Higher-Dimensional Automata: Operational Semantics

Uli Fahrenberg

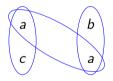
EPITA Research Laboratory (LRE), Paris, France

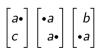
JN GT DAAL 2025

Application: Higher-Dimensional Automata

Motivation: Understand Algebraic Structure of Interval Orders

- non-interleaving concurrency:
- languages consist of pomsets instead of words
- (partially ordered multisets)
- but not all pomsets: only interval orders
- (elements can be represented as real intervals)
- Janicki-Koutny 1993 (TCS): represent interval orders as sequences of overlapping maximal antichains
- use that to understand algebra of interval pomsets
- with an application to higher-dimensional automata

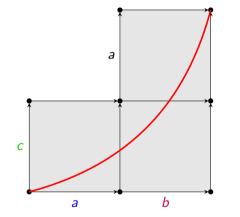




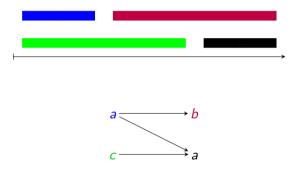
Example

Pomsets with Interfaces

Application: Higher-Dimensional Automata



Lifetimes of events



Application: Higher-Dimensional Automata $_{\rm OOOOO}$

1 Motivation: Understand Algebraic Structure of Interval Orders

2 Pomsets with Interfaces

3 Application: Higher-Dimensional Automata

Motivation 000● Pomsets with Interfaces

Application: Higher-Dimensional Automata

Nice People

- Eric Goubault, Paris
- Christian Johansen, Oslo
- Georg Struth, Sheffield
- Krzysztof Ziemiański, Warsaw
- Amazigh Amrane, Hugo Bazille, Emily Clement, Jérémy Dubut, Marie Fortin, Loïc Hélouët, Jérémy Ledent, Philipp Schlehuber-Caissier, Safa Zouari, ...
- See also https://ulifahrenberg.github.io/pomsetproject/

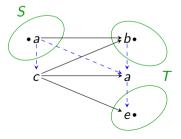
Pomsets with Interfaces

Application: Higher-Dimensional Automata

Pomsets with interfaces

Definition

- A pomset with interfaces (ipomset): $(P, <, -\rightarrow, S, T, \lambda)$:
 - finite set *P*;
 - two partial orders < (precedence order), --→ (event order)
 - s.t. < ∪ --→ is a *total relation*;
 - $S, T \subseteq P$ source and target interfaces
 - s.t. S is <-minimal and T is <-maximal.



Pomsets with Interfaces

Application: Higher-Dimensional Automata $_{\rm OOOOO}$

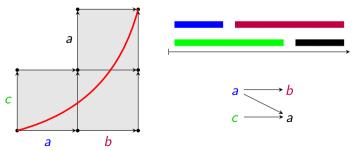
Interval orders

Definition

An ipomset $(P, <_P, \neg \rightarrow, S, T, \lambda)$ is interval if $(P, <_P)$ has an interval representation: functions $b, e : P \to \mathbb{R}$ s.t.

•
$$\forall x \in P : b(x) \leq_{\mathbb{R}} e(x);$$

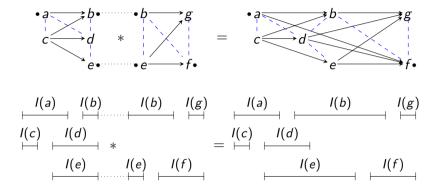
•
$$\forall x, y \in P : e(x) <_{\mathbb{R}} b(y) \iff x <_P y$$



Pomsets with Interfaces

Application: Higher-Dimensional Automata $_{\rm OOOOO}$

Gluing composition



• Gluing P * Q: P before Q, except for interfaces (which are identified)

• (also have parallel composition $P \parallel Q$: disjoint union)

Application: Higher-Dimensional Automata

Special ipomsets

Definition

An ipomset $(P, <, -- \rightarrow, S, T, \lambda)$ is

- discrete if < is empty (hence --→ is total)
 - also written _SP_T
- a conclist ("concurrency list") if it is discrete and $S=\mathcal{T}=\emptyset$
- a starter if it is discrete and T = P
- a terminator if it is discrete and S = P
- an identity if it is both a starter and a terminator

Lemma (Janicki-Koutny 93; reformulated)

An ipomset is interval iff it has a decomposition into discrete ipomsets.

