Petri Nets, Concurrency, and Real Time

Uli Fahrenberg

EPITA Research Laboratory (LRE), Rennes/Paris, France

LMF Informel, March 2025

Petri Nets, Concurrency, and Real Time

... and Higher-Dimensional Automata

Uli Fahrenberg

EPITA Research Laboratory (LRE), Rennes/Paris, France

LMF Informel, March 2025

Higher-dimensional automata:

- Languages of Higher-Dimensional Automata [MSCS 2021]
- Posets with Interfaces as a Model for Concurrency [I&C 2022]
- Kleene Theorem for Higher-Dimensional Automata [LMCS 2024]
- Myhill-Nerode Theorem for Higher-Dimensional Automata [FI 2024]
- Decision and Closure Properties for Higher-Dimensional Automata [TCS 2025]

... and Petri nets:

Petri Nets and Higher-Dimensional Automata [Petri Nets 2025]

... and real time?

- Higher-Dimensional Timed and Hybrid Automata [LITES 2022]
- Languages of Higher-Dimensional Timed Automata [Petri Nets 2024]

- Eric Goubault, Paris
- Christian Johansen, Gjøvik
- Georg Struth, Sheffield
- Krzysztof Ziemiański, Warsaw
- Amazigh Amrane (Paris), Hugo Bazille (Rennes), Emily Clement (Paris), Jérémy Dubut (Paris), Marie Fortin (Paris), Loïc Hélouët (Rennes), Jérémy Ledent (Paris), Philipp Schlehuber-Caissier (Paris), Safa Zouari (Gjøvik), . . .
- See also https://ulifahrenberg.github.io/pomsetproject/

Petri Nets

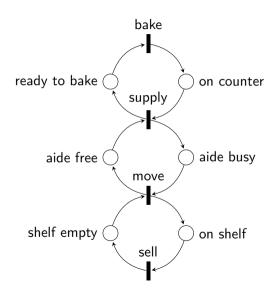
•0000

- 2 Higher-Dimensional Automata
- 3 Concurrent Semantics of Petri Nets
- 4 Languages of Higher-Dimensional Automata
- **6** Real Time

00000

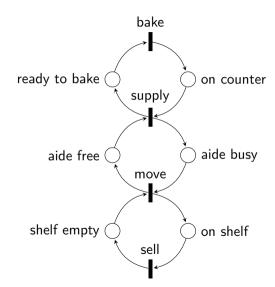
A Petri net (S, T, F):

- S set of places
- T set of transitions. $S \cap T = \emptyset$
- $F \subseteq S \times T \cup T \times S$ flow relation
- very useful for modeling distributed or concurrent systems
- invented in 1962; ubiquitous in modeling



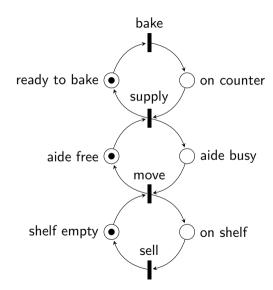
A Petri net (S, T, F):

- S set of places
- T set of transitions, $S \cap T = \emptyset$
- $F: S \times T \cup T \times S \rightarrow \mathbb{N}$ weighted flow relation



A Petri net (S, T, F):

- S set of places
- T set of transitions, $S \cap T = \emptyset$
- $F: S \times T \cup T \times S \rightarrow \mathbb{N}$ weighted flow relation
- marking: $S \to \mathbb{N}$: number of tokens per place
- preset of t: •t = F(s, t)
- postset of t: t•(s) = F(t, s)

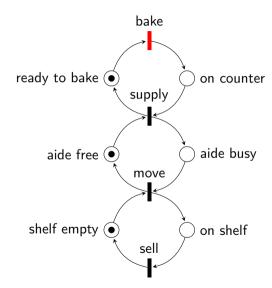


etri ivets

A Petri net (S, T, F):

- S set of places
- T set of transitions, $S \cap T = \emptyset$
- $F: S \times T \cup T \times S \rightarrow \mathbb{N}$ weighted flow relation
- marking: $S \to \mathbb{N}$: number of tokens per place
- preset of t: •t = F(s, t)
- postset of t: t•(s) = F(t,s)
- compute by transforming markings:

$$m'=m-{}^{\bullet}t+t^{\bullet}$$

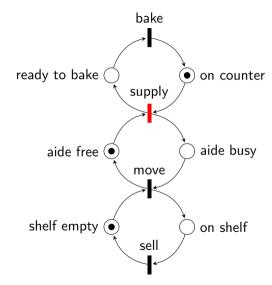


CLIT INCLS

A Petri net (S, T, F):

