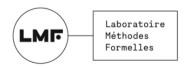
Higher-Dimensional Automata for Petri Net Analysis

Uli Fahrenberg Philipp Schlehuber-Caissier

LMF, Université Paris-Saclay, France SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, France

AWPN 2025



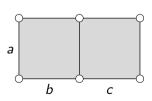
PN'23 UF, K. Ziemiański: A Myhill-Nerode theorem for higher-dimensional automata

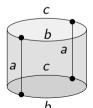
- PN'24 A. Amrane, H. Bazille, E. Clement, UF: Languages of higher-dimensional timed automata
- PN'25 A. Amrane, H. Bazille, UF, L. Hélouët, P. Schlehuber-Caissier: *Petri Nets and higher-dimensional automata*

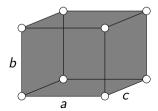
Higher-Dimensional Automata?

Motivation

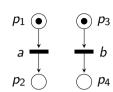
- PN'23 UF, K. Ziemiański: A Myhill-Nerode theorem for higher-dimensional automata
- PN'24 A. Amrane, H. Bazille, E. Clement, UF: Languages of higher-dimensional timed automata
- PN'25 A. Amrane, H. Bazille, UF, L. Hélouët, P. Schlehuber-Caissier: *Petri Nets and higher-dimensional automata*
 - Rob van Glabbeek 2006: On the expressiveness of higher-dimensional automata







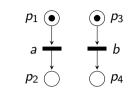
Petri net (S, T, F): places S; transitions T; weighted flows $F: S \times T \cup T \times S \rightarrow \mathbb{N}$

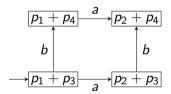


Petri net (S, T, F): places S; transitions T; weighted flows $F: S \times T \cup T \times S \rightarrow \mathbb{N}$

Interleaved semantics (reachability graph) (V, E):

- $V = \mathbb{N}^S$: all markings
- $E \subseteq V \times T \times V$: one transition at a time
- $E = \{(m, t, m') \mid {}^{\bullet}t \leq m, m' = m {}^{\bullet}t + t^{\bullet}\}$
- initial marking ⇒ initial state; take reachable part





Semantics of Petri Nets

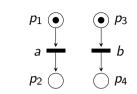
Petri net (S, T, F): places S; transitions T; weighted flows $F: S \times T \cup T \times S \rightarrow \mathbb{N}$

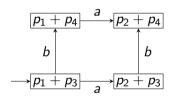
Interleaved semantics (reachability graph) (V, E):

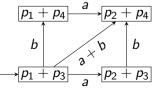
- $V = \mathbb{N}^{S}$: all markings
- $E \subseteq V \times T \times V$: one transition at a time
- $E = \{(m, t, m') \mid {}^{\bullet}t \leq m, m' = m {}^{\bullet}t + t^{\bullet}\}$
- initial marking \implies initial state; take reachable part

Concurrent step reachability graph (V, E'):

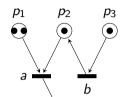
- $V = \mathbb{N}^S$
- $E' \subseteq V \times \mathbb{N}^T \times V$: multisets of transitions
- $E' = \{(m, U, m') \mid {}^{\bullet}U < m, m' = m {}^{\bullet}U + U^{\bullet}\}$







000

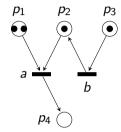


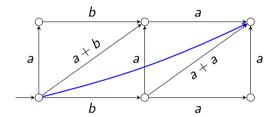
*p*₄



• after firing b, a is auto-concurrent

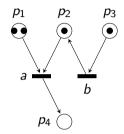
Another Example

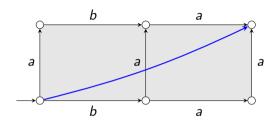




- after firing b, a is auto-concurrent
- (Concurrent step) semantics misses some behavior?
 - start a start b finish b start another a etc.

