *), (*, 0), (1, 0)\}$, then y ∠ x;
- if $(\varphi(x), \varphi(y)) = (*, *)$, then $x \not< y$ and $y \not< x$;
- $\varphi(x) = 1$ for $x \in P_a$ and $\varphi(y) = 0$ for $y \in P_b$.

Motivation 00000000	lposets 00000	Gluing Decompositions	GPS-Iposets	Conclusion O
Small F	orbidden	Substructures, 2.		

N, 3C and M do not admit non-trivial gluing decompositions.

N, 3C and M do not admit non-trivial gluing decompositions.

N, 3C and M do not admit non-trivial gluing decompositions.

N, 3C and M do not admit non-trivial gluing decompositions.

N, 3C and M do not admit non-trivial gluing decompositions.

N, 3C and M do not admit non-trivial gluing decompositions.

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	00000		000000	O
8-Point	Forbidden	Substructure		

• not gluing-parallel

 Motivation
 Iposets
 Gluing Decompositions
 GPS-Iposets
 Conclusion

 8-Point Forbidden Substructure

- not gluing-parallel
- but satisfies decomposition lemma

- not gluing-parallel
- but satisfies decomposition lemma
- and can be decomposed?!?

- not gluing-parallel
- but satisfies decomposition lemma
- and can be decomposed?!?

- not gluing-parallel
- but satisfies decomposition lemma
- and can be decomposed?!?
- interfaces "permuted wrong"
- same for all 10-point forbidden substructures: all "decomposable up to interface permutation"

• recall gp-iposets: generated from \bigcirc , 1), (1, and 1), (using * and \otimes)

• let ${}^1 \underset{2 \mathbf{M}_1}{\mathbf{M}_2} = (s, [2], t) : 2 \rightarrow 2$ be the non-trivial symmetry on 2

• gps-iposets: generated from \bigcirc , 1), $(1, 1 \times 1, 1 \times 1$

Lemma

An iposet is gps iff its underlying poset is.

Proof.

The symmetric groups are generated by transpositions.

- so all interface permutations included
- \implies all "big" forbidden substructures are gps

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
0000000	00000		0●0000	0
Conjecture				

Conjecture

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	00000		00●000	O
Gps = Sr	o-Intervals			

Definition (generalized interval orders)

Let P and V be posets. An interval representation of P in V is a pair of functions $f, g: P \to V$ such that:

•
$$f(p) \leq_V g(p)$$
 for all $p \in P$,

P is a V-interval order if it admits an interval representation in V.

Lemma

If P is a V-interval order and V is a W-interval order, then P is a W-interval order.

Theorem (Ziemiański)

A poset is gps iff it is an sp-interval order.

Motivation 00000000	lposets 00000	Gluing Decompositions	GPS-Iposets	Conclusion O
Gps = Si	o-Intervals.	2.		

If P is gps, then P is sp-interval.

Proof.

Induction. $P \in \{ \bigcirc, \P_1, 1 \triangleright, 1 \Join_1 \}$: fine; all are \bigcirc -interval.

- if $P = Q \otimes R$: when Q is V-interval and R is W-interval, then $Q \otimes R$ is $V \otimes W$ -interval.
- if P = Q * R: when Q is V-interval and R is W-interval, then Q * R is V * W-interval. ← requires proof

In both cases:

$$f(p) = egin{cases} f_Q(p) & ext{for } p \in Q \ f_R(p) & ext{for } p
ot
ot Q \end{pmatrix} \qquad g(p) = egin{cases} g_R(p) & ext{for } p \in R \ g_Q(p) & ext{for } p
ot
ot R \end{pmatrix}$$

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
0000000	00000		0000●0	0
Eveneele				

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	00000		0000●0	0

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	00000		0000●0	0

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	00000		0000●0	0

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	00000		0000●0	O
-				

Example

Motivation	lposets	Gluing Decompositions	GPS-Iposets	Conclusion
00000000	00000		0000●0	O

Gps = Sp-Intervals, 3.