- S set of places
- T set of transitions, $S \cap T = \emptyset$
- $F: S \times T \cup T \times S \rightarrow \mathbb{N}$ weighted flow relation
- marking: $S \to \mathbb{N}$: number of tokens per place
- preset of t: •t = F(s, t)
- postset of t: t•(s) = F(t,s)
- compute by transforming markings:

$$m'=m-{}^{\bullet}t+t{}^{\bullet}$$



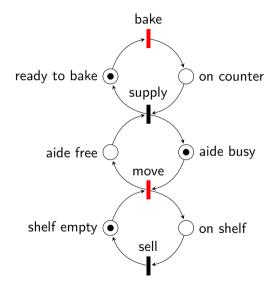
Real Time

Petri Nets

A Petri net (S, T, F):

- S set of places
- T set of transitions, $S \cap T = \emptyset$
- $F: S \times T \cup T \times S \rightarrow \mathbb{N}$ weighted flow relation
- marking: $S \to \mathbb{N}$: number of tokens per place
- preset of t: •t = F(s, t)
- postset of t: t•(s) = F(t,s)
- compute by transforming markings:

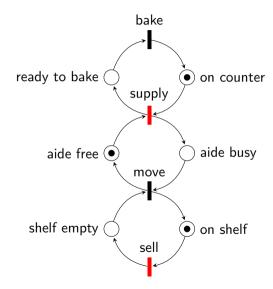
$$m'=m-{}^{\bullet}t+t{}^{\bullet}$$



A Petri net (S, T, F):

- S set of places
- T set of transitions, $S \cap T = \emptyset$
- $F: S \times T \cup T \times S \rightarrow \mathbb{N}$ weighted flow relation
- marking: $S \to \mathbb{N}$: number of tokens per place
- preset of t: •t = F(s, t)
- postset of t: t•(s) = F(t,s)
- compute by transforming markings:

$$m'=m-{}^{\bullet}t+t^{\bullet}$$

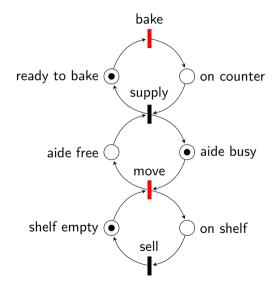


Petri Nets

A Petri net (S, T, F):

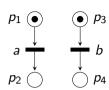
- S set of places
- T set of transitions, $S \cap T = \emptyset$
- $F: S \times T \cup T \times S \rightarrow \mathbb{N}$ weighted flow relation
- marking: $S \to \mathbb{N}$: number of tokens per place
- preset of t: •t = F(s, t)
- postset of t: t•(s) = F(t,s)
- compute by transforming markings:

$$m'=m-{}^{\bullet}t+t{}^{\bullet}$$



00000

Petri net (S, T, F): places S; transitions T; weighted flows $F: S \times T \cup T \times S \rightarrow \mathbb{N}$



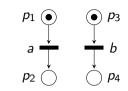
Semantics of Petri Nets

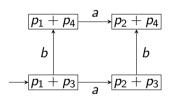
Petri Nets

Petri net (S, T, F): places S; transitions T; weighted flows $F: S \times T \cup T \times S \rightarrow \mathbb{N}$

Interleaved semantics (reachability graph) (V, E):

- $V = \mathbb{N}^S$: all markings
- $E \subseteq V \times T \times V$: one transition at a time
- $E = \{(m, t, m') \mid {}^{\bullet}t \leq m, m' = m {}^{\bullet}t + t^{\bullet}\}$
- initial marking ⇒ initial state; take reachable part





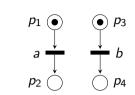
Petri net (S, T, F): places S; transitions T; weighted flows $F: S \times T \cup T \times S \rightarrow \mathbb{N}$

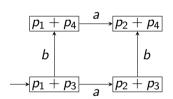
Interleaved semantics (reachability graph) (V, E):