Uli Fahrenberg

Pomsets with Interfaces

Application: Higher-Dimensional Automata

Decompositions

Lemma (Janicki-Koutny 93)

A poset (P, <) is an interval order iff the order defined on its maximal antichains defined by $A \leq B \iff \forall a \in A, b \in B : b \not< a$ is total.

Corollary

An ipomset is interval iff it has a decomposition into discrete ipomsets.

Lemma

Any discrete ipomset is a gluing of a starter and a terminator.

$$\begin{bmatrix} \bullet a \\ \bullet b \bullet \\ a \bullet \end{bmatrix} = \begin{bmatrix} \bullet a \bullet \\ \bullet b \bullet \\ a \bullet \end{bmatrix} * \begin{bmatrix} \bullet a \\ \bullet b \bullet \\ \bullet a \bullet \end{bmatrix}$$

Corollary

Any interval ipomset has a decomposition as a sequence of starters and terminators.

Uli Fahrenberg

Pomsets with Interfaces

Application: Higher-Dimensional Automata

Unique decompositions

Notation: St: set of starters ${}_{S}U_{U}$ Te: set of terminators ${}_{U}U_{T}$ Id = St \cap Te: set of identities ${}_{U}U_{U}$ Ω = St \cup Te

Definition

A word
$$w = (S_1, U_1, T_1) \dots (S_n, U_n, T_n) \in \Omega^+$$
 is coherent if $T_i = S_{i+1}$ for all i .

Definition

A coherent word is sparse if proper starters and proper terminators are alternating.

- additionally, all $w \in \mathsf{Id} \subseteq \Omega^+$ are sparse
- so that's $Id \cup (St \setminus Id)((Te \setminus Id)(St \setminus Id))^* \cup (Te \setminus Id)((St \setminus Id)(Te \setminus Id))^*$

Lemma

Any interval ipomset P has a unique decomposition $P = P_1 * \cdots * P_n$ such that $P_1 \dots P_n \in \Omega^+$ is sparse.

Application: Higher-Dimensional Automata

Step sequences

Let \sim be the congruence on Ω^+ generated by the relation

```
_{S}U_{U} \cdot _{U}T_{T} \sim _{S}T_{T} \qquad _{S}S_{U} \cdot _{U}U_{T} \sim _{S}S_{T}
```

• (compose subsequent starters and subsequent terminators)

Definition

A step sequence is a \sim -equivalence class of coherent words in Ω^+ .

Lemma

Any step sequence has a unique sparse representant.

Theorem

The category of interval ipomsets is isomorphic to the category of step sequences.

Categories?

Pomsets with Interfaces

Application: Higher-Dimensional Automata

Definition (Category iiPoms)

```
objects: conclists U (discrete
ipomsets without interfaces)
morphisms in iiPoms(U, V): interval
ipomsets P with sources U
and targets V
```

Definition (Category Coh)

objects: conclists *U* (discrete ipomsets without interfaces) morphisms in Coh(*U*, *V*): step sequences $[(S_1, U_1, T_1) \dots (S_n, U_n, T_n)]_{\sim}$ with $S_1 = U$ and $T_n = V$

composition: gluing

identities $id_U = _U U_U$

composition: concatenation

identities $\mathrm{id}_U = {}_U U_U$

- Coh is category generated from (directed multi)graph Ω under relations \sim
- isomorphisms Φ : iiPoms \leftrightarrow Coh : Ψ provided by
 - Φ(P) = [w]_∼, where w is any step decomposition of P;
 - $\Psi([P_1 \dots P_n]_{\sim}) = P_1 * \dots * P_n$ (needs lemma)

Uli Fahrenberg

Algebra

Pomsets with Interfaces 00000000

Application: Higher-Dimensional Automata

This is not cancellative:

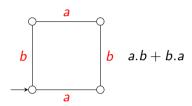
$$a \bullet \begin{bmatrix} \bullet a \bullet \\ a \bullet \end{bmatrix} = a \bullet \begin{bmatrix} a \bullet \\ \bullet a \bullet \end{bmatrix} = \begin{bmatrix} a \bullet \\ a \bullet \end{bmatrix}$$

