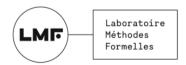
Specification Theories, Reloaded Relationally

Uli Fahrenberg Paul Brunet

LMF, Université Paris-Saclay

LACL, Université Paris-Est Créteil

JN GT MTV2, December 2025



Motivation

•000

models specifications $Mod \models Spec$

model checking

Not so easy...

Motivation

models specifications

Mod
$$\models$$
 Spec

model checking

Not so easy. . .

Incremental certification / Compositional verification

bottom-up and top-down

Wish list:

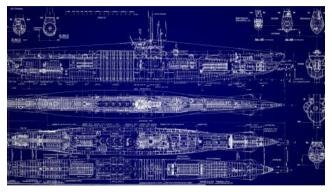
- $\mathsf{Mod} \vDash \mathsf{Spec}_1 \& \mathsf{Spec}_1 \le \mathsf{Spec}_2 \implies \mathsf{Mod} \vDash \mathsf{Spec}_2$
- $\mathsf{Mod} \vDash \mathsf{Spec}_1 \& \mathsf{Mod} \vDash \mathsf{Spec}_2 \implies \mathsf{Mod} \vDash \mathsf{Spec}_1 \land \mathsf{Spec}_2$
- $\mathsf{Mod}_1 \vDash \mathsf{Spec}_1 \& \mathsf{Mod}_2 \vDash \mathsf{Spec}_2 \implies \mathsf{Mod}_1 \parallel \mathsf{Mod}_2 \vDash \mathsf{Spec}_1 \parallel \mathsf{Spec}_2$
- $\mathsf{Mod}_1 \vDash \mathsf{Spec}_1 \& \mathsf{Mod}_2 \vDash \mathsf{Spec} / \mathsf{Spec}_1 \implies \mathsf{Mod}_1 \parallel \mathsf{Mod}_2 \vDash \mathsf{Spec}$

Compositional Verification

- $\mathsf{Mod} \vDash \mathsf{Spec}_1 \& \mathsf{Spec}_1 \le \mathsf{Spec}_2 \implies \mathsf{Mod} \vDash \mathsf{Spec}_2$
 - incrementality
- $\mathsf{Mod} \vDash \mathsf{Spec}_1 \& \mathsf{Mod} \vDash \mathsf{Spec}_2 \implies \mathsf{Mod} \vDash \mathsf{Spec}_1 \land \mathsf{Spec}_2$
 - conjunction
- $\mathsf{Mod}_1 \vDash \mathsf{Spec}_1 \& \mathsf{Mod}_2 \vDash \mathsf{Spec}_2 \implies \mathsf{Mod}_1 \parallel \mathsf{Mod}_2 \vDash \mathsf{Spec}_1 \parallel \mathsf{Spec}_2$
 - compositionality
- $\mathsf{Mod}_1 \vDash \mathsf{Spec}_1 \& \mathsf{Mod}_2 \vDash \mathsf{Spec} / \mathsf{Spec}_1 \implies \mathsf{Mod}_1 \parallel \mathsf{Mod}_2 \vDash \mathsf{Spec}$
 - quotient

Not so easy - but easier than model checking?

Application? Naval Group



- thousands of components; computing, physical, and mixed; from hundreds of subcontractors
- modern design needs formal(ish) verification
- what if between verification and implementation, a subcontractor decides to

What precisely is a specification theory?

- [Pnueli '85], [Hennessy-Milner '85], [Larsen '90]
- [Aceto et al '19], [Beneš et al '20], [F.-Legay '20], [F.-Legay '21], [F. '22]
- Still not clear!
- Useful to work out for developing quantitative versions, for example
- Back to basics, using a relational setting
- Ongoing work with Paul Brunet

Definition

Motivation

A specification formalism is a structure (M, S, \vDash) with a satisfaction relation $\vDash: M \longrightarrow S$ between a set M of models and a set S of specifications / formulas.

Induces preorders and equivalences:

$$\sqsubseteq := \models / \models$$
 $\preceq := \models / \models$ $\simeq := \prec \cap \succ$

Lemma

For $m_1, m_2 \in M$, $m_1 \sqsubseteq m_2$ iff $m_2 \vDash s \Longrightarrow m_1 \vDash s$ for all $s \in S$.

Lemma

For $s_1, s_2 \in S$, $s_1 \leq s_2$ iff $m \models s_1 \Longrightarrow m \models s_2$ for all $m \in M$.

- ☐ is Hennessy-Milner behavioral equivalence
- $\bullet \simeq$ is semantic equivalence of logical formulas

Definition

Motivation

 $s \in S$ is characteristic for $m \in M$, denoted $m \vdash s$, if

$$\forall m' \in M : m' \vDash s \iff m' \sqsubseteq m.$$

- so ⊢ ↔ ⊨ ∩ (□ / ∃)
- and \exists ; $\vdash \rightarrow \simeq$, *i.e.*, \vdash is a partial function up-to \simeq (as expected)

Expressive Specification Formalisms

Definition (Pnueli '85)

A specification formalism (M, S, \models) is expressive if \vdash is a total relation.