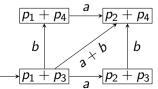
- $V = \mathbb{N}^{S}$: all markings
- $E \subseteq V \times T \times V$: one transition at a time
- $E = \{(m, t, m') \mid {}^{\bullet}t \leq m, m' = m {}^{\bullet}t + t^{\bullet}\}$
- initial marking \implies initial state; take reachable part

Concurrent step reachability graph (V, E'):

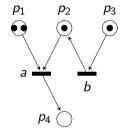
- $V = \mathbb{N}^S$
- $E' \subseteq V \times \mathbb{N}^T \times V$: multisets of transitions
- $E' = \{(m, U, m') \mid {}^{\bullet}U \le m, m' = m {}^{\bullet}U + U^{\bullet}\}$

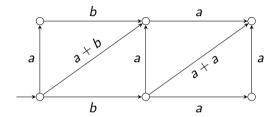






Another Example



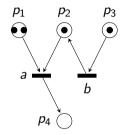


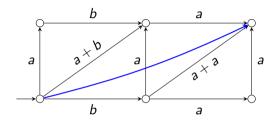
• after firing b, a is auto-concurrent

Another Example

Petri Nets

0000



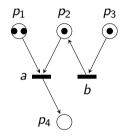


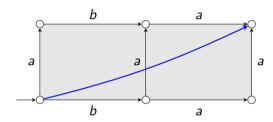
- after firing b, a is auto-concurrent
- semantics misses some behavoir?
 - start a start b finish b start another a etc.

Another Example

Petri Nets

0000





- after firing b, a is auto-concurrent
- semantics misses some behavoir?
 - start a start b finish b start another a etc.
- enter higher-dimensional automata
 - replace multi-transitions by squares

- 2 Higher-Dimensional Automata
- 3 Concurrent Semantics of Petri Nets
- 4 Languages of Higher-Dimensional Automata
- **5** Real Time

Higher-Dimensional Automata

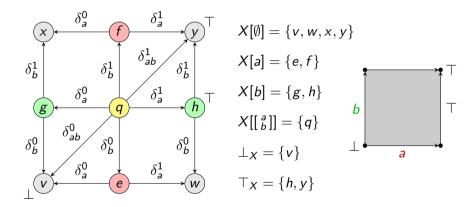
A conclist is a finite, totally ordered, Σ -labeled set. (a list of labeled events)

A precubical set *X* consists of:

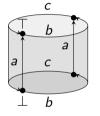
- A set of cells X (cubes)
- Every cell $x \in X$ has a conclist ev(x) (list of events active in x)
- We write $X[U] = \{x \in X \mid ev(x) = U\}$ for a conclist U (cells of type U)
- For every conclist U and $A \subseteq U$ there are: upper face map $\delta^1_A: X[U] \to X[U \setminus A]$ (terminating events A) lower face map $\delta^0_A: X[U] \to X[U \setminus A]$ ("unstarting" events A)
- Precube identities: $\delta^{\mu}_{\mathbf{A}}\delta^{\nu}_{\mathbf{B}} = \delta^{\nu}_{\mathbf{B}}\delta^{\mu}_{\mathbf{A}}$ for $A \cap B = \emptyset$ and $\mu, \nu \in \{0, 1\}$

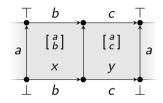
A higher dimensional automaton (HDA) is a precubical set X with initial cells $\bot \subseteq X$ and accepting cells $\top \subseteq X$ (not necessarily vertices)

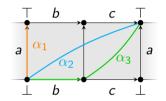
Example



Another One



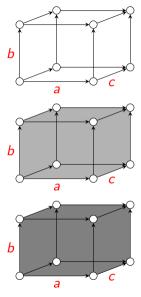




$$a \parallel (bc)^*$$

More Examples

Petri Nets



no concurrency

two out of three

full concurrency

Higher-Dimensional Automata & Concurrency Theory

HDAs as a model for concurrency:

- points: states
- edges: transitions
- squares, cubes etc.: independency relations / concurrently executing events
- two-dimensional automata \cong asynchronous transition systems
- Introduced in 1990
- Generalize all main models of concurrency proposed in the literature
- (event structures; Petri nets; communicating automata; etc.)