Lemma

If P is sp-interval, then P is gps.

Proof.

Induction. $P \in \{ \circ, \P_1, I \triangleright, I \triangleright_I \}$: fine.

• if P is $V \otimes W$ -interval: let $Q = f^{-1}(V) = g^{-1}(V)$ and $R = f^{-1}(W) = g^{-1}(W)$ (true because $V \otimes W$ is disconnected), then $P = Q \otimes R$. Using $f_Q = f_{|Q}$ etc. (the restrictions), Q is V-interval and R is W-interval.

• if P is V * W-interval: let $Q = f^{-1}(V)$ and $R = g^{-1}(W)$, then P = Q * R (interfaces are $Q \cap R$). Define $f_Q = f_{|Q}$ and $g_Q(p) = \begin{cases} g(p) \text{ if } p \in V, \\ \text{some } x \in V^{\max} \text{ with } f(p) \leq x \text{ otherwise.} \end{cases}$ Definitions of f_R and g_R are symmetric, and then Q is V-interval and R is W-interval. \leftarrow requires proof

Motivation 00000000	lposets 00000	Gluing Decompositions	GPS-Iposets 000000	Conclusion
Conclusion				

- gluing-parallel iposets: generated from \bigcirc , 1 **)**, (1, 1 **M**1 using * and \otimes
- complicated combinatorics; so far 11 forbidden substructures; unknown whether set of forbidden substructures is finite
- gluing-parallel-symmetric iposets: generated from ○, 1 ▶, (1, 1 ▶1, ¹/₂ ▶1 using * and ⊗
- less complicated: iposet is gps iff underlying poset is
- (and can be generated from \bigcirc without using interfaces)
- Theorem: gps-posets = interval orders in sp-posets
- Conjecture: precisely five forbidden substructures

Also interesting:

- Relational and Algebraic Methods in CS (RAMiCS), Prague 19-23 Aug.
- Geometric and Topological Methods in CS (GETCO), Tallinn 6-7 July
- Pomsets and Related Structures (RaPS), Rennes 24 April

Definition

Let P_1 and P_2 be posets.

- The right-interior gluing composition $P_1 *^i P_2$: carrier set $P_1 \sqcup P_2$, $(p,i) < (q,j) \Leftrightarrow (i = j \land p <_i q) \lor (i < j \land q \notin P_2^{\min})$
- The left-interior gluing composition $P_1^{i} * P_2$: carrier set $P_1 \sqcup P_2$, $(p,i) < (q,j) \Leftrightarrow (i = j \land p <_i q) \lor (i < j \land p \notin P_1^{\max})$
- The Winkowski multi-composition $P_1 \ge P_2$: defined if $|P_1^{\max}| = |P_2^{\min}|$, and then $P_1 \ge P_2 = \{P_1 \ge_f P_2 \mid f \text{ bijection} P_1^{\max} \rightarrow P_2^{\min}\}$, where $P_1 \ge_f P_2$ is the poset with carrier set $(P_1 \sqcup P_2)_{/x=f(x)}$ and order $(p, i) < (q, j) \Leftrightarrow (i = j \land p <_i q) \lor (i < j \land p \notin P_1^{\max} \land q \notin P_2^{\min})$

Lemma

Gps-posets are generated from \bigcirc using \otimes , *, *ⁱ, ⁱ*, and \ge .

п	P(<i>n</i>)	GP(n)	GPS(n)	IP(n)	GPI(n)	GPSI(n)
0	1	1	1	1	1	1
1	1	1	1	4	4	4
2	2	2	2	17	16	17
3	5	5	5	86	74	86
4	16	16	16	532	419	532
5	63	63	63	4068	2980	4068
6	318	313	313	38.933	26.566	38.447
7	2045	1903	1903	474.822	289.279	
8	16.999	13.943	13.944	7.558.620	3.726.311	
9	183.231	120.442	120.465			
10	2.567.284	1.206.459				