- *i.e.*, $id_M \rightarrow \vdash$; \dashv
- so every model has a characteristic formula

Proposition

Motivation

In any expressive specification formalism, $\sqsubseteq \Leftrightarrow \underline{\square}$.

- the model preorder reduces to an equivalence
- not always what we want!

Weakly Characteristic Formulas

Definition (recall)

 $s \in S$ is characteristic for $m \in M$, denoted $m \vdash s$, if

$$\forall m' \in M : m' \vDash s \iff m' \sqsubseteq m.$$

• let's change that one:

Definition (Aceto et al '19)

 $s \in S$ is weakly characteristic for $m \in M$, denoted $m \Vdash s$, if

$$\forall m' \in M : m' \vDash s \iff m' \sqsubseteq m.$$

- IF ↔ F∩(□/∃)
- \dashv I; \vdash \rightarrow \simeq (partial function up-to \simeq)
- say that (M, S, \models) is weakly expressive if \Vdash is a total relation

Incrementality

Motivation

• recall: $\mathsf{Mod} \vDash \mathsf{Spec}_1 \& \mathsf{Spec}_1 \le \mathsf{Spec}_2 \implies \mathsf{Mod} \vDash \mathsf{Spec}_2$

Definition

A weak specification theory (M, S, \leftarrow, \leq) :

- $\leftarrow : M \longrightarrow S, \leq : S \longrightarrow S$
- \leftarrow is total: $id_M \rightarrow \leftarrow$; \rightarrow
- → ; ← → ≤

Proposition

- (M, S, \leftarrow) is a weakly expressive specification formalism
- \rightarrow ; \leftarrow \rightarrow \leq \cap \geq : on (images of) models, modal refinement is an equivalence
- ← → I⊢: every model is its own characteristic formula
- ≤ → <u>≺</u>: modal refinement implies thorough refinement

Specification Theories

Motivation

Definition (recall)

A weak specification theory (M, S, \leftarrow, \leq) :

- $\leftarrow : M \longrightarrow S, < : S \longrightarrow S$
- \leftarrow is total: $id_M \rightarrow \leftarrow$; \rightarrow
- →; ← → ≤
- incrementality
- the rest, not for now
- our interest now: quantities

Definition (recall)

Motivation

A weak specification theory (M, S, \leftarrow, \leq) :

- $\bullet : M \longrightarrow S, \leq : S \longrightarrow S$
- ② \leftarrow is total: id_M \rightarrow \leftarrow ; \rightarrow
- 3 →; ← → ≤
- \leftarrow should be quantitative: \leftarrow : $M \times S \rightarrow [0,1]$ (or $[0,\infty]$ if you wish)
 - (0 means "is a model"; 1, "is totally not a model"; in between, "ok kind of")
 - (it's a distance! (hemimetric))
- " \rightarrow " translates to " $\geq_{\mathbb{R}}$ " (!), and $\mathrm{id}_M(m,n)=$ (if m=n then 0 else 1)
- so by (3), \leq must be quantitative, too: \leq : $S \times S \rightarrow [0,1]$
- composition of relations is infimum: $(R; S)(x, z) = \inf_{y} \{R(x, y) \cdot S(y, z)\}$
- so (2) reads $\forall m$: inf $\{\leftarrow (m, s) \mid s \in S\} = 0$: makes sense!

Definition (proposal)

A quantitative specification theory (M, S, \leftarrow, \leq) :

- $\bullet: M \times S \rightarrow [0,1], \leq : S \times S \rightarrow [0,1]$
- $2 \operatorname{id}_M \geq_{\mathbb{R}} \leftarrow ; \rightarrow$
- $3 \rightarrow ; \leftarrow \geq_{\mathbb{R}} \leq$
- by (2): $\forall m \in M : \forall \epsilon > 0 : \exists s \in S : \leftarrow (m, s) < \epsilon$
- (3) implies again \rightarrow ; $\leftarrow \geq_{\mathbb{R}} \leq \cap \geq$ (and \cap is max (!))
 - so $\forall s, s' : \inf\{m \in M \mid \leftarrow(m, s) \cdot \leftarrow(m, s')\} \ge \max(\le (s, s'), \le (s', s))$
 - (what does that mean?)
- and what about modal vs thorough refinement, approximate sets of implementations, etc.?

Conclusion?

Motivation

- Specification theories can help with compositional verification
 - quantitative generalization(s): not clear
- Paul Brunet has convinced me that the relational setting provides a nice framework to think about such things
 - also category theory, of course
- But it seems that the theory of quantitative ("fuzzy") relations is less well-suited than we thought
 - lots of basic stuff to develop