Another Example





- after firing b, a is auto-concurrent
- (Concurrent step) semantics misses some behavior?
 - start a start b finish b start another a etc.
- enter higher-dimensional automata
 - replace multi-transitions by squares / cubes / etc.

Higher-Dimensional Automata

A conclist is a finite, totally ordered, Σ -labeled set.

(a list of labeled events)

A precubical set X consists of:

A set of cells X

(cubes)

• Every cell $x \in X$ has a conclist ev(x)

- (list of events active in x)
- We write $X[U] = \{x \in X \mid ev(x) = U\}$ for a conclist U

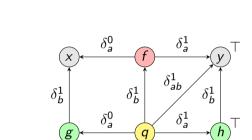
(cells of type U)

- For every conclist U and $A \subseteq U$ there are:
 - upper face map $\delta^1_A:X[U]\to X[U\setminus A]$ lower face map $\delta^0_A: X[U] \to X[U \setminus A]$

(terminating events A) ("unstarting" events A)

• Precube identities: $\delta^{\mu}_{\mathbf{A}}\delta^{\nu}_{\mathbf{B}} = \delta^{\nu}_{\mathbf{B}}\delta^{\mu}_{\mathbf{A}}$ for $A \cap B = \emptyset$ and $\mu, \nu \in \{0, 1\}$

A higher dimensional automaton (HDA) is a precubical set X with initial cells $\bot \subseteq X$ and accepting cells $\top \subseteq X$ (not necessarily vertices)



 δ_b^0

е

 δ_b^0

 δ_a^1

 δ^0_{ab}

 δ_a^0

 δ_b^0

$$X[\emptyset] = \{v, w, x, y\}$$

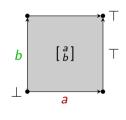
$$X[a] = \{e, f\}$$

$$X[b] = \{g, h\}$$

$$X[\begin{bmatrix} a \\ b \end{bmatrix}] = \{q\}$$

$$\bot_X = \{v\}$$

$$\top_X = \{h, y\}$$



Higher-Dimensional Automata & Concurrency Theory

HDAs as a model for concurrency:

- points: states
- edges: transitions
- squares, cubes etc.: independency relations / concurrently executing events
- two-dimensional automata ≅ asynchronous transition systems [Shields'85] [Bednarczvk'88]
- Introduced in [van Glabbeek'89]
- Generalize all main models of concurrency proposed in the literature
- (event structures; Petri nets; communicating automata; etc.)
- [van Glabbeek'06]: translations from Petri nets
 - individual vs. collective tokens; autoconcurrency or not

Our Contributions

Higher-Dimensional Automata

- Update van Glabbeek's translation to our new event-based HDA formalism
- Implement translation in new tool pn2HDA
- Extend to inhibitor arcs
- Extend to generalized self-modifying nets
- Continuous effort to make pn2HDA less stupid and more efficient \leftarrow Philipp

Concurrent Semantics of Petri Nets

Petri net (S, T, F): places S; transitions T; weighted flows $F: S \times T \cup T \times S \rightarrow \mathbb{N}$

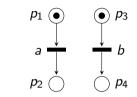
Interleaved semantics (V, E): $V = \mathbb{N}^S$; $E \subseteq V \times T \times V$

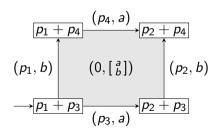
• $E = \{(m, t, m') \mid {}^{\bullet}t \leq m, m' = m - {}^{\bullet}t + t^{\bullet}\}$

Concurrent semantics as HDA:

$$\square = \square(T)$$
, $X = \mathbb{N}^S \times \square$, $\operatorname{ev}(m, \tau) = \tau$