- 2 Higher-Dimensional Automata
- 3 Concurrent Semantics of Petri Nets
- 4 Languages of Higher-Dimensional Automata
- **5** Real Time

Concurrent Semantics of Petri Nets

Petri net (S, T, F): places S; transitions T; weighted flows $F: S \times T \cup T \times S \rightarrow \mathbb{N}$

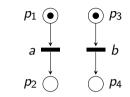
Interleaved semantics (V, E): $V = \mathbb{N}^S$: $E \subset V \times T \times V$

•
$$E = \{(m, t, m') \mid {}^{\bullet}t \leq m, m' = m - {}^{\bullet}t + t^{\bullet}\}$$

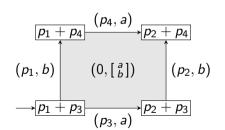
Concurrent semantics as HDA:

$$\square = \square(T)$$
, $X = \mathbb{N}^S \times \square$, $\operatorname{ev}(m, \tau) = \tau$

- for $x = (m, \tau) \in X[\tau]$ with $\tau = (t_1, \ldots, t_n)$:
 - $\delta_{+}^{0}(x) = (m + {}^{\bullet}t_{i}, (t_{1}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{n}))$ $\delta_{t_i}^1(x) = (m + t_i^{\bullet}, (t_1, \dots, t_{i-1}, t_{i+1}, \dots, t_n))$
- initial marking \implies initial cell; take reachable part
- (no accepting cells)

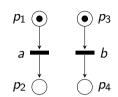


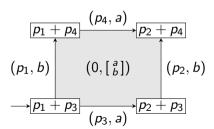
Languages of Higher-Dimensional Automata



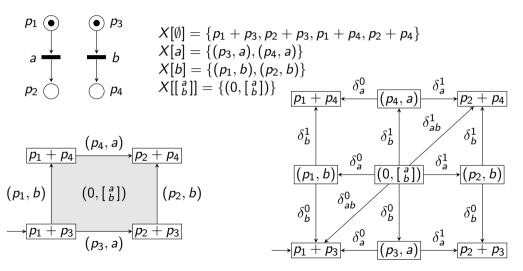
Event Order

- trouble with symmetry: have a cell $(0, \begin{bmatrix} a \\ b \end{bmatrix})$, but also $(0, \begin{bmatrix} b \\ a \end{bmatrix})$ (not shown)
- solution: fix an arbitrary order \leq on T
- and use $\square=\left\{\left[egin{array}{c} t_1\\ \vdots\\ t_n \end{array}\right] \ \middle|\ \forall i=1,\ldots,n-1:t_i\preccurlyeq t_{i+1} \right\}$ instead of $\square(T)$
- order ≼ may be chosen (and re-chosen) at will
- here: lexicographic $a \prec b \prec \dots$



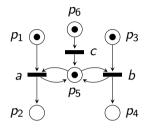


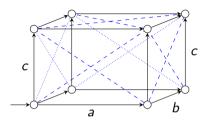
Example, Complete



One Last Example

Petri Nets





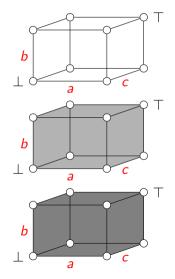
- initially, p_5 is a mutex place: it disables concurrency of a and b
- after c fires, p₅ holds two tokens, so a and b become concurrent
- semantically, a hollow cube without bottom face ("Fahrenberg's matchbox")
- the five faces: front: $(p_3, \begin{bmatrix} a \\ c \end{bmatrix})$, back: $(p_4, \begin{bmatrix} a \\ c \end{bmatrix})$ left: $(p_1, \begin{bmatrix} b \\ c \end{bmatrix})$, right: $(p_2, \begin{bmatrix} b \\ c \end{bmatrix})$

top: (

 $(p_1, \begin{bmatrix} b \\ c \end{bmatrix})$, right: $(p_2, \begin{bmatrix} b \\ c \end{bmatrix})$ $(0, \begin{bmatrix} b \\ b \end{bmatrix})$

- Petri Nets
- 2 Higher-Dimensional Automata
- 3 Concurrent Semantics of Petri Nets
- 4 Languages of Higher-Dimensional Automata
- **5** Real Time