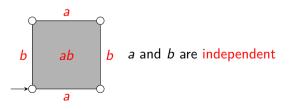
Pomsets with Interfaces

Application: Higher-Dimensional Automata $_{\odot OOOO}$

Higher-dimensional automata

alb

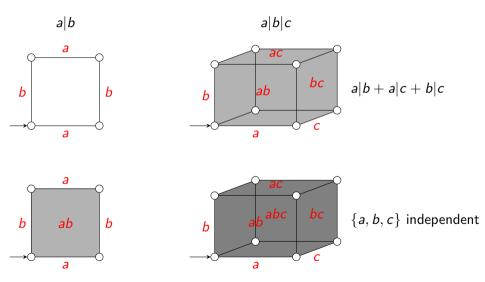




Pomsets with Interfaces

Application: Higher-Dimensional Automata $_{\odot OOOO}$

Higher-dimensional automata



Uli Fahrenberg

Application: Higher-Dimensional Automata

(a list of events)

(cells of type U)

(cubes)

Higher-dimensional automata

A conclist is a finite, ordered and Σ -labelled set.

- A precubical set X consists of:
 - A set of cells X
 - Every cell $x \in X$ has a conclist ev(x) (list of events active in x)
 - We write $X[U] = \{x \in X \mid ev(x) = U\}$ for a conclist U
 - For every conclist U and $A \subseteq U$ there are: upper face map $\delta^1_A : X[U] \to X[U \setminus A]$ (terminating events A) lower face map $\delta^0_A : X[U] \to X[U \setminus A]$ (unstarting events A)
 - Precube identities: $\delta^{\mu}_{A}\delta^{\nu}_{B} = \delta^{\nu}_{B}\delta^{\mu}_{A}$ for $A \cap B = \emptyset$ and $\mu, \nu \in \{0, 1\}$

A higher dimensional automaton (HDA) is a precubical set X with start cells $\bot \subseteq X$ and accept cells $\top \subseteq X$ (not necessarily vertices)

Higher-dimensional automata

HDAs as a model for concurrency:

- vertices $x \in X[\emptyset]$: states
- edges $a \in X[\{a\}]$: labeled transitions
- *n*-squares α ∈ X[{a₁,..., a_n}] (n ≥ 2): independency relations / concurrently executing events

van Glabbeek (TCS 2006): Up to history-preserving bisimilarity, HDAs generalize "the main models of concurrency proposed in the literature"

Lots of recent activity on languages of HDAs:

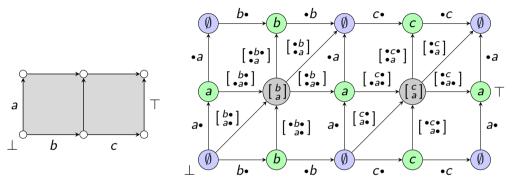
- Kleene theorem
- Myhill-Nerode theorem
- Büchi-Elgot-Trakhtenbrot theorem
- Model checking

^{• . . .}

ST-automata

Pomsets with Interfaces

Application: Higher-Dimensional Automata $_{\text{OOO} \bullet \text{O}}$



 The operational semantics of an HDA (X, ⊥, ⊤, Σ) is the "ST-automaton" with states X, alphabet Ω, state labeling ev : X → □, and transitions

$$\Xi = \{ \delta^{\mathsf{0}}_{\mathcal{A}}(\ell) \stackrel{\mathsf{A} \upharpoonright \mathsf{ev}(\ell)}{\longrightarrow} \ell \mid \mathcal{A} \subseteq \mathsf{ev}(\ell) \} \cup \{ \ell \stackrel{\mathsf{ev}(\ell) \downarrow_{\mathcal{A}}}{\longrightarrow} \delta^{1}_{\mathcal{A}}(\ell) \mid \mathcal{A} \subseteq \mathsf{ev}(\ell) \}.$$

• An automaton on the (infinite) graph alphabet Ω

Uli Fahrenberg

Un peu de recul

What we have:

- alphabet Σ
- St: set of starters ${}_{S}U_{U}$ on Σ ; Te: set of terminators ${}_{U}U_{T}$ on Σ ; $\Omega = St \cup Te$
- (equivalently: St and Te are marked inclusions $\Sigma^* \hookrightarrow \Sigma^*)$
- ST-automaton: automaton on (infinite) graph alphabet Ω
- language of ST-automaton: subset of (morphisms of) Coh
- Coh: category generated from Ω under relation \sim (not free)

What this looks like:

- Automata on graph alphabets $\hat{=}$ languages of morphisms in categories
- Melliès-Zeilberger König Morvan . . .
- Our cats are not freely generated, but almost:
 - The nerve functor $N: \mathsf{Cat} \to \mathsf{SSet}$ has a left adjoint "Ho"
 - \implies "category freely generated by a simplicial set"
 - Thank you, Vincent Moreau

Uli Fahrenberg