- for $x = (m, \tau) \in X[\tau]$ with $\tau = (t_1, \dots, t_n)$: $\delta_{t_i}^0(x) = (m + {}^{\bullet}t_i, (t_1, \dots, t_{i-1}, t_{i+1}, \dots, t_n))$
 - $\delta_{t_i}^1(x) = (\mathbf{m} + \mathbf{t}_i^{\bullet}, (t_1, \ldots, t_{i-1}, t_{i+1}, \ldots, t_n))$
- ullet initial marking \Longrightarrow initial cell; take reachable part
- (no accepting cells)

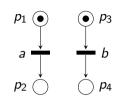


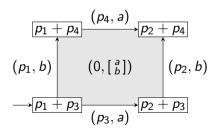


Event Order

Motivation

- trouble with symmetry: have a cell $(0, \begin{bmatrix} a \\ b \end{bmatrix})$, but also $(0, \begin{bmatrix} b \\ a \end{bmatrix})$ (not shown)
- solution: fix an arbitrary order \leq on T
- and use $\square=\left\{\left[egin{array}{c} t_1\\ \vdots\\ t_n \end{array}\right] \ \middle|\ \forall i=1,\ldots,n-1:t_i\preccurlyeq t_{i+1} \right\}$ instead of $\square(T)$
- order ≼ may be chosen (and re-chosen) at will
- here: lexicographic $a \prec b \prec \dots$

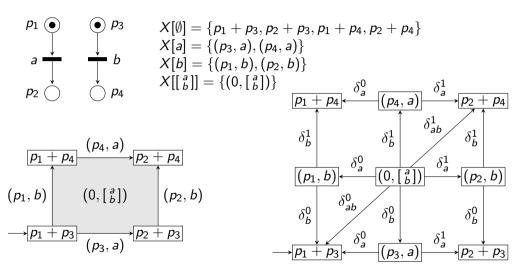




Conclusion and Future Work

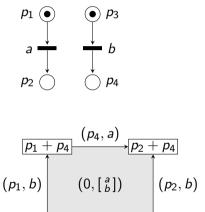
Example, Complete

Motivation

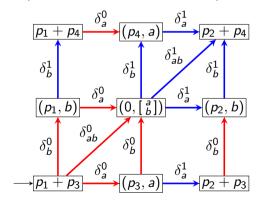


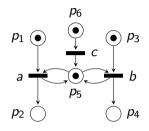
Example, Complete

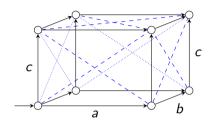
 $p_1 + p_3$



- for computations, invert lower face maps







- initially, p_5 is a mutex place: it disables concurrency of a and b
- after c fires, p₅ holds two tokens, so a and b become concurrent
- semantically, a hollow cube without bottom face
- the five faces: front: $(p_3, \begin{bmatrix} a \\ c \end{bmatrix})$, back: $(p_4, \begin{bmatrix} a \\ c \end{bmatrix})$

left: $(p_1, \begin{bmatrix} b \\ c \end{bmatrix})$, right: $(p_2, \begin{bmatrix} b \\ c \end{bmatrix})$ top: $(0, \begin{bmatrix} a \\ b \end{bmatrix})$

We wish to build a tool for analyzing and verifying Petri nets based on HDAs.

Working with Petri nets

Motivation

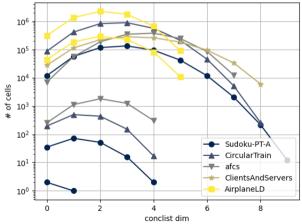
We wish to build a tool for analyzing and verifying Petri nets based on HDAs.

As a first step we seek to construct the reachable part of the state-space: pn2HDA

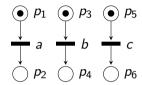
Working with Petri nets

We wish to build a tool for analyzing and verifying Petri nets based on HDAs.

As a first step we seek to construct the reachable part of the state-space: pn2HDA

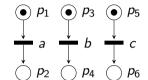


- Implementation very close to mathematical definition
- Very memory and cpu intensive
- → Only able to treat small instances from the MCC

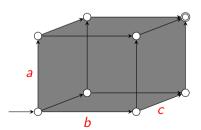


Taking a closer look at HDA cells

Three independent transitions form a full, three-dimensional cell: $(0, \begin{bmatrix} a \\ b \end{bmatrix})$.