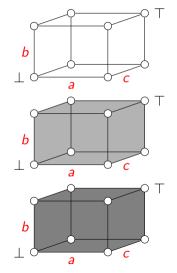
Languages of HDAs: Examples



$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$L_3 = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \dots \right\}$$

Languages of HDAs: Examples



$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$L_{2} = \left\{ \begin{bmatrix} a \\ b \to c \end{bmatrix}, \begin{bmatrix} a \\ c \to b \end{bmatrix}, \begin{bmatrix} b \\ a \to c \end{bmatrix}, \\ \begin{bmatrix} b \\ c \to a \end{bmatrix}, \begin{bmatrix} c \\ a \to b \end{bmatrix}, \begin{bmatrix} c \\ b \to a \end{bmatrix} \right\} \cup L_{1} \cup \dots$$

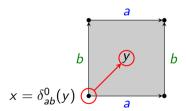
$$L_{3} = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \right\} \cup L_{2}$$
sets of pomsets

Computations of HDAs

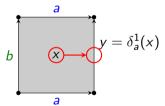
Petri Nets

An HDA computes by starting and terminating events in sequence:

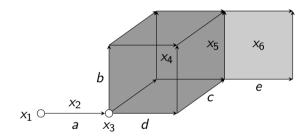
upstep $x \not | y$, starting $\begin{bmatrix} a \\ b \end{bmatrix}$:



downstep $x \setminus y$, terminating a:



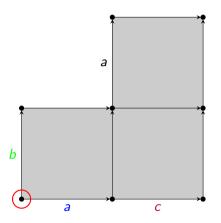
Example



$$(x_1 \nearrow^a x_2 \searrow_a x_3 \nearrow^{\{b,c,d\}} x_4 \searrow_{\{c,d\}} x_5 \nearrow^e x_6)$$

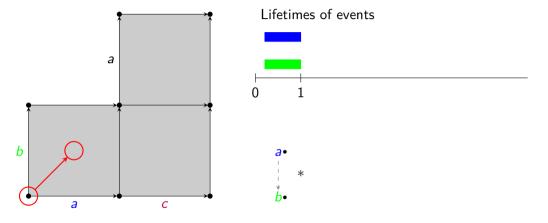
Event Ipomset of a Path

Petri Nets

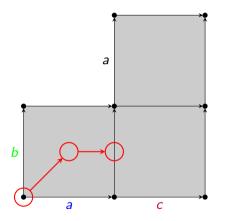


Lifetimes of events

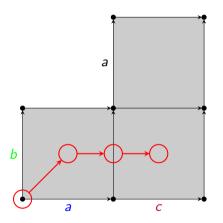
0

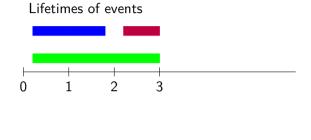


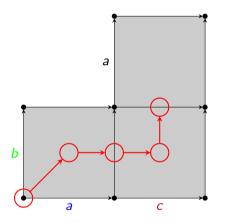
Petri Nets

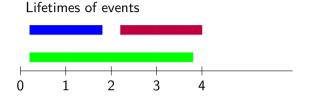


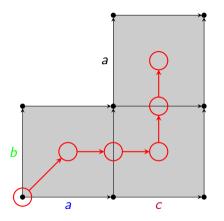
Lifetimes of events

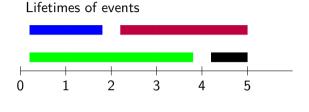




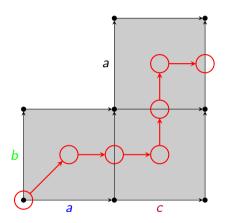


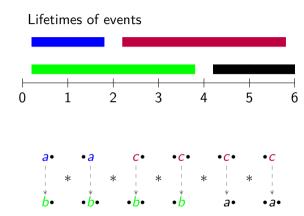


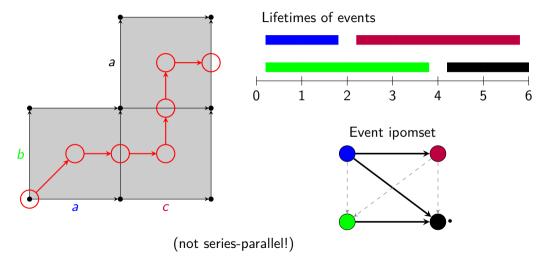












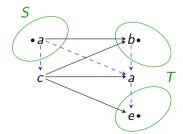
Pomsets with Interfaces

Definition

Petri Nets

A pomset with interfaces (ipomset): $(P, <, --\rightarrow, S, T, \lambda)$:

- *P* finite set of events, $\lambda: P \to \Sigma$
- two partial orders < (precedence order), --→ (event order)
 - s.t. < ∪ --→ is a total relation;
- $S, T \subseteq P$ source and target interfaces
 - s.t. S is <-minimal and T is <-maximal.