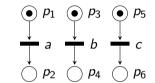
Max-Cell HDAs



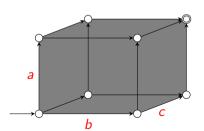
Taking a closer look at HDA cells

Three independent transitions form a full, three-dimensional cell: $(0, \begin{bmatrix} a \\ b \end{bmatrix})$.

But, in total we have 1 3-cell, 6 2-cells, 12 1-cells, and 8 0-cells. Plus all of the face-map entries! (2n for n-dim cells)



Max-Cell HDAs



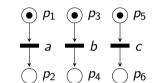
Taking a closer look at HDA cells

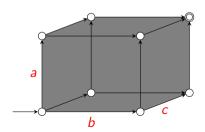
Three independent transitions form a full, three-dimensional cell: $(0, \begin{bmatrix} a \\ b \end{bmatrix})$.

But, in total we have 1 3-cell, 6 2-cells, 12 1-cells, and 8 0-cells. Plus all of the face-map entries! (2n for n-dim cells)

In fact, for a full HDA, any n-dimensional cell has 3^n-1 faces, which are guaranteed to exist.

An "exponential" waste!





Max-Cell HDAs

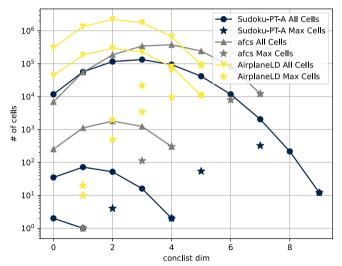
00000000000000

Maybe it is not that bad in practice?



Maybe it is not that bad in practice?

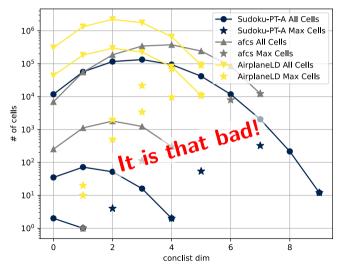
Motivation



instance	compr.
AirplaneLD-pt-0010	97.1%
AirplaneLD-pt-0020	97.1%
afcs_01_a	91.2%
afcs_02_a	98.5%
Sudoku-PT-A-N01	66.7%
Sudoku-PT-A-N02	96.6%
Sudoku-PT-A-N03	99.2%

Maybe it is not that bad in practice?

Motivation



	instance	compr.		
Ì	AirplaneLD-pt-0010	97.1%		
	AirplaneLD-pt-0020	97.1%		
Ì	afcs_01_a	91.2%		
	afcs_02_a	98.5%		
Ì	Sudoku-PT-A-N01	66.7%		
	Sudoku-PT-A-N02	96.6%		
	Sudoku-PT-A-N03	99.2%		

Extending pn2HDA

Motivation

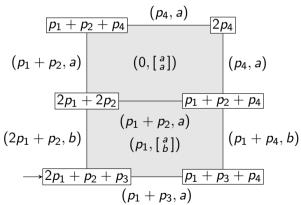
We are currently working on extending pn2HDA to support max-cells.

Extending pn2HDA

Motivation

We are currently working on extending pn2HDA to support max-cells.

We strive for a model with minimal memory consumption, possibly at the cost of speed.

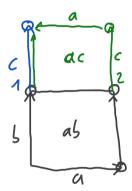


- Keep "lower-left"-marking and maximal conclist
- Keep which cells are connected (but not how?)

Direct Translation of Petri Nets to MHDA - 1

Given a partially constructed MHDA A and a max cell (m, c) to explore

- Compute the marking for each 0-cell
- Compute the set of maximal concurrent steps
- For each of them form the candidate cell (m', c')
- Check inclusion with all existing cells (m_e, c_e)
 - $(m', c') \sqsubseteq (m_e, c_e)$
 - $(m_e, c_e) \sqsubseteq (m', c')$



Direct Translation of Petri Nets to MHDA - 2

Inclusion checking is translated to an integer program, solved via z3. $(m, c) \sqsubseteq (m', c')$ iff we can reach m from m' with steps in $c' \setminus c$.

Direct Translation of Petri Nets to MHDA - 2

Inclusion checking is translated to an integer program, solved via z3. $(m,c) \sqsubseteq (m',c')$ iff we can reach m from m' with steps in $c' \setminus c$.

	HDA			MHDA			time (s)	
Name	cells	conclists	markings	cells	conclists	markings	$PN \to HDA$	$PN \to MHDA$
abx_3	272	50	146	10	10	4	0.003	0.7
abx_4	846	105	371	15	15	5	0.005	4
abx_5	2232	196	812	21	21	6	0.008	13
abx_6	5214	336	1596	28	28	7	0.01	44
Sudoku-PT-A-N02	177	35	176	6	23	5	0.4	19

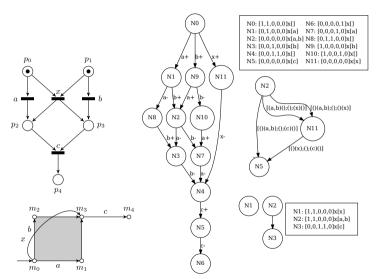
Problem Analysis

Motivation

Why is it sooo slow??

What are the expensive parts?

- Investigate from all 0-cells $(2^{|c|})$
- Finding (maximal) concurrent steps from a 0-cell (NP)
- Inclusion checks (linear in current size, but costly)



Simplifying Inclusion Checks

Motivation

Integer programming is generally expensive

Simplifying Inclusion Checks

Integer programming is generally expensive

Luckily our problem for $(m, c) \sqsubset (m', c')$ looks like this

$$m_i = m_i' - \sum_t \operatorname{pre}(i, t) n_t + \sum_t \operatorname{post}(i, t) n_t \ 0 \le n_t \le |c' \setminus c|$$

with pre(i, t)/post(i, t) being 1 if $i \in {}^{\bullet}t/t^{\bullet}$ else 0

Simplifying Inclusion Checks

Integer programming is generally expensive

Luckily our problem for $(m, c) \sqsubset (m', c')$ looks like this

$$m_i = m_i' - \sum_t \operatorname{pre}(i, t) n_t + \sum_t \operatorname{post}(i, t) n_t \ 0 \le n_t \le |c' \setminus c|$$

with pre(i, t)/post(i, t) being 1 if $i \in {}^{\bullet}t/t^{\bullet}$ else 0

This looks much like a linear program!

Simplifying Inclusion Checks

Integer programming is generally expensive

Luckily our problem for $(m, c) \sqsubset (m', c')$ looks like this

$$m_i = m_i' - \sum_t \operatorname{pre}(i, t) n_t + \sum_t \operatorname{post}(i, t) n_t \ 0 \le n_t \le |c' \setminus c|$$

with pre(i, t)/post(i, t) being 1 if $i \in {}^{\bullet}t/t^{\bullet}$ else 0

This looks much like a linear program!

What about non-integer solutions? Claim:

They only arise for parallel transitions and imply the existence of an integer solution.

Computing successors more efficiently

Motivation

Finding the set of maximal concurrent steps from a given marking is a hard problem in itself...

Computing successors more efficiently

Finding the set of maximal concurrent steps from a given marking is a hard problem in itself...

Can we find a more efficient way to enumerate them?

$$m_i \ge \sum_t \operatorname{pre}(i,t) n_t$$
 $0 \le n_t$

Computing successors more efficiently

Finding the set of maximal concurrent steps from a given marking is a hard problem in itself...