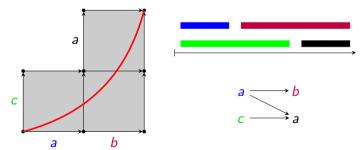
Interval Orders

Petri Nets

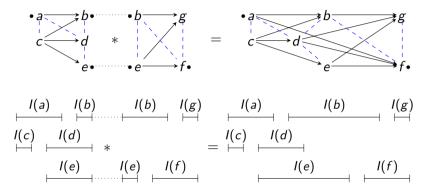
Definition

An ipomset $(P, <_P, -\rightarrow, S, T, \lambda)$ is interval if $(P, <_P)$ has an interval representation: functions $b, e : P \to \mathbb{R}$ s.t.

- $\forall x \in P : b(x) \leq_{\mathbb{R}} e(x)$;
- $\forall x, y \in P : e(x) <_{\mathbb{R}} b(y) \iff x <_P y$

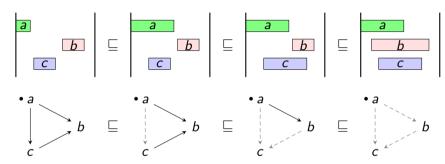


Gluing Composition



- Gluing P * Q: P before Q, except for interfaces (which are identified)
- (also have parallel composition $P \parallel Q$: disjoint union)

Subsumption



P refines Q / Q subsumes $P / P \sqsubseteq Q$ iff

- P and Q have same interfaces
- P has more < than Q
- Q has more --+ than P

Languages of HDAs

Definition

Petri Nets

The language of an HDA X is the set of event ipomsets of all accepting paths:

$$L(X) = \{ \operatorname{ev}(\pi) \mid \pi \in \operatorname{Paths}(X), \operatorname{src}(\pi) \in \bot_X, \operatorname{tgt}(\pi) \in \top_X \}$$

- *L(X)* contains only interval ipomsets,
- is closed under subsumption,
- and has finite width

Definition

A language $L \subseteq \text{iiPoms}$ is regular if there is an HDA X with L = L(X).

Theorems

Petri Nets

Definition (Rational Languages over Σ)

- Generated by \emptyset , $\{\epsilon\}$, and all $\{[a]\}$, $\{[\bullet a]\}$, $\{[a \bullet]\}$, $\{[\bullet a \bullet]\}$ for $a \in \Sigma$
- under operations ∪, *, || and (Kleene plus) +
- (these need to take subsumption closure into account)

Definition (Monadic Second-Order Logics over Ipomsets)

$$\psi ::= \mathbf{a}(\mathbf{x}) \mid \mathbf{s}(\mathbf{x}) \mid \mathbf{t}(\mathbf{x}) \mid \mathbf{x} < \mathbf{y} \mid \mathbf{x} \dashrightarrow \mathbf{y} \mid \mathbf{x} \in \mathbf{X} \mid$$
$$\exists \mathbf{x}. \ \psi \mid \forall \mathbf{x}. \ \psi \mid \exists \mathbf{X}. \ \psi \mid \forall \mathbf{X}. \ \psi \mid \psi_1 \land \psi_2 \mid \psi_1 \lor \psi_2 \mid \neg \psi$$

Theorem (à la Kleene): regular ←⇒ rational

Theorem (à la Myhill-Nerode): regular ← finite prefix quotient

Theorem (à la Büchi-Elgot-Trakhtenbrot):

[DLT 2024]

regular \iff MSO-definable, of finite width, and subsumption-closed

Languages of Petri Nets

Petri Nets

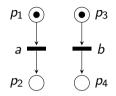
Petri net → HDA semantics → language semantics

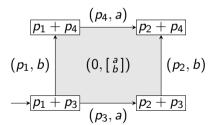
- > languages of Petri nets are sets of interval orders
- related to work by Janicki-Kleijn-Koutny-Mikulski
- relation to trace theory?

Petri Nets

- 2 Higher-Dimensional Automata
- 3 Concurrent Semantics of Petri Nets
- 4 Languages of Higher-Dimensional Automata
- **6** Real Time

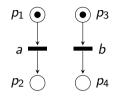
It Is Time!

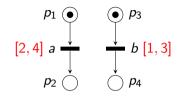


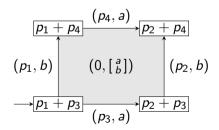


It Is Time!

Petri Nets

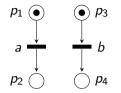


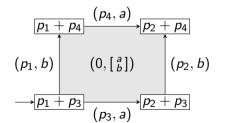


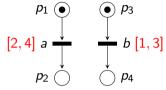


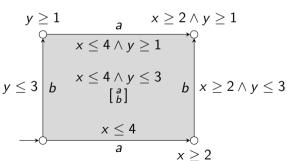
???

It Is Time!









Petri Nets

Definition (higher-dimensional timed automaton)

An HDTA is a structure $(\Sigma, C, Q, \bot, \top, \text{inv}, \text{exit})$, where (Σ, Q, \bot, \top) is a finite HDA and inv : $Q \to \Phi(C)$, exit : $Q \to 2^C$ assign invariant and exit conditions to each cell.

Definition (operational semantics)

The op.sem. of an HDTA $A = (Q, \bot, \top, \text{inv}, \text{exit})$ is the state-labeled automaton $[\![A]\!] = (S, \leadsto, S^\bot, S^\top, \rho)$, with $\leadsto \subseteq S \times (\text{St} \cup \text{Te} \cup \mathbb{R}_{>0}) \times S$, given as follows:

$$S = \{(q, v) \in Q \times \mathbb{R}_{\geq 0}^{C} \mid v \models \mathsf{inv}(q)\} \qquad \rho((q, v)) = \mathsf{ev}(q)$$

$$S^{\perp} = \{(q, v^{0}) \mid q \in \bot\} \qquad S^{\top} = S \cap \top \times \mathbb{R}_{\geq 0}^{C}$$

$$\leadsto = \{((q, v), d, (q, v + d)) \mid \forall 0 \leq d' \leq d : v + d' \models \mathsf{inv}(q)\}$$

$$\cup \{((\delta_{A}^{0}(q), v), A \uparrow \mathsf{ev}(q), (q, v')) \mid A \subseteq \mathsf{ev}(q), v' = v[\mathsf{exit}(\delta_{A}^{0}(q)) \leftarrow 0]\}$$

$$\cup \{((q, v), \mathsf{ev}(q) \downarrow_{A}, (\delta_{A}^{1}(q), v')) \mid A \subseteq \mathsf{ev}(q), v' = v[\mathsf{exit}(q) \leftarrow 0]\}$$

Petri Nets

Higher-dimensional timed automata

Definition (higher-dimensional timed automaton)

An HDTA is a structure $(\Sigma, C, Q, \bot, \top, \text{inv} \xrightarrow{\text{exit}} \xrightarrow{\text{where}} (\Sigma, Q, \bot, \top)$ is a finite HDA and inv $: Q \to \Phi(C)$ exit $: Q \to 2^C$ assign starters & terminators ons to each cell. may delay anywhere semantics)

The op.sem. of an HDTA
$$A = (Q, \bot, \top, \text{inv}, \text{exit})$$
 is the state-labeled automaton $\llbracket A \rrbracket = (S, \leadsto, S^{\top}, \rho)$, with $\leadsto \subseteq S \times (\text{St} \cup \text{Te} \cup \mathbb{R}_{\geq 0}) \times S$, given as follows:
$$S = \{(q, v) \in Q \times \mathbb{R}_{\geq 0}^C \mid \text{start/terminate } A \mid v, v)\} = \text{ev} \xrightarrow{\text{exit when leaving}} S^{\bot} = \{(q, v^0) \mid q \in \text{start/terminate } A \mid v, v)\} = \text{ev} \xrightarrow{\text{exit when leaving}} S^{\bot} = \{(q, v^0) \mid q \in \text{start/terminate } A \mid v, v)\} = \text{ev} \xrightarrow{\text{exit when leaving}} S^{\bot} = \{(q, v), d, (q, v + d)\} \mid \forall 0 \leq d' \leq d : v + d' \models \text{inv}(q)\}$$
$$\cup \{((\delta_A^0(q), v), A \mid \text{ev}(q), (q, v')) \mid A \subseteq \text{ev}(q), v' = v[\text{exit}(\delta_A^0(q)) \leftarrow 0]\}$$
$$\cup \{((q, v), \text{ev}(q) \downarrow_A, (\delta_A^1(q), v')) \mid A \subseteq \text{ev}(q), v' = v[\text{exit}(q) \leftarrow 0]\}$$