Can we find a more efficient way to enumerate them?

$$m_i \geq \sum_t \operatorname{pre}(i,t) n_t$$
 $0 \leq n_t$

This looks like an H-representation of a polytope!

Computing successors more efficiently

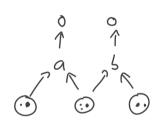
Finding the set of maximal concurrent steps from a given marking is a hard problem in itself...

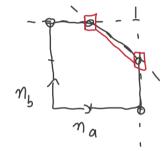
Can we find a more efficient way to enumerate them?

$$m_i \geq \sum_t \operatorname{pre}(i,t) n_t$$
 $0 \leq n_t$

This looks like an H-representation of a polytope!

Even better, the polytope is bounded and all the coefficients are integer (even even better they are 0 or 1)!





We can find the V-representation!

The pareto optimal vertices are those of interest for max-cell successors!

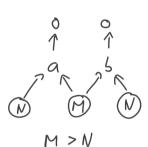
Motivation

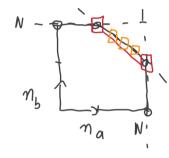


We can find the V-representation!

The pareto optimal vertices are those of interest for max-cell successors!

Going from H- to V-representation is independent of N and M.





Max-Cell HDAs

We can find the V-representation!

The pareto optimal vertices are those of interest for max-cell successors!

Going from H- to V-representation is independent of N and M.

Unfortunately. Problems enumerating the integer solutions in higher dimensions.

Computing all the successors of a max cell

Motivation

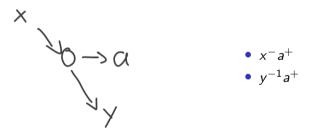
Even if the above would have worked, we still have several issues!

Computing all the successors of a max cell

Motivation

Even if the above would have worked, we still have several issues! Notably the iteration over all over the 0-cells is still necessary.

Even if the above would have worked, we still have several issues! Notably the iteration over all over the 0-cells is still necessary.



Directions only *demand* at most one token per place. We only construct maximal directions.

Computing all the successors of a max cell

Even if the above would have worked, we still have several issues!

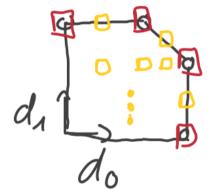
Directions only *demand* at most one token per place. We only construct maximal directions.

This is once again a (bounded,...) polytope.

$$|c|_t \ge \sum_d \operatorname{req}(d,t) n_d$$

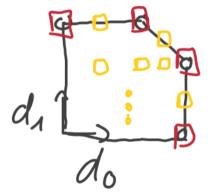
with reg(d, t) being 1 if the direction d unstarts or terminates transition t, 2 if it unstarts AND terminates t and is 0 otherwise.

Motivation

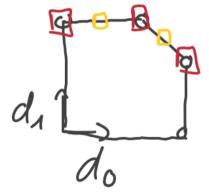


Here, all integer solutions are of interest.

Motivation



Here, all integer solutions are of interest. - Not only the pareto optimal ones



Well except those who only terminate dummy transitions.

 $dummy_0^- dummy_1^- a^+$

Conclusion and Future Work

- HDAs provide detailed semantics for concurrent systems and Petri Nets.
- Fixing the event-order only solves half of the problem What is actually needed is to switch to anonymous HDAs.
 - As for Petri Nets, the different events have no identity and can be interchanged.

- Improve data structures used for max-cell HDAs
- Improve algorithms
- Find a suitable logic for model checking working with max-cells

Conclusion and Future Work

- HDAs provide detailed semantics for concurrent systems and Petri Nets.
- of the problem
 What is actually needed is to switch to anonymous HDAs.
 As for Petri Nets, the different events

Fixing the event-order only solves half

As for Petri Nets, the different events have no identity and can be interchanged.

- Improve data structures used for max-cell HDAs
- Improve algorithms
- Find a suitable logic for model checking working with max-cells

Thank you for your attention!