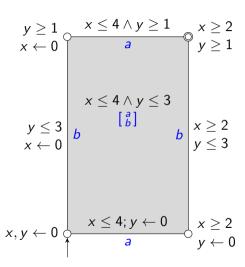
Actions take time?

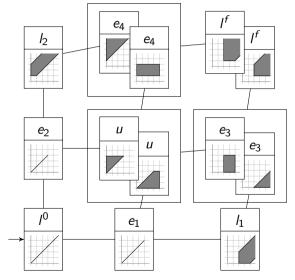
- Cardelli 1982 (ICALP): Actions take time.
 - 'We read $p \xrightarrow[t]{a} q$ as "p moves to q performing a for an interval t"'
- since Alur-Dill 1990 (even before?): Actions are immediate.
 - $(l, v) \stackrel{d}{\leadsto} (l, v+d) \stackrel{s}{\leadsto} (l', v+d)$
- Kim G. Larsen (personal discussions): Actions are immediate mostly because of technical reasons. ("We know how to do; it's nice; and it's sufficient")
- Henzinger-Manna-Pnueli 1990: same
- Chatain-Jard 2013: In the concurrent semantics for time Petri nets, time has to (locally) be allowed to run backwards??
- U.F. 2018: In real-time concurrency, actions cannot be immediate.
 - and it appears that the "technical reasons" argument is quite weak!

Good news

- regions
- zones √
- zone-based reachability
 - reachability is PSPACE-complete
- language inclusion undecidable
- ullet untimings of languages are regular \implies untimed language inclusion decidable \checkmark

Zone-Based Reachability





Languages of HDTAs

Definition

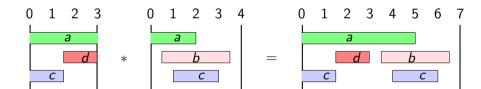
Petri Nets

A timed ipomset is $P = (P, \langle P, -- \rangle, S, T, \lambda, \sigma^-, \sigma^+, d)$:

- P set of events. $\lambda: P \to \Sigma$
- < precedence, --→ event order s.t. < ∪ --→ is a total relation
- $S, T \subseteq P$ sources & targets s.t. S is <-minimal, T is <-maximal
- $\sigma^-, \sigma^+: P \to \mathbb{R}_{\geq 0}$ interval timestamps, $d \in \mathbb{R}_{\geq 0}$ duration
- $\forall x \in P$, $0 \le \sigma^-(x) \le \sigma^+(x) \le d$
- $x \in S \implies \sigma^{-}(x) = 0$: $x \in T \implies \sigma^{+}(x) = d$
- $\sigma^+(x) < \sigma^-(y) \implies x <_P y \implies \sigma^+(x) < \sigma^-(y)$

Languages of HDTAs

- timed ipomsets look (almost) like signals
- with interfaces and a gluing operation



Languages of Higher-Dimensional Automata

Conclusion

Higher-dimensional automata:

- An automaton-like model for non-interleaving concurrency
- ... with a nice language theory!
- The trifecta Kleene–Myhill-Nerode–Büchi-Elgot-Trakhtenbrot is now complete for HDAs
 [LMCS 2024]–[FI 2024]–[DLT 2024]
- Next step: recognizability by finite categories?
- Geometry & topology provide plenty of intuition

... and Petri nets:

- HDAs provide concise concurrent semantics for Petri nets
- ... and extensions! (needs partial HDAs)

... and real time?

- Real-time concurrent semantics of timed extensions of Petri nets
- HD timed automata seem rather well-behaved
- relation to signals (and STL etc.)